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Abstract

Background: Fibroblast growth factor 2 (FGF2) is a major angiogenic factor involved in angiogenesis and arteriogenesis,
however the regulation of its expression during these processes is poorly documented. FGF2 mRNA contains an internal
ribosome entry site (IRES), a translational regulator expected to allow mRNA expression during cellular stress.

Methodology/Principal Findings: In the present study, we have developed a skin ischemia model in transgenic mice
expressing a reporter transgene under the control of the FGF2 IRES. The results reveal that FGF2 is induced at the protein
level during ischemia, concomitant with HIF-1a induction and a decrease in FGF2 mRNA. In addition, the FGF2 IRES is
strongly activated under these ischemic conditions associated with hypoxia, whereas cap-dependent translation is
repressed by 4E-BP hypophosphorylation. We also show that up-regulation of FGF2 protein expression in response to
hypoxia correlates with the increase of FGF2 IRES activity in vitro, in human retinoblasts 911. The use of siRNAs targeting HIF
or FGF2 indicates that FGF2 and HIF-1a reciprocally regulate their expression/accumulation, by a negative feedback loop in
early hypoxia, followed by a positive feedback loop in late hypoxia.

Conclusion/Significance: FGF2 expression is up-regulated in vivo and in vitro in response to hypoxia. Strikingly, this up-
regulation is not transcriptional. It seems to occur by an IRES-dependent mechanism, revealing new mechanistic aspects of
the hypoxic response. In addition, our data show that FGF2 interacts with HIF-1a in a unique crosstalk, with distinct stages in
early and late hypoxia. These data reveal the physiological importance of IRES-dependent translation during hypoxic stress
and underline the complexity of the cellular response to hypoxia, suggesting a novel role of FGF2 in the regulation of HIF-1a
during the induction of angiogenesis.
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Introduction

The establishment of a stable and functional blood vessel

network is a complex process requiring several angiogenic factors

to stimulate vessel sprouting and remodeling from the primitive

vascular network. Fibroblast growth factor 2 (FGF2) is one of the

major regulators of blood vessel formation, involved in angiogen-

esis as well as in arteriogenesis. However the regulation of its

expression during these processes remains to be deciphered [1].

Hypoxia is a major pathophysiological trigger of angiogenesis. In

solid tumours, the angiogenic switch responsible for tumour

development is induced by hypoxia [2]. In cardiovascular diseases,

ischemia corresponds to a shortage of the blood supply, resulting in

tissue damage because of the lack of oxygen and nutrients. In

ischemic conditions, hypoxia generates a process of revasculariza-

tion involving both angiogenesis and arteriogenesis [3]. The

response to hypoxic stress generates a transcriptional response

mediated by hypoxia-induced factor 1 (HIF-1), whose a subunit is

stabilized in the absence of oxygen [2]. However, hypoxia also

generates the blockade of cellular mRNA translation by impairing

the classical cap-dependent mechanism of translation initiation.

Translational repression by hypoxia mainly occurs through

modulating the activity of two kinases, mTOR and PERK.

Inactivation of mTOR results in hypophosphorylation of eIF4E-

binding proteins (4E-BP), which increases their affinity for the cap-

binding protein eIF-4E and inhibits cap-dependent translation by

sequestering eIF-4E [4]. PERK activation by hypoxia, mediated by

the unfolded protein response, is responsible for translation

inhibition by phosphorylating the translation initiation factor

eIF2-a [5].

Translation of specific mRNAs during hypoxia thus requires

alternative mechanisms, such as translation initiation mediated by

internal ribosome entry sites (IRESs). IRESs are RNA structural

elements present in the 59 non-translated regions of a small

number of mRNAs, allowing translation to occur in conditions of

stress [6–10]. Interestingly, IRESs are present in mRNAs coding

for several angiogenic factors, as well as in the HIF-1a mRNA

itself [11]. While the transcriptional response to hypoxia is fully
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documented, little information is presently available, in particular

in vivo, about the mechanisms regulating IRES-mediated mRNA

translation in response to hypoxic stress.

The regulation of FGF2 expression has been mainly described

as post-transcriptional: indeed 90% of the FGF2 mRNA, which is

transcribed from a single promoter, consists of non-translated or

alternatively translated regions [12]. Alternative initiation codons

allow for expression of several FGF2 isoforms in human as well as

in rodents [13]. This process is crucial for the fate of FGF2, as

these isoforms have different localizations and functions [14]. The

small 18 kDa isoforms, initiated at an AUG codon, is responsible

for the FGF receptor-mediated auto- paracrine activity of FGF2.

The high molecular weight isoforms (22, 22.5, 24 and 34 kDa in

human, versus 21–22 kDa in mouse), are initiated at in frame,

upstream CUG codons, localized in the nucleus and possess

intracrine activities [15,16]. Furthermore, translation of the FGF2

mRNA is under the control of an internal ribosome entry site

(IRES) [17]. The FGF2 IRES is the first cellular IRES to have

been studied in vivo, with transgenic mice expressing biolumines-

cent, bicistronic transgenes. Previous studies have revealed a

strong tissue specificity of the FGF2 IRES in transgenic mice [18].

Interestingly, the IRES mediates FGF2 up-regulation in response

to hyperglycemia in the aorta of diabetic mice [19].

In the present study, we investigated the mechanisms regulating

FGF2 in vivo and in vitro in response to hypoxia. We developed a

skin ischemia model, using the transgenic mice described above, to

analyze endogenous FGF2 expression at the mRNA and protein

levels, as well as study the regulation of activity of the FGF2 IRES.

Our results revealed that FGF2 is induced at the protein level,

concomitant with a decrease in FGF2 mRNA levels, during

ischemia. In addition, the FGF2 IRES was strongly activated

under hypoxic conditions, whereas cap-dependent translation was

repressed by 4E-BP hypophosphorylation. FGF2 expression was

also analyzed in human retinoblasts 911, showing that up-

regulation of FGF2 protein, but not mRNA, correlates with an

increase in activity of the FGF2 IRES in vitro. The use of siRNAs

targeting HIF or FGF2 indicated that FGF2 and HIF-1a
reciprocally regulate their expression/accumulation by a negative,

then a positive feedback loop, during early and late hypoxia,

respectively.

Results

Cutaneous ischemia-induced revascularization in double
luciferase transgenic mice

To investigate the impact of ischemia on FGF2 expression and

IRES activity, cutaneous ischemia was induced, using a skin flap

model, in RFL12 transgenic mice expressing a bicistronic mRNA

encoding both Renilla luciferase (LucR) and Firefly luciferase (LucF)

separated by the FGF2 IRES (Fig 1A, right) [18]. In such a

transgene, LucR expression is cap-dependent whereas LucF is

IRES-dependent. A value of IRES activity may be deduced from

the LucF/LucR ratio.

Color laser Doppler analysis showed the induction of a

reproducible ischemic gradient 18 h after surgery that ultimately

led to blood reperfusion at 72 h, progressing slowly from the top of

the skin flap (Fig 1B and 1C).

FGF2 protein expression is induced by ischemia
We then analyzed the levels of FGF2 mRNA and proteins in the

proximal part of the ischemic skin flap. FGF2 protein levels

significantly increased 24 h–48 h after surgery, concomitant with

an increase in HIF-1a, indicating that ischemic tissues are

submitted to hypoxia (Fig 2A). Interestingly, FGF2 protein

induction was already observed 6 h after surgery, whereas HIF-

1a was not yet detectable at that time point. In contrast to FGF2

protein levels, FGF2 mRNA levels strongly decreased under

ischemic conditions (Fig 2B). These results show that FGF-2

expression is not activated at the transcriptional level in response

to ischemia-induced hypoxia and strongly suggests that it could be

up-regulated at the translational level. According to the ratio of

FGF2 protein expression calibrated to the number of mRNA

molecules, FGF2 mRNA translation might be activated four fold

after 24–48 h of ischemia (Fig. 2C).

Ischemia activates FGF2 IRES-dependent translation in
vivo

It has been reported that global translation of cellular mRNAs

by the classical cap-dependent mechanism is blocked under

hypoxic conditions [20]. However several angiogenic growth

factor mRNAs, including FGF2, contain IRESs that permit

mRNA translation despite the blockade of cap-dependent

translation [11,21]. Therefore, the transgenic mouse model

RFL12 enabled us to measure the level of FGF2 IRES-dependent

translation in ischemic skin [18]. To study the response of the

FGF2 IRES, we measured LucR and LucF activities in the

proximal part of the skin flap of the RFL12 mice. A 15 fold

increase of LucF activity (IRES-dependent) was observed 24 h

after surgery, culminating at a 40 fold increase after 48 h (Fig. 3A).

At the same time, cap-dependent LucR activity increased up to 10

fold at 24 h but decreased by 48 h.

Bicistronic mRNA integrity was measured by RT qPCR. In

order to check that the observed increase of LucF was not due to

the presence of a cryptic promoter or a splicing event that gives

rise to monocistronic LucF mRNA, we quantified the transgenic

mRNA by using LucR- and LucF-specific probes (Fig. 3B). This

method permits detection of the bicistronic and any putative

monocistronic transcripts, as shown in previous reports using the

same transgenic mouse line as well as in other animal and cellular

models [7,19,22–24]. In such an analysis, the presence of an

internal promoter or a splice site would be revealed by the

presence of larger amounts of LucF mRNA compared to LucR

mRNA [7]. In our experiments, both LucR and LucF mRNAs

were always present in equal amounts, indicating that the mRNA

is bicistronic (Fig. 3B). RT qPCR analysis of the bicistronic mRNA

also showed that its level significantly decreases in ischemic skin,

demonstrating that enhancement of LucF as well as LucR

activities results from a post-transcriptional event.

In order to know the status of cap-dependent translation under

our ischemic conditions, we analysed 4E-BP1 expression and

phosphorylation. Hypophosphorylated 4E-BP1 avidly binds to

eIF4E and blocks cap-dependent translation initiation, whereas

4E-BP1 hyperphosphorylation abrogates this interaction [25].

Western blot experiments performed on protein extracts of

ischemic skin showed an increase of 4E-BP1 under hypoxic

conditions (Figure 3C). In addition, the phosphorylation state of

4E-BP1 is modified. Thus the relative level of hypophosphorylated

a and b isoforms of 4E-BP1 increased 24 h and 48 h after surgery

(Figure 3C). These results indicated that cap-dependent translation

is repressed in ischemic skin through the sequestration of eIF4E by

its inhibitor 4E-BP1.

These data led us to conclude that FGF2 IRES-dependent

translation is strongly activated in vivo under ischemic/hypoxic

conditions, where cap-dependent translation is repressed. Our

findings suggest that the induction of FGF2, observed in Fig 2A,

occurs via an IRES-dependent mechanism [26].

FGF2 Induction by Hypoxia
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FGF2 expression is translationally induced in response to
hypoxia in vitro

Expression of FGF2 and HIF-1a was studied in 911 human

retinoblasts submitted to hypoxia for different periods of time. As

shown in Figure 4A and 4B, FGF2 protein expression dropped

after 3 hours of hypoxia, began to increase by 7 h and reached a

peak at 16 h. In contrast to FGF2 protein levels, the level of FGF2

mRNA increased initially during hypoxia but returned to the basal

level at 7 h and later time points. HIF-1a protein was already

detectable after 3 hours of hypoxia, but strongly increased at 16 h,

coinciding with the peak of FGF2 expression.

The increase in FGF2 protein levels during hypoxia may be due

to an increase in protein stability and/or translation. To analyze

FGF2 protein accumulation during hypoxia, we used an siRNA

knock down approach. FGF2 protein accumulation was measured

in 911 cells treated with a siRNA against FGF2 and submitted to

hypoxia (Fig. 4C). Under such conditions, FGF2 protein levels

progressively decreased and were hardly detectable after 16 h of

Figure 1. Ischemia induced by a dorsal skin flap model in IRES FGF2-Luc transgenic mice. A. Representation of FGF2 mRNA and mouse
protein isoforms (left panel) and of the bicistronic mRNA expressed by the RFL12 transgenic mice (right panel). This bicistronic cassette expresses,
under control of the CMV (Cytomegalovirus) promoter, LucR and LucF reporter genes in a cap- or FGF2 IRES-dependent manner, respectively [18]. B.
Ischemia induction using a skin flap model modified from Ceradini et al [26] and representative Laser Doppler analysis performed 18, 48 and 72 hours
after surgery. A U-shaped peninsular skin incision was created on the dorsal surface of 8-week old female RFL12 mice. The two vascular pedicles
arising from the lateral thoracic arteries were sectioned. To avoid necrotic tissues, the study of gene expression was performed on the proximal part
of the skin flap indicated by the white square. The color scale illustrates blood flow variations from maximal (red) to minimal perfusion (dark blue). C.
Quantification of laser Doppler analysis. Ctr corresponds to non-operated mice. Results represent mean6SE on at least 3 mice per post-operative
time.
doi:10.1371/journal.pone.0003078.g001

FGF2 Induction by Hypoxia
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hypoxia, whereas treatment by the control siRNA led to an

accumulation of FGF2. This clearly showed that FGF2 is not

stabilized by hypoxia and that protein stabilization can not be

responsible for the increase of FGF2 protein levels that culminates

at 16 h (Fig. 4A). These data indicated that FGF2 induction from

7 h to 24 h most probably results from an increase in FGF2

mRNA translation and not through effects on FGF2 protein

stabilization.

To evaluate the level of IRES activity in response to hypoxia,

911 human retinoblasts were stably transfected with the bicistronic

construct described in Fig. 1. Measured luciferase activities

indicated that the FGF2 IRES is transiently activated after

4 hours of severe hypoxia in these cells (Fig. 4D).

Figure 2. Endogenous FGF2 and HIF-1a expression in ischemic
skin extracts. A. Representative Western blot analyses of FGF2 and
HIF-1a at the indicated post-operative time. The molecular weights of
FGF2 mouse isoforms are indicated. B. Levels of endogenous FGF2
mRNA determined by RT-qPCR analysis. Results are expressed relative
to the level from control mice and represent mean6SE (n = 5 mice per
post-operative time). *P,0.05 vs. control. C. Quantification of total FGF2
detected by Western blot analysis after normalization to GAPDH and to
endogenous mRNA level. **P,0.001 vs. control.
doi:10.1371/journal.pone.0003078.g002

Figure 3. Translational regulation of FGF2 expression in
hypoxic conditions in vivo. A. Analysis of IRES activity after surgery.
Luciferase activities are expressed relative to control mice. LucR and
LucF reflect cap- and IRES dependent translation, respectively. The
graphic shows the mean6SE (n = 5 mice). * P,0.01 and ** P,0.001 vs.
control mice. B. RT-qPCR quantification of LucR and LucF mRNAs. Top.
Localization of the primers used for the quantification of LucR and LucF
mRNA. Bottom. The graphic shows the mean6SE (n = 5 mice). * P,0.01
and ** P,0.001 vs. control mice. C. Western blot analysis of 4E-BP in
ischemic skin extracts at the indicated post-operative time. Positions of
the three electrophoretically distinct forms of 4E-BP1 (a–c in order of
increasing phosphorylation) are indicated.
doi:10.1371/journal.pone.0003078.g003

FGF2 Induction by Hypoxia
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Taken together, these results suggested that FGF2 expression is

induced translationally in response to severe hypoxia and that this

induction is presumably mediated by the FGF2 IRES.

FGF2 and HIF-1a interact in negative and positive
feedback loops during hypoxia

The decrease in FGF2 mRNA expression observed in ischemic

skin and in late hypoxia in vitro, concomitant with the appearance

of HIF-1a, suggested that FGF2 expression is not activated by the

classical HIF-1a transactivating effect. To know whether FGF2

induction was HIF-dependent or not, 911 cells were treated with

siRNA against HIF-1a prior to hypoxia (Fig. 5). Strikingly, HIF-1a
knock down resulted in FGF2 induction after 3 h of hypoxia, and

abrogated the peak of FGF2 induction observed at 16 h in the

control siRNA- and mock-transfected cells (Fig. 5B). This

experiment suggested that the small amount of HIF-1a expressed

at 3 h (see Fig. 4A) is able to repress expression of FGF2.

Interestingly, 3 h is also the time at which FGF2 mRNA levels

increase (Fig. 4B), suggesting that an early effect of HIF-1a on

Figure 4. Activation of FGF2 IRES-dependent expression by hypoxia in vitro. A. Representative Western blot analysis of FGF-2 isoforms and
HIF-1a in 911 retinoblasts grown in normoxic (N) and hypoxic (H) conditions for the indicated time periods. B. RT-qPCR quantification of FGF2 mRNAs
in 911 retinoblasts grown in normoxic (N) and hypoxic (H) conditions. Results are expressed relative to the level of the normoxic value and represent
mean6SE (n = 3). C. Accumulation of FGF2 protein during hypoxia in conditions of gene silencing. 911 cells were transfected with FGF2 targeted
siRNA (siFGF2) and FGF2 protein contents measured in hypoxic conditions. SiControl corresponds to a control scrambled siRNA. D. Activity of FGF2
IRES measured in 911 retinoblasts expressing the bicistronic construct with the FGF2 IRES in normoxic (N) and hypoxic (H) conditions during 4, 8 and
16 hours. Results are expressed relative to the level of the corresponding normoxic value and represent mean6SE (n = 4). ***P,0.001 vs. the
corresponding normoxic condition.
doi:10.1371/journal.pone.0003078.g004

FGF2 Induction by Hypoxia
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FGF2 expression is the translational repression of FGF2 mRNA.

This translational blockade would be relieved in the presence of

large amounts of HIF-1a, which accumulated by 16 h.

In our in vivo experiments, we observed that FGF2 induction

begins 6 h after surgery, prior to HIF-1a accumulation, which is

detected only after 24 h. This suggests that FGF2 signaling may

act on HIF-1a induction, as shown in recent reports [27,28]. In

order to establish whether FGF2 might have an influence on HIF-

1a accumulation during hypoxia, FGF2 was knocked down in 911

cells by siRNA treatment and protein expression was measured.

The results showed that FGF2 knock down generates HIF-1a
accumulation during early hypoxia, followed by a strong decrease

of HIF-1a protein in later stages of hypoxia (Fig. 5C). Thus while

the small amount of FGF2 that is present at the 3 h time point is

able to prevent HIF-1a accumulation, the larger amount of FGF2,

which is induced at later times, has a positive effect on HIF

accumulation.

These data revealed a complex crosstalk between FGF2 and

HIF-1a during the hypoxic response. FGF2 and HIF seem to

regulate each other in two successive feedback loops: in early

hypoxia (3 h), FGF2 and HIF-1a, present in small amounts,

behave as mutual inhibitors in a negative regulatory loop, whereas

in late hypoxia (16 h) they amplify each others expression in a

positive regulatory loop.

Discussion

In this study we demonstrate that FGF2 expression is up-

regulated in response to ischemia in vivo as well as under hypoxic

conditions in vitro. Strikingly, this up-regulation does not occur at

the mRNA level but at the protein level, revealing new

mechanistic aspects of the hypoxic response. Our data show that

hypoxia generates a strong increase of FGF2 IRES-mediated

translation both in vivo and in vitro, when cap-dependent translation

is blocked. This suggests that FGF2 induction during hypoxia

occurs by a translational mechanism, providing an important

pathophysiological function to the IRES present in the FGF2

mRNA. In addition, our data reveal that FGF2 interacts with

HIF-1a in a very unusual crosstalk, different from the classical

angiogenic growth factor induction by HIF-1a. FGF2 and HIF-1a

Figure 5. Crosstalk between FGF2 and HIF-1a. A. FGF2 and HIF-1a gene silencing using targeted-siRNA. 911 cells were transfected with FGF2
(left) or HIF-1a (right) targeted siRNA (siFGF2 or siHIF-1a, respectively). Protein contents were measured in normoxic (FGF2) and hypoxic (HIF-1a) cells
48 h after transfection. SiC corresponds to a control scrambled siRNA. B. Effect of FGF2 gene silencing on HIF-1a accumulation in 911 cells cultivated
in normoxic (N) and hypoxic conditions. C. Effect of HIF-1a gene silencing on FGF2 accumulation in 911 cells cultivated in normoxic (N) and hypoxic
conditions.
doi:10.1371/journal.pone.0003078.g005

FGF2 Induction by Hypoxia
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regulate each others expression by a negative feedback loop in

early hypoxia, followed by a positive feedback loop in late hypoxia.

A striking feature of our data is that induction of FGF2 protein

is concomitant with a decrease in FGF2 mRNA, in vivo. In

addition, FGF2 protein induction in vitro correlates with a decrease

in mRNA accumulation. This indicates that FGF2, in contrast to

classical HIF-1a targets, can be induced by hypoxia without

transcriptional activation, despite the putative hypoxia responsive

element (HRE) recently characterized in the FGF2 gene promoter

[29]. This HRE, whose activity has been described in pulmonary

arterial smooth muscle cells, is clearly not involved in FGF2

induction in ischemic skin at the time points used in our study.

However, in human retinoblasts 911, FGF2 mRNA levels increase

during early hypoxia (3 h), then decrease in late hypoxia (7 h to

24 h), suggesting that, in these cells, FGF2 would be subjected to

two steps of regulation: transcriptional induction would occur first

(where the mRNAs remain translationally silent), and would be

followed by FGF2 protein induction concomitant with a decrease

in mRNA levels. Thus hypoxia may induce FGF2 by distinct

mechanisms, probably depending upon the cell type or tissue.

An unexpected finding concerns the decrease in FGF2 mRNA

levels that accompany the increase in FGF2 protein levels. Such an

inverse correlation between FGF2 protein and mRNA levels has

been previously reported and might be mediated by an instability

element identified within the FGF2 mRNA 39untranslated region

[30,31]. Efficient translation of FGF2 transcripts could activate

their degradation. Such an observation questions the numerous

studies based on transcriptome analyses, which may lead to a

misinterpretation of gene expression levels.

Our study shows that FGF2 increases at the protein level in

response to hypoxia. Such a protein accumulation may be due

either to protein stabilization, activation of FGF2 mRNA

translation or both. Several previous reports from the literature

have reported that FGF2 expression is controlled at the

translational level, whereas no information is available about the

FGF2 protein degradation process [32,33]. To analyze FGF2

protein accumulation during hypoxia, we used the siRNA knock

down approach (Fig. 4C). These data, showing a disappearance of

FGF2 during late hypoxia and in the absence of mRNA

translation, allows us to rule out an increase in FGF2 protein

stability by hypoxia. Furthermore we show that FGF2 IRES-

dependent translation is enhanced under hypoxic conditions in vivo

as well as in vitro, whereas 4E-BP hypophophorylation in ischemic

skin indicates a repression of cap-dependent translation (Fig. 3C).

The inhibition of cap-dependent translation by hypoxia in vitro has

been previously described in several other reports [34–36].

Furthermore our results agree with a previous study showing

activation of the FGF2 IRES in a murine ischemic hind leg model

[7]. Taken together, these data indicate that FGF2 is induced in

late hypoxia by a translational event most probably involving the

IRES. Our study shows that IRES-dependent regulation in a

bicistronic mRNA context is much more sensitive to hypoxia in vivo

than in vitro: the IRES activity is up-regulated 40 times in mouse

skin (Fig. 3A), versus only 4 times in hypoxic 911 cells (Fig. 4D).

This points out the importance of studying such regulations in

pathophysiological situations in vivo, and suggest that in vitro studies

may underestimate the physiological regulation of IRES activity.

A very amazing result is that expression of the LucR cistron,

which is expected to be cap-dependent and to decrease during

ischemia, is activated 24 h after surgery, concomitant with IRES-

dependent activation of LucF (Fig. 3A). The decrease of bicistronic

mRNA levels under ischemic conditions, shown in Fig. 3B,

indicates that such an activation does not result from an induction

of mRNA transcription. While one might argue that cap-

dependent translation is not repressed under our conditions, there

exist numerous reports describing the blockade of cap-dependent

translation by stress and we clearly demonstrate that 4E-BP is

hypophosphorylated in our system (Fig. 3C). Hypophosphorylated

4E-BP sequesters the cap-binding factor eIF-4E and reflects the

repression of cap-dependent translation [25,34]. One possible

explanation for the observed increase in LucR is provided by a

recent paper that reports that the IRES in a bicistronic construct

stimulates translation of the upstream cistron [37]. The authors

conclude that whenever eIF-4F has been captured to a bicistronic

mRNA by binding to a picornavirus IRES via its eIF-4G moiety, it

can be provided in cis to the 59 end of the mRNA and stimulate

translation initiation. An IRES-dependent activator effect of the

first cistron has also been observed with a cellular IRES in a recent

report using C2C12 myoblasts and a bicistronic construct

containing the FGF1 IRES [38].

However, the model proposed above can only partially explain

our data, as functional eIF-4F (the protein complex containing the

cap-binding protein eIF-4E) is present in low amounts in our

system where eIF-4E is sequestered by 4E-BP. Another hypothesis

is based on a hypoxia-dependent formation of stress granules (SGs)

that sequester mRNAs in a translationally silenced state [39,40].

SGs contain the majority of polyadenylated mRNAs that are

subject to stress-induced translational arrest but exclude mRNAs

encoding stress-induced proteins. Thus we can hypothesize that

mRNAs containing the FGF2 IRES that are induced by hypoxia

might be excluded from stress granules. The presence of the IRES

would thus generate an active recruitment of the bicistronic

mRNA into polysomes and result in active translation of the first

cistron. Further investigation will be required in order to resolve

this issue. At this time we can only conclude that one must be

cautious when calculating IRES activity as the ratio between LucF

and LucR activities, as it may in fact be an underestimate of the

actual IRES activity.

The positive amplification feedback between FGF2 and HIF-1a
observed during late hypoxia in our study is supported by recent

reports. One such study has uncovered the existence of an HIF-

1a/FGF2 autocrine loop, which induces an angiogenic response in

human endothelial cells (HUVECs) [27]. Using FGF2 neutralizing

antibodies, the authors show that FGF2 is required for late but not

early induction of HIF-1a. This autocrine effect is specific to

FGF2, whereas antibodies against VEGF, IGF-1 or PDGF-BB do

not influence HIF-1a induction. The same report shows using a

HIF-1a siRNA, that HIF-1a is required for hypoxic induction of

FGF2 mRNA and for FGF2 protein secretion in HUVEC culture

supernatant [27]. Another report has shown that HIF-1a up-

regulation by hypoxia in myoblasts requires FGF2 and heparane-

sulfate containing low-affinity FGF2 binding sites [28].

More unexpected is the negative feedback uncovered here

between FGF2 and HIF-1a during early hypoxia: Fig. 5B and 5C

clearly show that HIF-1a siRNA up-regulates FGF2 protein

whereas FGF2 siRNA up-regulates HIF-1a after 3 h of hypoxia.

This negative feedback occurs when both FGF2 and HIF-1a are

present in low amounts, suggesting that it could occur beneath a

given threshold of the two proteins and that the amplification loop

might start when this threshold is exceeded. The consequence of

this negative feedback is a delay of the stress response.

Interestingly, a previous report revealed that during hypoxia,

HIF-1 regulated transcripts are translationally silenced by

sequestration into stress granules, resulting in a down-regulation

of HIF signaling [40]. The translational inhibition is relieved later

upon reoxygenation, when the cell becomes able to rapidly

translate the once-sequestered HIF-1 regulated transcripts,

allowing it to recover from the hypoxic shock. In our data, the
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presence of untranslated FGF2 mRNA after 3 h of hypoxic stress

(Fig. 4B) could be explained by its sequestration in stress granules.

Then IRES activation after 4 h (Fig. 4D) would allow the FGF2

mRNA to be excluded from stress granules, resulting in FGF2

protein expression.

With respect to the effect of FGF2 on HIF-1a expression, the

activator effect has been shown to occur by an autocrine

mechanism, implicating an involvement of FGF2 secretion and

FGF2 receptor signaling [27]. However FGF2 is expressed as five

isoforms with different localizations and functions [12,15,41]. The

high molecular weight isoforms, which are not secreted, remain

nuclear and act by an intracrine mechanism that might be

responsible for the early negative effect of FGF2 on HIF-1a
expression during hypoxia [42].

Taken together, our data underline the importance of

translational regulation and the unique role of FGF2 in its

crosstalk with HIF-1a in the hypoxic response. However they also

point to the complexity of the cellular response to hypoxia, and

incite us to decipher more deeply the mechanisms governing the

dialog between HIF-1a and FGF2 to find new molecular triggers

of tumour angiogenesis.

Materials and Methods

Mice
Transgenic mice used in this study have been already described

[18]. Briefly, mice carry transgenes coding for two luciferase genes,

Renilla luciferase (LucR) and Firefly luciferase (LucF), both

controlled by the cytomegalovirus promoter (CMV) and separated

by the FGF2 IRES. Transgenic mice were bred in our animal

facilities and acclimatized to experimental conditions for at least

one week before surgery. All procedures were performed in

accordance with the recommendations of the European Accred-

itation of Laboratory Animal Care Institute.

Ischemia model
A standardized model of soft tissue ischemia was modified from

a surgical procedure previously described by Ceradini et al [26].

After general anaesthesia with a mixture of ketamine (100 mg

kg21) and xylazine (10 mg kg21), the backs of eight week old

female transgenic homozygote mice were shaved and a U-shaped

peninsular incision (2.5 cm in length 1.25 in width) was created on

the dorsal skin, including the epidermis, dermis and platysma

muscle. The two vascular pedicles arising from the lateral thoracic

arteries were systematically sectioned. The skin was then put in

place and sutured with 5.0 nylon sutures (SilkamH, B. Braun,

France). 6, 24, 48 or 72 hours after surgery, mice were sacrificed.

The proximal part of the skin flap was removed at different times

post-surgery and frozen.

Cell culture
The 911 human embryonic retinoblasts obtained from the

European Collection of Cell Culture were stably transfected with

the already described pCRFL (911-FGF2) or pCREL (911-

EMCV) plasmids (Lourenco-Dias, PhD thesis, 2006).

For hypoxic treatment, cells were plated under normoxic

conditions and grown for 16–20 h and then placed into a hypoxic

chamber (Binder, Tuttlingen, Germany) stabilized at 1%O2,

5%CO2 at 37uC. The small interfering RNAs were purchased

from Dharmacon siGENOMEH SMARTpoolH HIF-1a siRNA,

siGENOMEH SMARTpoolH FGF-2 siRNA and siGENOMEH

nontargeting siRNA. 911 cells were transfected with 10 nM

siRNA with the lipofectamine 2000 transfection reagent (Invitro-

gen). Cells were put under hypoxic conditions 48 h after

transfection.

Luciferase Activity Assay
Frozen skin was homogenized in 250 ml of passive lysis buffer

(Promega). LucR and LucF activities were measured using the

Dual Luciferase kit from Promega.

Western Blot analysis
Frozen skins placed in Lysing Matrix A tube (Q-BIOgene,

Carlsbad, CA) were homogenized in 500 ml of SDS 2% lysis buffer

at 95uC using FastPrepH Sample Preparation system. FGF2

protein was immunodetected as previously described [22]. HIF-1a
protein was immunodetected with a mouse monoclonal antibody

(R&D systems), 4E-BP with a rabbit polyclonal antibody (Cell

Signaling) and GAPDH with a mouse monoclonal antibody (Santa

Cruz Inc.).

Quantitative real-time RT-PCR
Total RNA was extracted from frozen skin using the RNeasy

Mini Kit (Qiagen, France). Reverse Transcription was performed

with the High capacity cDNA Archive Kit (Applied Biosystems,

Foster City, CA). As an internal control, the quantification of

ribosomal L8 RNA was used. Specific primers and probes are:

– primer forward mFGF-2 59CACCAGGCCACTTCAAGGA39,

primer reverse mFGF-2 59 GATGGATGCGCAGGAAGAA39.

– primer forward LucR1 59AGCCAGTAGCGCGGTGTATT39,

primer reverse LucR1 59 CAAGTAACCTATAAGAACCAT-

TACCAGATTT39, probe LucR1, 59CCAGACCTTATTGG-

TATGGGCAAATCAGG39;

– primer forward LucR2 59 GCTTATCTACGTGCAAGTGAT-

GATTT39, primer reverse LucR2 59 CCTTCAACAATAG-

CATTGGAAAAGA39, probe LucR2, 59 CCAAAAATGTT-

TATTGAATCGGACCCAGGA39;

– primer forward LucF 59 TTCCATCTTCCAGGGATACGA39,

primer reverse LucF 59ATCATCCCCCTCGGGTGTA39,

probe LucF, 59TGGGCTCACTGAGACTACATCAGC-

TATTCTGA39.

Quantitative PCR was performed as previously described [22].

Statistical analysis
Results are expressed as mean6SEM. ANOVA and Student t-

test were used to determine statistically significant differences.

Statistical analysis was performed with the software Prism (PrismH,

GraphPad).
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