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Abstract. We examine interplanetary signatures of ejecta-
ejecta interactions. To this end, two time intervals of inner-
heliospheric (≤1 AU) observations separated by 2 solar cy-
cles are chosen where ejecta/magnetic clouds are in the pro-
cess of interacting to form complex ejecta. At the Sun, both
intervals are characterized by many coronal mass ejections
(CMEs) and flares. In each case, a complement of obser-
vations from various instruments on two spacecraft are ex-
amined in order to bring out the in-situ signatures of ejecta-
ejecta interactions and their relation to solar observations. In
the first interval (April 1979), data are shown from Helios-
2 and ISEE-3, separated by∼0.33 AU in radial distance and
28◦ in heliographic longitude. In the second interval (March–
April 2001), data from the SOHO and Wind probes are com-
bined, relating effects at the Sun and their manifestations at
1 AU on one of Wind’s distant prograde orbits. At∼0.67 AU,
Helios-2 observes two individual ejecta which have merged
by the time they are observed at 1 AU by ISEE-3. In March
2001, two distinct Halo CMEs (H-CMEs) are observed on
SOHO on 28–29 March approaching each other with a rel-
ative speed of 500 km s−1 within 30 solar radii. In order to
isolate signatures of ejecta-ejecta interactions, the two event
intervals are compared with expectations for pristine (iso-
lated) ejecta near the last solar minimum, extensive obser-
vations on which were given by Berdichevsky et al. (2002).
The observations from these two event sequences are then in-
tercompared. In both event sequences, coalescence/merging
was accompanied by the following signatures: heating of
the plasma, acceleration of the leading ejecta and deceler-
ation of the trailing ejecta, compressed field and plasma in
the leading ejecta, disappearance of shocks and the strength-
ening of shocks driven by the accelerated ejecta. A search
for reconnection signatures at the interface between the two
ejecta in the March 2001 event was inconclusive because
the measured changes in the plasma velocity tangential to
the interface (1vt ) were not correlated with1(Bt/ρ). This
was possibly due to lack of sufficient magnetic shear across
the interface. The ejecta mergers altered interplanetary pa-
rameters considerably, leading to contrasting geoeffects de-
spite broadly similar solar activity. The complex ejecta on
31 March 2001 caused a double-dip ring current enhance-
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ment, resulting in two great storms (Dst , corrected for the ef-
fect of magnetopause currents,<−450 nT), while the merger
on 5 April 1979 produced only a correctedDst of ∼−100 nT,
mainly due to effects of magnetopause currents.

Key words. Interplanetary physics (interplanetary magnetic
fields; interplanetary shocks) – Magnetospheric physics
(storms and substorms)

1 Introduction

A topic of increasing interest to heliospheric physics con-
cerns what happens to the interplanetary (IP) counterparts of
coronal mass ejections (ICMEs, called henceforth “ejecta”,
keeping the designation CME for the object as seen in coro-
nagraphs) when they interact en route to Earth. Evidence
that some do interact has been advanced recently in the form
of an excitation of a broad-band type II radio burst emis-
sion observed by Wind/WAVES at the same time that the
SOHO/LASCO coronagraph monitored a CME overtaking
another one close to the Sun (Gopalswamy et al., 2001,
2002). Burlaga et al. (2002) considered configurations called
“complex ejecta” which they showed to be due to CMEs re-
leased under such kinematic conditions that the ejecta col-
lided with each other within 1 AU. One surprising aspect of
these IP observations of complex ejecta at 1 AU is their sim-
ple bulk speed profile, which essentially just declines steadily
over a period of several days. This deceptively simple speed
profile, however, masks an intricate internal structure where
individual CMEs have merged and lost their separate iden-
tity. (Other examples of complex ejecta, composed this time
of multiple magnetic clouds (Burlaga et al., 1981, 1990) were
given by Wang et al. (2003).) The merger of ejecta alters
the parameter profiles which IP probes measure and which
eventually affect the Earth, and with it the geoeffectiveness
of these large structures. In contrast to the duration of Earth
passage of pristine ejecta (or “isolated” ejecta, in the sense
of interacting solely with the background solar wind), which
is typically of the order of 1 day (Klein and Burlaga, 1982;
Gosling, 1990; Berdichevsky et al., 2002), the passage of
complex ejecta may last up to∼4 days, so that the magne-
tosphere is immersed in unusual IP conditions for a much
longer time.
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Simulations on how ejecta interact with the ambient solar
wind have been carried out (Pizzo, 1997; Odstrcil and Pizzo,
1999a, b, c). However, little is known as to how the merger of
ejecta develops in IP space and how the geoffective potential
is altered. Is the geoeffectiveness of the whole less or more
than that of the sum of its parts? This is the space weather
issue involved.

This paper seeks to understand the evolutionary signatures
involved when complex ejecta form. We do this by examin-
ing two complex ejecta separated almost exactly by two so-
lar cycles, both observed close to the maximum phase of the
solar activity cycle. Further, by employing in one event ob-
servation separated radially by∼0.33 AU on average, though
offset from one another in longitude, we actually have a two-
point measurement of the evolutionary processes, allowing
us to infer, in a snapshot fashion, the changes in parameters
that take place.

For both time intervals similar levels of transient activ-
ity are present at the Sun. This activity includes more than
20 Hα flares a day from regions within 40◦ of central merid-
ian, a comparable number of solar radio bursts, a similar level
of background radiation in the 1–8̊A soft X-ray wavelength
range, and the presence of long duration events (LDE). Both
intervals include several CMEs, some of which were identi-
fied as Halo CMEs (H-CMEs). Notwithstanding this similar
activity at the source, the two intervals gave rise to very dis-
parate geoeffects at Earth, as we shall see.

Preliminary simulations on ejecta–ejecta interactions have
been undertaken which we can compare against. Odstrcil et
al. (2003) specialized in two magnetic clouds, whose fields
when they come into contact are oppositely directed, which
were overtaking each other. They found the interaction to
involve acceleration (deceleration) of the leading (trailing)
magnetic cloud, heating of the plasma, coalescence of the
underlying two magnetic flux tubes into one flux tube by a
reconnection process, and so forth (see the Summary and
discussion section). Thus, we shall investigate if some of
these effects are indeed present in our two event sequences.
The paper shall conclude by emphasizing the importance of
understanding these effects on a broad experimental basis as
an essential component of the space weather program. Here
we can present only snapshots, so that our interpretations are
circumscribed by important caveats (see the Summary and
discussion section).

A note on procedure follows. For pristine ejecta it was
found (Berdichevsky et al., 2002) that at 1 AU a) the ejecta
drive the shocks, i.e. the shock speed is within the limits of
error (i.e. within the Alfv́en speed of the medium) approxi-
mately equal to the speed of the leading edge of the ejecta;
and b) the ejecta as a whole retain their velocity while travel-
ling from ∼2RS (solar radii) to 1 AU. Clear deviations from
these findings, together with the presence of multiple ejecta
in space, indicate departures from pristine conditions, i.e. in-
teractions/collisions.

2 Previous work

We summarize here key results reached in other works on
the events we study. The April 1979 events were investi-
gated by Burlaga et al. (1987) in the context of compound
streams, which are configurations produced by the interac-
tion of two or more distinct fast flows, a concept introduced
by Burlaga (1975). The components of the compound stream
were identified at both Helios-2 and ISEE-3. The authors
ascribed the configuration to ejecta containing a magnetic
cloud overtaking ejecta not containing a magnetic cloud. Co-
alescence of ejecta material at ISEE-3 is inferred. A solar
source was proposed for each of the components making up
the compound stream.

Sun et al. (2002) modeled the travelling shocks during 28
March–21 April, using an MHD code (Haikamada-Akasofu-
Fry model, Fry et al., 2001). The solar sources of the various
ejecta in this period are identified, based on near–real time
communication of SOHO/LASCO/EIT CMEs. The main
aim of the paper was to use this code to predict the arrival
of the shocks, as part of a space weather prediction effort.
To bridge certain discrepancies between predictions and ob-
servations, they advocate the need for a 3-D coronal den-
sity model for applications to solar flares and their associ-
ated type II radio bursts, which is needed as input to their
shock modeling. The authors conclude that shock speeds ob-
tained from metric type 2 bursts may not have been accurate.
Finally, they also link the flare times with sudden storm com-
mencements at Earth.

A second paper which included a study of the March–
April 2001 events was made by Wang et al. (2003). The
authors define a new type of complex ejecta called “multi-
MCs” which consist of two or more ejecta, interpreted as
magnetic clouds, and interaction regions between them. By
visually inspecting the time profiles, they find that each com-
ponent of a multi-cloud behaves like an isolated cloud with
two exceptions: the temperature may be higher and the speed
of the leading cloud at its trailing edge increases. They at-
tribute these to ejecta-ejecta interaction. They also iden-
tify the CMEs responsible for the 2 ejecta seen at 1 AU on
31 March. They also report that highDst values were mea-
sured in two of the 3 case events studied.

Our analysis confirms these findings and adds new ele-
ments. These are: (i) a thorough quantitative analysis of
the shocks. This is important since two major effects of the
interaction relate to shocks: it strengthens the shock driven
by the leading ejecta and weakens that originally driven by
the trailing ejecta. (ii) We infer acceleration and decelera-
tion using the concept of pristine ejecta and their propaga-
tion properties, thus following a different methodology from
that of the previous works. Ours is an application of the
work of Berdichevsky et al. (2002). (iii) Further to (ii), we
also estimate the size of the average acceleration/decleration
and from this obtain an estimate the relative masses of the
ejecta. (iv) Using again the concept of pristine ejecta, we
are able to distinguish those components of complex ejecta
which were interacting from those which were not (i.e. are
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still pristine). (v) We compare observational results concern-
ing signatures of interaction with predictions of numerical
modeling on same. (vi) We isolate ejecta mergers as one
interplanetary cause of double-dip storms with the property
that the first storm is stronger than the second; (vii) Finally,
our analysis is based on, to quote one referee,“perhaps the
most comprehensive assimilation of the data sets”.

3 Observations in April 1979

3.1 Helios-2 observations

Figure 1 shows an ecliptic projection of the Helios-1 (black
trace) and Helios-2 orbits (blue trace) in 1979. The plot is
drawn with a fixed Earth-Sun (E–S) line and is centered on
the Sun. ISEE-3 (I3) is orbiting around the L1 Lagrangian
point upstream of Earth (R∼0.99 AU). The period under
study is marked in red on the Helios traces. Helios-2 is∼28◦

east of the Sun-Earth line and approaching the Sun, being at
a radial distance of 0.69 AU (2 April) and 0.66 AU (end of 6
April). (The lines labeled S1–S3 are discussed below.)

We shall now examine the measurements at Helios-2 and
ISEE-3. Figures 2 and 3 show in the same format (includ-
ing the same range in the vertical scales) measurements of
plasma, magnetic field, and energetic particles at Helios-2
and ISEE-3 made on 2–6 April 1979: proton density, bulk
speed, and temperature, the (SE/GSE) components of the
magnetic field and the total field strength, the dynamic pres-
sure (based on the protons), the number density rationα/np

of α-particles to protons in percent, the proton plasma beta,
and the energetic H+ flux in three channels as indicated. (The
data in the ISEE-3 plot is from IMP-8, McGuire et al., 1986.)
(In the solar ecliptic (SE) coordinate system the x-axis points
from the spacecraft to the Sun, the y-axis is positive east, and
the z-axis is perpendicular to the ecliptic such that (xyz) is
a right-handed system.) The time scale in Fig. 3 is shifted
forward by 12 h with respect to that in Fig. 2. ISEE-3 data
are at 5-min temporal resolution, while Helios-2 are nomi-
nally at 4-s resolution, though the coverage is uneven. At
Helios-1, displaced 42◦ east of Helios-2, none of the ejecta
are observed, setting thus an upper limit to their eastward ex-
tent. The red trace in the third panel is the expected tempera-
ture for normal solar wind expansion (after Lopez and Free-
man, 1986; see also Steinitz and Menasche, 1982). In studies
of pristine ejecta, temperatures substantially lower than this
are considered to be a robust signature of ejecta material in
space (Richardson et al., 1995, and references therein; see
also Gosling et al., 1973).

Helios-2 sees a succession of four shocks, labeled S1–S4.
Some hours after each shock passage, the following features
are observed: strong fields, low proton beta, high and vari-
ablenα/np ratio (except after shocks S2 and S3, where there
are data gaps), and, in the case of the first ejecta, a magnetic
cloud signature (i.e. a low-beta magnetoplasma in which a
strong magnetic field rotates smoothly over a large angle,
Burlaga et al., 1981). All these features indicate the presence

Fig. 1. The trajectories of Helios-1 (black trace) and Helios-2 dur-
ing 1979, shown in a system with a fixed Sun-Earth line. The near-
Earth spacecraft ISEE-3 is markedI3. The ecliptic projections of
the shock fronts at both locations are also indicated.

of ejecta material behind each shock (see, e.g. Gosling, 1990,
and references therein; Burlaga et al., 2001). We have la-
belled the ejecta E1–E4. The blue trace in panel 2 joins
the midpoints of E1 and E3 and it is evident that there is a
rising trend in velocity, which increases from∼450 km s−1

to ∼750 km s−1 from 3 April to 5 April. The ejecta are
in the process of overtaking each other (see Sect. 2.1 and
Berdichevsky et al., 2003.) In particular, S3 is advancing
into the rear of E2 and S4 is advancing into the rear of E3,
as confirmed by the shock speeds computed below. Note that
while the protonβp is low in each of the four ejecta, the pro-
ton temperature is not low in some of them. For example, it is
not low in some regions of the ejecta E2 behind shock S2 (By
“low” we mean “compared to the expected temperature”; red
trace).

3.2 Analysis of shocks S2 and S3 at Helios-2, and CME
lift-off at the Sun

There are many ways of computing shock normals and
speeds. We use here the technique elaborated by
Berdichevsky et al. (2000; see erratum, 2001), which com-
bines the so-called “pre-averaged” magnetic coplanarity,
velocity coplanarity, and the Abraham-Schrauner methods
(Abraham-Schrauner, 1972). Basically, our method searches
for a shock orientation where the Rankine-Hugoniot condi-
tions are approximately satisfied. Among all possible solu-
tions it requires further that there be agreement within 15◦

with the shock normals from two of the pre-averaged meth-
ods. This technique has proved to be good when applied
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Fig. 2. Plasma, magnetic field, and energetic particle data for 2–6 April 1979. Shown from top to bottom are the proton density, bulk speed,
and temperature, the components of the magnetic field in solar ecliptic (SE) coordinates, the total field strength, the dynamic pressure based
on the protons, theα-to-proton number density ratio in percent, the proton beta, and the proton fluxes in the MeV energy ranges shown. The
red line in panel 3 gives the expected solar wind temperature for normal solar wind expansion. The blue line in panel 2 joins the estimated
mid-point of the first and third ejecta.
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Fig. 3. Data acquired by ISEE-3 at 1 AU, presented in the same format as Fig. 2. Note that the time axis is advanced by 12 h relative to that
in Fig. 2.
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Table 1. Results of the analysis of the April 1979 shocks. Normal is the calculated shock normal. The next column shows the speed of each
shock in km/s with respect to the upstream solar wind (V s′) and in a solar inertial frame (V s), 2B,n is the angle between the upstream IMF
vector and the shock normal;Bdw/Bup andndw/nup are the compression ratios of the magnetic field strength and the density, respectively;
Ms is the sonic Mach number, R and8 are the heliospheric distance and longitude, respectively. All vector quantities are given in SE
coordinates. During the passage of shock S3 at Helios-2 there are only a few data points so we do not derive an estimate of the uncertainty
in the RH parameters (marked*).

No. Day Time Normal V s′ V s 2B,n Bdw/Bup ndw/nup Ms SC Loc.
April (UT) km s−1 km s−1 (◦) (AU) (◦)

Helios-2
1 2 20:11 (−0.97,−0.13,−0.24) 176 523 9±2 1.3±0.2 2.8±0.2 2.0 0.68 27E7S
2 4 13:24 (−0.98, 0.0, 0.15) 273 640 83±5 2.2±0.2 2.5±0.4 2.1 0.66 26E7S
3 5 15:24 (−0.94, 0.35, 0.0) 262 690 48±** 2.1±** 2.5±** 2.2 0.65 26E7S
ISEE-3
1 3 09:22 (−0.92,−0.38,−0.40) 149 653 54±2 1.7±0.2 1±0.2 1.6 0.99 0E0S
2 5 01:12 (−0.64, 0.72, 0.28) 265 690 40±5 2.0±0.2 2.8±0.5 2.1 0.99 0E0S

at shock passages with multiple spacecraft data. It has
shown the same rate of failure as the post-averaged Rankine-
Hugoniot method of Vinas and Scudder (1986) and Sz-
abo (1994). The error analysis used is a statistical one that
combines a number of normal evaluations for different up-
stream and downstream intervals.

Shocks S2 and S3 play a very central role in our compar-
ison and so we analyze them first. All results of this section
are listed in Table 1, and the shock fronts are also shown in
Fig. 1. Shock S2 passed Helios-2 at 13:24 UT (4), 1979.
(Henceforth in this section we shall use for convenience the
notation xx UT (y) to denote xx UT on April y). We ob-
tain a shock normaln2=(−0.98, 0.0, 0.15) (SE coordinates)
and a shock speed of 640 km s−1 in a solar inertial frame.
The shock compression ratio is moderate (∼2.2 in the mag-
netic strength,B, and plasma density,np), and the shock
is quasi-perpendicular withθB,n2≈83◦, whereB is the up-
stream interplanetary magnetic field (IMF). The shock orien-
tation and speed suggest that locally the shock is propagating
radially away from the Sun, consistent with its being driven
by the leading edge of the ejecta E2, which passed Helios-2
at ∼18:00 UT (4) with a speed of 600 km s−1. At 04:00 UT
(5) the midpoint of ejecta E2 passed Helios-2 with a speed
of ∼530 km s−1. Assuming pristine conditions, this would
place the lift-off time of E2 from the Sun at approximately
00:00 UT (3).

Around this inferred lift-off time there are the following
solar signatures. From 01:05 to 03:30 UT (3), there is an
Hα optical flare of importance 1B at S25W13, associated
with a soft X-ray M5, very long duration event, typically
associated with large CMEs. Also, Culgoora, Australia re-
ports from 01:30 UT to 05:30 UT a possible metric type
IV radio burst, also suggestive of a CME. In the list com-
plied by Cane (1985), a strong shock association is indi-
cated with the start at 01:10 UT (3) of a metric type II ra-
dio burst (See Fig. 4). As the bottom panel of Fig. 2 shows,
a moderate SEP event starts at about 03:00 UT (3), which
appears to be associated with shock S2. Finally, the solar

Maximum Mission coronagraph lists (at URLhttp:www.hao.
ucar.edu/public/research/svosa/smm/smmcpcatalog.html) a
fast CME observation at 01:15 UT (3) with a plane-of-the-
sky speed of 1000 km s−1 toward the east. Thus, our estimate
of lift-off time of ejecta E2, namely 00:00 UT (3), appears to
be reasonable, supporting the “pristine” assumption.

Shock S3, which passed Helios-2 at 15:24 UT (5), 1979,
has a shock normaln3=(−0.94, 0.35, 0.0) in SE coordinates
and a speed of 690 km s−1 in a solar inertial frame. The shock
compression is again moderate (∼2.1 inB and∼2.5 innp),
and the shock is orientated obliquely to the upstream IMF
with θB,n3≈48◦. The measurements of the shock orientation
and speed suggest that the shock has locally a somewhat east-
ward but mainly a radial direction of motion, consistent again
with its being driven locally by the leading edge of the ejecta
E3, which had a speed≈700 km s−1 when it passed Helios-2
at ∼22:30 UT (5). The orientation of S3 is consistent with
a solar source at the west of the Sun. If we were to assume
E3 to be a pristine ejecta with the observed mid-point speed,
we would place the lift-off of the CME at about 2 solar radii
from the solar surface at approximately 10:00 UT (4).

Around this inferred time there are no clear signatures at
the Sun in the vicinity of a central meridian. However, near
08:00 UT (4) there is a soft X-ray LDE C8 flare (see Fig. 4).
The observed optical flare lasts from 07:20 to 07:40 UT with
importance 1B at S22W56. It shows multiple bright points.
This matches the predicted lift-off time reasonably well. The
optical flare shows several brilliant points. It is associated
with a system of loops which are prominence-like (Solar
Geophys Data, 1980; Burlaga et al., 1987). No other com-
ment is added. This event would be related to Helios-2 solar
wind observations only if the flare location marks the west-
ern footpoint of the ejecta, and the eastern footpoint was not
seen because of the ejecta being oriented toward the Earth’s
direction. Near 10:00 UT there is a minor LDE soft X-ray en-
hancement without a counterpart observation of an Hα flare.
(This interval is not covered by the Solar Maximum Mission
coronagraph. It is located in the middle of a 3-day gap in the

http:www.hao.ucar.edu/public/research/svosa/smm/smmcp_catalog.html
http:www.hao.ucar.edu/public/research/svosa/smm/smmcp_catalog.html
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Fig. 4. SMS-GOES 8 measurements of soft X-rays in 2 wavelengths on 3–4 April 1979.

listing of observed CMEs. Nor is there in Cane’s (1985) list
a type II radio burst in association with 4 April 1979.)

3.3 ISEE-3 observations

Our two-site observations at large separation permit a later
“snapshot” of this interaction of ejecta, for which we now
consider the ISEE-3 measurements, shown in Fig. 3. Shock
S1 is observed by ISEE-3 13.5 h after it passed Helios-2.
Shock S2 is also present, observed at the time indicated by
the second vertical guideline. The time interval S1-S2 at
ISEE-3 (40 h) is comparable to that at Helios-2 (41 h), which
provides a good consistency check on these shock associ-
ations. Shock S4, which was weak at Helios-2, may have
passed ISEE3 at∼12:00 UT (6) (marked “PP”). We believe
it is much weaker and in the form of a pressure pulse.

The declining bulk speed profile at ISEE-3 (panel 2), of
similar duration as at Helios-2, has a double-peak feature, i.e.
the configuration is now a compound stream (e.g. Burlaga,
1990). The impulsive rises in the solar windv-profile due to
the fact that various shocks have disappeared. In particular,
shock S3 is not observed by ISEE-3. What happened to it?
Recall that S3 was advancing into the ejecta E2. One pos-
sibility is that this shock decayed because its speed relative
to the ejecta dropped below the local magnetosonic speed.
Figure 5 supports this conjecture. It shows by the black sym-
bols the local magnetosonic speed on 4–5 April 1979. The
magnetosonic speed is unusually high because of the strong
magnetic field. The red symbols show the local speed of
the shock relative to the ejecta E2, and one can see from the

crossovers that the magnetosonic Mach number drops below
unity at some point.

3.4 Analysis of shocks at ISEE-3

Shock 2 which passed the ISEE-3 at∼01:12 UT (5), 1979, is
a consistent fast forward IP shock with a normaln2=(−0.64,
0.715, 0.28) (GSE) and a speed of 690 km s−1 in a solar iner-
tial frame. The shock compression ratio is greater than that
of S2 at Helios-2 (∼2.8 in bothnp andB), consistent with
the derived orientation, which is oblique to the upstream IMF
(θB,n2≈48◦; see Fig. 1). The oblique nature of the shock S2
is consistent, in turn, with the lack of a spike in the energetic
particle flux at S2 (Fig. 3, bottom panel; see for example,
Reames et al., 1996; Lepping et al., 2001). The shock ori-
entation and speed suggest a discontinuity advancing locally
strongly eastward. This is suggestive of a high solar wind
gradient in the flow of matter away from the Sun in the neigh-
borhood of S2. This shock is locally driven, as suggested by
the observed speed at ISEE-3 of the leading edge of E2 at
∼10:00 UT (5), which is≈700 km s−1. The orientation of
this shock is consistent with a solar source on the west of the
Sun.

3.5 Timing relationships between Helios-2 and ISEE-3 ob-
servations

If the ejecta driving the shock S2 at ISEE-3 is the same ejecta
E2 seen at Helios-2 on 4 April, it follows that its speed has
increased on its way from Sun to Earth, i.e. it is not pristine
at ISEE-3. This is possible if the faster ejecta E3 overtook
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Fig. 5. The local magnetosonic speed on 4–5 April 1979 (black symbols) and the local speed of the shock S3 relative to the ejecta E2 (red
symbols).

and coalesced with E2, (see also Sect. 2.1), thus increasing
the speed of the leading ejecta E2. Compared to the pristine
nature of E2 and E3 at Helios-2, an ejecta merger has taken
place accompanied by an acceleration of E2 and a decelera-
tion of E3.

In view of the longitudinal separation of Helios-2 and
ISEE-3, which leaves open the possibility that the ejecta seen
at Helios-2 does not extend as far as ISEE-3, we wish to
support the above idea further. It may first be noted that
for the entire ejecta interval 08:00 UT (5)–15:00 UT (6),
shown in Fig. 3, there are two energetic particle hindrance
regions (Forbush decreases), marked by arrows. These hin-
drances are also present at the start of each of the two pristine
ejecta at Helios-2 (see arrows in Fig. 2). Hindrances in en-
ergetic particles are a reliable indicator of the start of ejecta
regions (e.g. Richardson, 1997, and Fig. 1 in Lepping et al.,
2001). This suggests that the two ejecta are seen at both lo-
cations. Assume now that the location of the second SEP
decrease, which occurs at approximately 04:00 UT (6), rep-
resents the separatrix between the plasma of the coalesced
transients E2 and E3. The speed at ISEE-3 of the middle
point of E2 (∼725 km s−1 at 14:00 UT (5)) puts its lift-off at
08:00 UT (3). This is later than 00:00 UT (3), which is the
start of the event predicted from Helios-2 observations, and
which also lies within two hours of the time suggested by so-
lar, radio and energetic particle data (Sect. 2.2). The shorter
propagation time of E2 inferred from the later observations
at ISEE-3 at a larger heliospheric distance implies that E2 is
accelerated. To show that, at the same time, ejecta E3 is de-
celerated in the interaction, we take again its midpoint speed
(625 km s−1 at 08:00 UT (6) at ISEE-3). This gives a lift-off
time of 14:00 UT (3), earlier than inferred from the observa-
tions at Helios-2 of E3, which predict its lift-off at 10:00 UT
(4) (Sect. 2.2), implying deceleration. According to this sce-
nario, the deceleration of E3 is stronger than the acceleration
undergone by E2.

We can attempt to obtain a rough estimate of the av-
erage size of the acceleration/deceleration. For this we
use <a>=(<Vapp>−Vtr)/T , where <a> is the aver-
age acceleration/deceleration;<Vapp>= the apparent tran-
sit speed (the speed measured at the spacecraft);Vtr is
the actual transit speed, andT is the time from launch
to observation. For E2, we have<Vapp>=725 km s−1,
Vtr=480 km s−1, the latter obtained by dividing the radial
distance of ISEE-3 by the time elapsed since launch, where
launch time is inferred from Helios-2 where the ejecta is
pristine; andT =86 h. This gives<a2>≈ 0.78 m s−2. Simi-
larly, for E3 we have<Vapp>=625 km s−1; Vtr=905 km s−1,
using the lift-off time for the pristine ejecta, as derived
from Helios-2=10:00 UT (4), andT =46 h. This implies
<a3>≈−1.8 m s−2. Assuming an elastic collision, this
gives a rough estimate for the relative masses of the ejecta,
M2/M3=a3/a2≈2.3.

Heating of the ejecta plasma also occurs as the shock
S3 propagates through the preceding ejecta. At Helios-2,
namely, there are strong gradients inTp: a factor of 10 front-
to-back drop in the original E2, and a factor of 300 in E3.
In contrast, at ISEE-3, the merged ejecta has a fairly uniform
temperature. This average temperature (∼70 000 K) is higher
at the trailing end and somewhat lower than the leading edge
of the merged ejecta. We take this to be evidence of heating,
with possibly a concomitant heat exchange from the warmer
E2 to the colder E3.

To summarize this section, by comparing with the prop-
agation properties of pristine ejecta, we have produced evi-
dence of acceleration of the leading ejecta and the decelera-
tion of the trailing ejecta. The shock originally driven by the
trailing ejecta has disappeared, and there is heating of both
ejecta. The proton temperature in the coalesced ejecta E2–E3
is nevertheless still lower than that expected for normal solar
wind expansion at 1 AU.
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3.6 The magnetic cloud

We first consider shock S1 ahead of the magnetic cloud E1. It
passed Helios-2 at a radial distance 0.68 AU at 20:11 UT (2),
1979. Our method gives a shock normaln1=(−0.97,−0.13,
−0.24) in SE coordinates and a shock speed of 523 km s−1

in a solar inertial frame. The plasma is strongly compressed
by the shock (by a factor∼3), but the compression in the
magnetic field is weak. This is because the shock is quasi-
parallel (θB,n≈9◦). The shock orientation and speed suggest
a shock traveling locally radially away from the Sun. It is
possibly driven locally by the leading edge of the magnetic
cloud E1, whose speed (∼500 km s−1) at ∼01:12 UT (3) is
comparable to the speed of S1. The middle point of the mag-
netic cloud passes Helios-2 at approximately 08:00 UT (3)
and, assuming the magnetic cloud to be pristine at the space-
craft location, its midpoint speed (430 km s−1) would give a
transit time of∼64 h, placing its launch at∼16:00 UT (31).

Shock S1 passed ISEE-3 at 09:22 UT (3). We found a
consistent Rankine-Hugoniot solution with a shock normal
n1=(−0.92, −0.38, −0.40) in SE coordinates and a shock
speed of 653 km s−1 in a solar inertial frame. The shock com-
pression ratio is weak-to-moderate (∼1.7 inB and∼2 in np)
and the shock is oriented obliquely to the upstream IMF, with
θB,n≈54◦. The shock orientation and speed suggest locally
a shock inclined to the radial direction from the Sun. It is
possibly driven locally by the leading edge of the magnetic
cloud which, when it passed ISEE-3 at∼20:56 UT (3), had
a speed of 600 km s−1, i.e. the speeds match well.

Is the magnetic cloud E1 taking part in the ejecta merger?
The “middle point” of the magnetic cloud passes ISEE-3 at
approximately 10:00 UT (4). Using the assumption of a pris-
tine ejecta, its midpoint speed (467 km s−1) places its launch
at ∼17:00 UT (31), i.e. just 1 hour later than that inferred
from Helios-2, and corresponding to a transit time of 89 h.
The agreement on the inferred launch times of the magnetic
cloud from the two widely separated locations is very good
and suggests strongly that E1 is pristine at both locations.
It seems that the magnetic cloud is not participating in the
merger (yet).

In agreement with the lift-off time of ejecta E2, several
observatories record an Hα flare at S24 E21 with importance
−B from 16:55 to 17:55 UT on 31 March. For that interval
there is an LDE in the Soft X-rays (see Fig. 4). In addition,
the Solar Maximum Mission coronograph lists a CME ob-
servation at 17:08 UT on 31 March with a speed in the plane
of the sky of 408 km s−1, moving toward Earth. (Burlaga et
al. (1987; Sect. 2.1) connect their magnetic cloud to the Hα

flare from the same region at 23:15 to 23:55 UT on 31 March,
slightly different from us.)

4 Observations in March–April 2001

The second example confirms the ejecta-ejecta signatures
discussed above and illustrates other IP aspects of the
coalescence of ejecta. We use data from the SOHO and Wind

spacecraft during the period March–April 2001, with special
emphasis on 28–31 March 2001.

Plasma and field observations from the SWE (Ogilvie et
al., 1995) and MFI (Lepping et al., 1995) instruments on
Wind are displayed in Fig. 6. Wind was executing a dis-
tant prograde orbit (DPO) and was located on average at (5,
−250, 0)RE (GSE coordinates).

The panels show from top to bottom the proton density,
bulk speed, temperature and dynamic pressure (based only
on the protons), the components of the magnetic field in GSE
coordinates, the total field, the protonβp, and theα-to-proton
number density ratio. (The latter quantity is from the ACE
spacecraft. A propagation delay time of 1 h from ACE to
Wind has been taken into account.) The red trace in panel
3 gives the expected solar wind temperature (after Lopez,
1987). Using the same criteria to identify ejecta as those
employed in the first interval, we note a repetitive sequence
of these transients: 7–8 may be identified in a 28-day pe-
riod. Several of these ejecta drove strong shocks, identified
by a gradual rise in SEP fluxes as particles are energized at
the travelling shocks (Cane et al., 1988). These data are not
shown here (but see Berdichevsky et al., 2003). SEP on-
sets are concurrent with complex type III radio bursts ob-
served by Wind/WAVES (Bougeret et al., 1995). Correlated
with this combination of ejecta and driven shocks, a saw-
tooth V-profile with an increasing tendency (blue trace) from
28 March to 14 April (∼550 to∼820 km s−1) is observed.
In Sect. 4.5 this sequence of CMEs will be associated with
a sequence of large, episodic enhancements of the terrestrial
ring current.

We now focus on the 50-h interval 00:00 UT 30 March to
04:00 UT 1 April. Figure 7 plots the plasma, magnetic field,
and energetic particle fluxes, in the same format as Fig. 2.
The 2 MeV, 8 MeV and 20 MeV fluxes in the bottom panel
are from the Low Energy Matrix Telescope (LEMT), a com-
ponent of the Energetic Particles Acceleration, Composition,
and Transport (EPACT) Investigation on the Wind spacecraft
(von Rosenwinge et al., 1995). The period divides neatly into
two: the first part (30 March) is characterized by low veloc-
ity, low temperature, relatively low dynamic pressure, and a
weak magnetic field, dropping on occasion to very low values
∼1 nT. In contrast, the second (31 March) is a region of high
density, high velocity, high temperature, high dynamic pres-
sure, a generally lowβp (with brief excursions to higher val-
ues), and an extremely high magnetic field subject to large-
amplitude variations. Three shocks are present,SI –SIII . SI

andSIII bracket the region of interest. The lowβp, strong
fields, and a generally highnα/np number density ratio char-
acterizing this interval betweenSII andSIII indicate ejecta
material. Just behindSII , extremely high dynamic pres-
sure values are reached (∼100 Pa; based just on the protons).
Above average ejecta densities (<np>=22.0±22.1 cm−3)
and speeds (<vp>=633.0±46.1 km s−1) are observed in the
interval bounded by shocksSII andSIII .

Closer inspection of the 31 March interval reveals a set of
concurrent disturbances at 12:00–14:00 UT: a spike inβp

to values above unity, a decrease inB, and a north-south
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Fig. 6. Plasma and magnetic field data from the Wind spacecraft for the time interval 26 March–24 April 2001. From top to bottom are
plotted the proton number density, bulk speed, temperature and dynamic pressure, the components of the magnetic field in GSE coordinates,
the field strength, the proton plasma beta and theα-particle to proton number density ratio in percent.
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Fig. 7. A blow-up of the period 30 March−04:00 UT, 1 April showing proton plasma, magnetic field and energetic particle data. The figure
highlights the differences in plasma and field parameters measured on 30 March and 31 March , respectively.
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Table 2. Similar to Table 1, but for the shocks in the March 2001 event. Vector quantities are given in GSE system.SI is evaluated using
Wind data, andSII is evaluated using ACE data.

No. Day Time Normal V s′ V s 2B,n Bdw/Bup ndw/nup Ms SC Loc.
April (UT) km s−1 km s−1 (◦) (AU) (◦)

WIND
I 30 23:30 (−0.59,−0.57,−0.57) 59 438 83±1 1.3±0.2 2.0±0.3 1.2 0.99 0E0S
II 31 00:23 (−0.74,−0.42,−0.50) 197 597 66±10 2.2±0.2 4.0±0.2 3.6 0.99 0E0S

rotation of the magnetic field occurring in an increas-
ing solar wind speed recovering from a large depression
(∼100 km s−1), and an interruption in bidirectional stream-
ing of 166 eV solar wind halo electrons monitored by the 3-D
Plasma Analyzer on Wind (Lin et al., 1995; data not shown).
We shall propose that these signatures mark the remnants of
the boundary between two ejecta (called E1 and E2 in the
figure), E1 being faster and having a stronger field than E2.
Below we shall support this idea by discussing solar obser-
vations (We note that Sun et al. 2002, see Sect. 2.1, misiden-
tified the second ejecta as a corotating interacting region; see
their Fig. 2.). We discuss this further in Sect. 4.4.

4.1 Analysis of shocks at wind

We now analyze the shocks (See also Table 2.). ForSI ,
which passed Wind at 23:30 UT on 30 March 2001, we ob-
tain a shock normalnI =(−0.59,−0.57,−0.57) in GSE coor-
dinates, and a speed of 438 km s−1 in a solar inertial frame.
The shock compression ratio is∼2 in bothB andnp, and
the shock is quasi-perpendicular (θB,nI ≈83◦). The shock
orientation and speed suggest a disturbance that is locally
quite inclined to the radial direction from the Sun (Usually
such inclined shocks are not locally driven, as pointed out
in Berdichevsky et al., 2001.). It could be that this shock
is distorted after it traversed the ejecta E1 ahead of it (Such
distortions also result from simulations, see Sect. 5.3.).

The passage ofSII at Wind at 01:12 UT, 31 March occurs
at/near a strong dip in the magnetic field (magnetic hole),
which makes it difficult to evaluate the shock properties at
this spacecraft. We use ACE data instead. We obtain a shock
normal nII =(−0.745,−0.428,−0.50) (GSE) traveling at a
speed of 597 km s−1 in a solar inertial frame. UnlikeSI , SII

is a very strong shock (∼4 compression innp and∼3 in B)
and is quasi-perpendicular (θB,n2≈66◦). This second shock
speed matches the local speed of the ejecta better.

We now discuss what the lift-off times of E1 and E2 would
be if we were to assume pristine conditions. Ejecta E1 ap-
pears to commence its passage at Wind somewhere between
04:00–06:00 UT, 31 March. Its midpoint passes Wind at
approximately 07:00–09:00 UT, 31 March, with a speed of
∼700 km s−1. If it were pristine, the corresponding CME
would have lifted off the Sun∼60 h earlier, i.e. at 2000
±01:00 UT, 28 March. Ejecta E2 appears to start its passage
at Wind at∼13:00 UT and continues until about 22:00 UT

when SIII is observed. Its middle point passes Wind at
∼16:30 UT with a speed∼610 km s−1. If it were a pristine
ejecta, this would place its lift off 68 h earlier, at 20:30 UT
on 28 March, i.e. very close to the lift-off time of ejecta E1
assuming pristine conditions.

To summarize this section so far: two ejecta are seen
by Wind behindSII in an advanced stage of coalescence.
The interaction has caused a very strong shock in front of
the leading ejecta, very compressed magnetic field strengths
(with, in particular, large, out-of-the-ecliptic components),
and high plasma densities, and has heated the plasma, the
latter indicated by the high values shown in the second panel
of Fig. 7, which are comparable to those expected for normal
solar wind expansion. We also obtained the launch times
for the individual ejecta we would obtain if they were pris-
tine. These are certainly wrong, as the solar observations
discussed next show.

4.2 Solar observations

Relevant data for 28–30 March are shown in the top two pan-
els of Fig. 8. The first panel displays the intensity of the
1–8Å, and 0.5–4̊A soft X-ray solar radiation measured by
the environmental satellite GOES 8. The repeated flaring is
indicated by repeated enhancements in this radiation. The
middle panel shows the altitude-versus-time profile for the
CMEs. The heavier traces refer to H-CMEs and they are
the ones which concern us further below. The bottom panel
presents energetic particle fluxes of energies 2 MeV, 8 MeV
and 20 MeV, respectively, as measured by the LEMT instru-
ment on Wind.

The first H-CME was identified as a likely backside event,
and hence we concentrate here on H-CMEs two and three.
(Hereafter we shall refer to these as H-CME 1 and H-CME
2, respectively, since we associate them with ejecta E1 and
E2, respectively.) H-CME 1, directed toward Earth, is seen
at 2 solar radii at 13:27 UT on 28 March, and appears to be
related to the 12:50 UT, soft X-ray flare M4.3, LDE, with
possible Hα flare signature at N18E02. H-CME 2 is seen
at 2 solar radii at 10:20 UT on 29 March. This H-CME is
related to the 10:15 UT soft X-ray flare X1.7, LDE, with
possible optical Hα flare signature at N20W18, and same
region EIT/SOHO brightening in the Fe XII line. These
sources agree with the identifications of Sun et al. (2002),
see Sect. 2.1. As panel 3 shows, H-CME 1 is related to
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Fig. 8. Solar observations (top panels). Bottom panel: LEMT/EPACT measurements of high energy proton fluxes. A dispersional injection
is seen starting at∼12:00 UT, 29 March in the highest energy panel.

the dispersive impulsive onset observed by LEMT, starting
at about 12:00 UT in the 20 MeV channel on 29 March. This
allows about 2 h for these particles to reach Wind, a reason-
able estimate.

The middle panel in Fig. 8 indicates a progressively
steeper slope with increasing time for the H-CMEs. Lin-
early extrapolating the altitude-versus-time plots shown for
H-CME 1 and 2, and assuming no interactions, we would
conclude that H-CME 2 overtook H-CME 1 at∼07:40 UT
on 30 March near 0.56 AU.

4.3 Timing relationships between IP and solar observations

The observed coronagraph launch time for H-CME 1 is ear-
lier than that inferred in the previous subsection (13:27 UT
versus 20:00 UT, 28 March), i.e. it must have moved slower
in the inner heliosphere than at 1 AU, i.e. it has accelerated.
The converse is true for H-CME 2 (10:20 UT, 29 March ver-
sus 20:30 UT, 28 March); it has slowed down. Figure 8
yields speeds in the plane of the sky of∼535 km s−1 and
∼1070 km s−1 for H-CME 1 and H-CME 2, respectively,
so they are approaching each other within 30RS at a rela-
tive speed of 535 km s−1. Because velocities in the plane of

the sky are a lower limit to the actual speed of the ejecta,
we consulted the available radio information on metric and
IP radio signatures of the speed of the driven shock(s).
There are no metric radio emissions during the lift-off of
the H-CME 1. There is a patchy signature of its driven
shock in Wind/WAVES decametric data only (M. Kaiser,
private communication, 2001). For H-CME 2, there are
signatures, too complex to interpret, which extend from
about launch to local passage of the shockSII and be-
yond. On 29 March 2001 IZMIRAN radio observers iden-
tified metric Type II radio bursts from 10:04 UT (145 MHz)
to 10:08 UT (78 MHz), suggesting an estimated CME prop-
agation (shock speed close to the base of the corona) with a
speed of 1300 km/s. This shock can be associated with the
N20W19 X1.7 SF flare from AR 9402, on 29 March 2001.
However, the inferred IZMIRAN radio signal speeds do not
imply a much faster motion than the plane-of-sky values ob-
tained by LASCO/SOHO.

We now estimate the relative masses of ejecta 1 and 2.
For ejecta 1 we haveVapp=700 km s−1 and from the launch
time, 13:27 UT (28), and its observation time at 1 AU,
∼08:00 UT (31), we haveVtr=627 km s−1, andT =66.5 h.
This gives<a1>≈ 0.5 m s−2. Similarly, for ejecta 2, we have



3692 C. J. Farrugia and D. B. Berdichevsky: Ejecta-ejecta interactions

Fig. 9. The interface between ejecta 1 and 2. The panels show from top to bottom the proton density, bulk speed and temperature, (pairwise)
components of field and flow in principal axes coordinates (i, j, k); the pressures (blue: magnetic field, black: plasma (electrons plus protons)
and red: their sum), and the proton beta.
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Vapp=610 km s−1, Vtr=769 km s−1, andT =54.2 h, yielding
<a2>≈−0.81 m s−2. An estimate of the ratio of the masses
is thenM1/M2≈ 1.6.

To sum up, based on H-CME observations and metric type
II radio signals we obtained CME speed estimates at the
Sun to infer possible interactions. We found that H-CME 2
caught up with and compressed CME 1. The mass of ejecta 1
is estimated as 1.6 that of ejecta 2, consistent with the larger
densities in E1 seen at Wind. At Wind, the IP manifestations
of the merger are a very strong shock driven by the leading
ejecta, a dense and hot plasma, and compressed>30 nT field
regions following in quick succession. They are separated
by a set of disturbances marking an interface. We discuss
this next.

4.4 The boundary between ejecta 2 and 3

The major problem in investigating the boundary is that we
do not know exactly where it starts and where it ends. We
shall assume a conservative estimate and let it be defined
by the criterionβ∼1. This then corresponds to the inter-
val 12:20–13:25 UT (31). We carried out a minimum vari-
ance analysis of this interval (Sonnerup and Cahill, 1967).
The routine picked out a very well-defined plane (ratio of
intermediate-to-minimum eigenvalues=20), whose normal is
k=(0.67, 0.72, 0.01). The magnetic field normal to the plane
is Bk=5.4 ± 3.5 nT . The period is shown plotted in prin-
cipal axes coordinates (ijk) in Fig. 9. The panels are, from
top to bottom, the proton density, bulk speed and temper-
ature, (pairwise) components of field and flow in principal
axes coordinates (i, j, k); the pressures (blue: magnetic field,
black=plasma (electrons plus protons) and red is their sum),
and the proton beta.

We may note the following: (i) a planar sheet in approx-
imate pressure balance (panel 11) separates the two ejecta;
there is evidence of (ii) a depression in the magnetic field
(panel 4); (ii) heating of the plasma (panel 3); and (iv) a
non-zero normal field componentBk (panel 9, red line). All
of these are consistent with the boundary being a rotational
discontinuity and with ongoing reconnection. However, if
we assume a 1-D, time-independent structure, and check
for the conservation of momentum tangential to the bound-
ary, i.e.1vt=α1(Bt/ρ), (whereρ is the mass density,α is
a pressure anisotropy factor (=(p‖−p⊥)µ0/B

2)), suffix “t”
denotes quantities along the plane with1 meaning values
through the boundary relative to a reference point, Sonnerup
et al., 1981)), we run into a second problem: where is the
quiet reference? Forming averages over the 15 min prior
to the interval shown in Fig. 9, we obtain quantities, some
of which have large error bars (standard deviation). Using
these, we obtain correlation coefficients of−0.2 (ini compo-
nents) and 0.3 (inj components), an inconsistent result. For
this reason we consider the evidence for reconnection at the
boundary between the ejecta to be poor. The lack of a con-
vincing rotational discontinuity may be due to the low mag-
netic shear across the boundary, 60◦ in this case (We tried
other intervals, and different reference positions, but while
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Fig. 10. Kp andDst measurements for 26 March– 26 April 2001.
The effect of theα-particles in calculating the magnetopause cur-
rents (top red trace) has not been taken into account. For further
details, see text.

the results are quantitatively different, they are the qualita-
tively similar.).

4.5 Contrasting the geoeffects of the two intervals:
Dst andKp

One reason for studying ejecta-ejecta interactions is the geo-
effects they elicit and how these differ from those of isolated
ejecta. Here we studyDst andKp profiles, starting with the
year 2001 interval. Figure 10 refers to the 1-month period
26 March–26 April 2001. The format of this and the next
two figures is as follows: the black trace in the top panel
shows the measuredDst values. The red trace at the top is the
disturbance of the horizontal component of the ground geo-
magnetic field caused by Chapman-Ferraro (magnetopause)
currents. The blue trace is theDst corrected for this effect
(Dst *) and reflects better the enhancements of the terrestrial
ring current. The bottom panel shows the 3-hourlyKp in-
dex. To form an idea of the magnitude of the storms, we
recall that storms whose peakDst *≤−100 nT are classified
as “major”, while those withDst *≤−250 nT are classified as
“great” (e.g. Tsurutani et al., 1992).

The period shown in Fig. 10 was one of the most dis-
turbed periods ever recorded, with two/three great storms



3694 C. J. Farrugia and D. B. Berdichevsky: Ejecta-ejecta interactions

March 30-April 2, 2001
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Fig. 11. Similar to Fig. 10 but for the shorter interval 30 March–2
April.

(Dst<−250 nT) and 5 other major storms (Dst<−100 nT).
Repeated flaring was seen at the Sun (see Fig. 8). A compar-
ison with Fig. 6 shows that there is practically a 1–1 corre-
spondence of ejecta and episodic ring current enhancements.
Therefore, the active period at the Sun produces a similarly
active period on Earth.

We focus now on one of the largest storm in this period.
This occurred on 31 March, during the passage of the two
interacting ejecta E1–E2. Does the ongoing ejecta merger
leave an imprint on the ground magnetic field? Figure 11,
covering the 4-day interval 30 March–2 April 2001, shows
that in fact it is a double-dip storm. The storm reaches a peak
value of−420 nT during the passage of the compressed-field
of E1, with its large negativeBz due to the compression of
the magnetic field and the plasma by the ejecta-ejecta inter-
action (see Fig. 7). Its recovery is then momentarily halted
(at a northward magnetic field turning) and reversed when
the trailing ejecta E2 arrives. This is a double great storm oc-
curring in less than one day. TheDst * remained≤250 nT
for ∼20 h. One effect of the compressed plasma may be
seen by the large contribution of the magnetopause currents.
Alone during the main phase, they contribute∼130 nT to the
ground field disturbance. Worth noting also is the saturation
of theKp index, which recurs 12 days later (Fig. 10) in the
third great storm in April 2001.

April 2-April 7, 1979
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Fig. 12. Similar to Fig. 10, but for the first event sequence. The
period plotted is 2–7 April, 1979.

For contrast, we now show similar results for 2–7 April
1979 which, we recall, contained a non-interacting magnetic
cloud followed by a merger of two ejecta. From Fig. 12,
two surges of activity are apparent. The first (and largest)
is due to the magnetic cloud which, as seen in Sect. 3.6,
was not participating in the merger (i.e. was pristine both at
Helios-2 and at ISEE-3). The complex ejecta later produced
little in the way ofDst intensification. YetDst * went be-
low −100 nT. This was, however, mainly due to an enhance-
ment of the magnetopause current, i.e. to dynamic pressure
brought about, in part, by plasma compression during the in-
teraction (Fig. 2). Paradoxically, therefore, and in contrast to
March 2001, the main effect on the ground was due to the
non-participating member of the multiple ejecta, and one ef-
fect of the interaction (plasma compression) accounted for
part of the rest of theDst *, the other part being due to en-
hanced dynamic pressure in the sheath.

5 Summary and discussions

5.1 Summary

We have examined two IP data intervals separated by two
solar cycles and each near solar activity maximum, where
the twin-spacecraft observations indicate ejecta interacting
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with each other to form, in the terminology of Burlaga et
al. (2001), complex ejecta. Our aim was to isolate observa-
tional IP signatures of ejecta-ejecta interactions. These in-
tervals have been examined by other people (see Sect. 2.1),
but we have added further extensive analysis and quantitative
estimates with the following results. In both event sequences,
ongoing coalescence/merging was accompanied by (i) accel-
eration of the leading ejecta; (ii) deceleration of the trail-
ing ejecta; (iii) weakening and/or disappearance of shocks
originally driven by the trailing ejecta; (iv) strengthening of
shocks associated with the accelerated ejecta; (v) compres-
sion of plasma and (vi) magnetic field of the leading ejecta;
and (vii) heating of ejecta plasma. We gave an estimate of the
relative masses of the interacting ejecta. We also examined
the interface between the interacting ejecta on March 2001
and found that a plane could be very well defined with a non-
zero normal field component. Other tests for reconnection
(stress balance analysis) gave a negative result, so that recon-
nection did not seem to be occurring. We ascribed this to the
lack of sufficient magnetic shear across the boundary.

5.1.1 Comparing the two active intervals

At the Sun, between 30 March and 4 April 1979, we observe
a very active interval with a soft X-ray background radiance
of ∼10−6 W m−2. During that interval, flares were identified
at the rate of at least 30/day at longitudes within 40◦ of cen-
tral meridian. There were also large numbers of soft X-ray,
LDEs, and about two CMEs/day observed with SMM, many
metric radio emission bursts, including types IV and II, in-
dicative of fast, solar front-sided, propagating CMEs.

Similar features on the Sun’s disc are observed in
28–30 March 2001. There is, in fact, a larger number of
CME observations (see, e.g. Fig. 8). However, these more
recent CME observations are performed using the corona-
graph LASCO on the SOHO spacecraft, which has a higher
cadence and is far more sensitive than any coronagraph pre-
viously flown (see e.g., Michels, 1998, and Berdichevsky et
al., 2002). An outstanding difference is that the March–April
2001 period coincides with the passage of a complex solar
active region containing the largest coronal sunspot system
recorded in the 23rd solar cycle.

There are also similarities in the 1 AU observations. Con-
sult Figs. 2 and 7.

1. Both intervals were bracketed by shocks and/or pressure
pulses.

2. The bulk speed profiles both before and after the shocks
are similar.

3. Before shocks S2 andSII the IP medium is a cold and
slow solar wind.

4. There are similar strengths in the SEPs (medium gradual
SEP events).

5. Strong magnetic fields follow shocks S2 andSII .

6. High dynamic pressures and very hot plasmas follow
these shocks.

7. Both events were cases of complex ejecta.

8. There is a similar two-step hindrance (Forbush de-
creases) at the interface of the coalescent ejecta present
in both cases. This shows that the energetic particles
still sense some vestige of the original individual ejecta.

Major differences are:

1. The orientation of the magnetic field in the 1979 event
is mostly northward orBz≈0 nT, whereas in the 2001
event it was mostly southward.

2. ShockSII in 2001 is stronger than S2 in 1979.

3. The strong shockSII appears to be able to accelerate
particles in the∼2 MeV range.

4. In April 1979, there was an ejecta clearly not participat-
ing in the merger.

5. In April 1979, one shock disappeared, whereas in 2001
both shocks are present, albeitSI is very weak.

6. The strength of the magnetic field (at 1 AU) is much
higher in the 2001 event, representing an unusually high
compression of the ejecta. In particular, this compres-
sion led to two epsiodes of large negativeBz and a very
intense two-humpedDst (see Sect. 5.4 below).

5.2 Some implications of the analysis

We now comment on some of the points raised above and
their implications. The acceleration/deceleration of compo-
nents of the ejecta merger (items i and ii) stands in sharp
contrast to the conclusion arrived at from studies of pristine
ejecta (separated by 4 days) near the last solar minimum. A
repetitive finding there was that ejecta tend to retain their
speed in going from the Sun to the Earth (Berdichevsky et
al., 2002).

The heating of ejecta plasma (item vii) is worth comment-
ing upon (see also Sect. 2.1). In pristine ejecta, low proton
temperatures (compared to those expected for normal solar
wind expansion) are taken, rightly, to be a very robust signa-
ture of ejecta material in space (Gosling, 1990; Richardson
and Cane, 1995, and references therein.) With the heating ac-
companying the interaction of ejecta, this identification sig-
nature become problematic. The proton plasmaβp should be
used instead. Because the field and plasma are compressed
and the plasma is heated, the proton plasmaβp in our exam-
ples tend to remain� 1.

An example of the disappearance of the shock originally
driven by the trailing ejecta (item iii) was shock S3 in the
April 1979 example. The disappearance of a shock and the
transfer of the momentum of the post-shock flow to the lead-
ing magnetic cloud (see Sect. 5.3 and Odstrcil et al., 2003)
removes one geoeffective element of isolated ejecta driving
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shocks. Past studies have shown that the shock and post-
shock flows can in themselves cause substantial geoeffects
(Gosling et al., 1990, 1991).

An example of strengthening of the shock driven by the
leading ejecta (item iv) is shockSII arriving at Wind on early
31 March 2001. This strong shock has evidently developed
the ability to energize particles in the MeV range (Fig. 7,
bottom panel). Such energization at shocks may thus reflect
an evolutionary trend. Clearly, this development is very im-
portant for the subsequent effect of the configuration on the
geophysical environment, and would seem to be an element
peculiar to ejecta-ejecta interactions.

The compression of the plasma (item v) is another such
effect. In terms of geoeffectiveness, a compressed plasma
leads to a large dynamic pressure – as seen in our exam-
ples – and hence to large magnetopause currents. These
Chapman-Ferraro currents cause large disturbances which
can reach values∼100 nT and thus affect the ring current
substantially. Aside from this, large IP densities are believed
to lead, under conditions not yet well understood, to a su-
perdense plasma sheet (np>1 cm−3; Borovsky et al., 1998).
A dense plasma sheet coupled to a strong convection elec-
tric field leads to strong ring currents (e.g. Jordanova, et al.,
1998). Conversely, low plasma sheet densities are one ele-
ment hastening the decay of the ring current (Jordanova et
al., 2003).

The extraordinary strength of the magnetic field in ejecta 1
on 31 March (34.2 nT±12.5 nT) (major difference 6) may be
gauged from a comparison with typical ejecta field strengths
at 1 AU. Thus, a statistical study based on 30 magnetic
clouds observed by Wind near solar minimum yields an av-
erage strength at 1 AU is 13±1.0 nT (Lepping et al., 2003).
The average density and transit speed emerging from this
study=11.4± 2.9 cm−3, and 396±16 km s−1 (mean± stan-
dard deviation). In all three parameters, then, 31 March rep-
resents a large deviation from the norm.

5.3 Comparison with numerical simulations

Several of our observations on ejecta interaction/coalescence
are in agreement with observations of H-CMEs near the
Sun (Gopalswamy et al., 2001, 2002) and with recent nu-
merical simulations (Odstrcil et al., 2003). The speeding
up of the front ejecta and the slowing down of the trail-
ing ejecta was first inferred by Gopalswamy et al. (2001)
Odstrcil et al. (2003) employed a 21/2-D MHD numerical
code to model shock-cloud and ensuing cloud-cloud interac-
tions. Their magnetic clouds are modeled as cylindrically-
symmetric, force-free, constant-alpha (Lundquist) magnetic
flux ropes surrounded by a potential field. The clouds are
initially at rest. The first cloud (cloud 1) is propelled towards
cloud 2 with such a speed that a forward-reverse shock pair
is formed. The fast forward shock enters cloud 2. Two sets
of cloud 2 parameters are considered: one with a larger, and
the other with smaller, characteristic speed. In the simula-
tions, the shock front entering cloud 2 is always distorted
in the interaction. In the case where cloud 2 has a smaller

characteristic speed, the shock propogates slower in cloud
2 and emerges from the cloud with its lateral wings lead-
ing the central portion which has traversed cloud 2. Behind
the shock, the density and magnetic field are enhanced. The
momentum of the post-shock flow is imparted to cloud 2, ac-
celerating it. The clouds are then pushed into contact. In the
assumed configuration, the magnetic field at the leading edge
of cloud 1 is oppositely directly to that of the trailing edge of
cloud 2. Driven reconnection takes place. The reconnection
process proceeds slowly but eventually the two flux tubes co-
alesce into one and move at a common speed.

Obviously, while the simulation is very idealized, there
are many points in common with our observations. There
are also some differences to be expected, since the results
of the simulations depend strongly on the assumed values of
the initial cloud parameters (Odstrcil et al., 2003), such as
the orientation of their magnetic fields. For example, in our
events no common speed has yet been reached, implying that
the merger was not yet complete. Note also that we were un-
able to show the occurrence of reconnection convincingly,
because the measured change in the plasma velocity tangen-
tial to the interface (1vt ) was not correlated with1Bt/ρ.
This was possibly due to a lack of sufficient magnetic shear
across the interface. However, reconnection does, on occa-
sion, occur. Thus, Farrugia et al. (2001) examined a case
of a reconnection layer separating ejecta material from other
ejecta material in the form of a magnetic cloud. It is thus
important to examine other examples where the role of re-
connection in the formation of complex ejecta is in evidence.

5.4 Geoeffects

The ejecta merger on 31 March 2001 gave rise to a two-
stepDst profile. Double-dip storms have been discussed by
Kamide et al. (1998). There they are called type 2. Ac-
cording to these authors, the IP cause of type 2 storms are
2 successive intervals of IMFBz<0. The huge majority of
type 2 storms are found to have the first storm weaker than
the second. Only in a small fraction (8.5%, Kamide et al.,
1998) is first storm stronger than the second (as we have on
31 March 2001). We suggest that one IP cause of the latter
sub-category of geomagnetic storms is ejecta mergers. We
can understand this from the foregoing, since the interaction
tends to strengthen the field and plasma of the leading ejecta.

Aside from the geoeffects, another reason for studying
ejecta-ejecta interactions comes from momentum consider-
ations. In these interactions the ratio of masses expelled by
the Sun into IP space in CMEs may be obtained indirectly by
evaluating the inverse ratio of the accelerations of interacting
pairs of ejecta, assuming elastic collisions.

5.5 Caveats in the interpretation

A number of reservations on the interpretations offered here
must be borne in mind. In our considerations we were
constrained to infer evolutionary changes from two-site,
snapshot-like observations. This is a severe constraint in that
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the discrete, two-point measurements did not permit the de-
tails of the interaction to be continuously followed. There
is also the difference in longitude of 28◦ in the 1979 case.
Though ejecta longitudinal widths are thought to be larger
than this, and those of shocks even more so, it can still pose
an interpretational problem. In particular, it is possible that
the ejecta seen at one location is absent from the other simply
because it does not extend that far in longitude. The works
cited in Sect. 2.1 did not assess this issue. We first assumed a
merger (like these other authors) and showed that a consistent
story can be made. We then searched for Forbush decreases
and found them at both locations, further confirming this ap-
proach. It might well be, however, that there are elements
which we missed precisely because we studied very active
periods.

To conclude: We have studied two very active periods
which unleashed a number of CMEs into space, some to-
wards the Earth. As such, they are of great interest to the
space weather effort. The evolutionary ejecta effects brought
to light are large and have important influences on the ter-
restrial environment. The STEREO mission, with its twin-
spacecraft capability will be able to continuously monitor
ejecta mergers and confirm and extend our inferences di-
rectly. Clearly, the interactions complicate space weather
forecasting and there is a need of a systematic study to ad-
dress this issue.
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