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Abstract. The dayside high-latitude trough is a persistent
feature of the post-noon wintertime auroral ionosphere. Ra-
dio tomography observations have been used to map its loca-
tion and latitudinal structure under quiet geomagnetic con-
ditions (Kp≤2) near winter solstice. The trough is also
a clear feature in the ion density distribution of the Cou-
pled Thermosphere-Ionosphere-Plasmasphere model (CTIP)
under similar geophysical conditions. Comparisons of the
measured and modelled distributions show that the plasma
production equatorward of the trough is mainly controlled
by solar radiation, but there are also other processes main-
taining the equatorward trough-wall that are open to debate.
The poleward trough-wall is produced by particle precipita-
tion, but the densities are significantly overestimated by the
model. At the trough minimum the observed densities are
consistent with low nighttime densities convecting sunward
to displace the higher daytime densities, but this is not borne
out by the CTIP model. The study shows the potential of
combining radio tomography and modelling to interpret the
balance of the physical processes responsible for large-scale
structuring of the high-latitude ionosphere, and highlights the
role of tomographic imaging in validating and developing
physical models.

Keywords. Ionosphere (Ionization mechanisms; Modeling
and forecasting) – Radio science (Ionospheric physics)

1 Introduction

The high latitude ionosphere is a structured medium contain-
ing irregularities in electron density over an extended range
of horizontal spatial scales. Central to the current study
is the dayside high-latitude trough in the post noon sector
(Whalen, 1989; Rodger et al., 1992), comprising a band of
depleted densities confined in latitude but extended in longi-
tude. The feature has not been studied extensively, a likely
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consequence of the lack of ionospheric observations at these
inhospitable geographic locations. Ground-based measure-
ments by a network of ionospheric sounders made in Decem-
ber 1958 during the International Geophysical Year (IGY)
are reported by Whalen (1987, 1989). These showed the
trough to be located at latitudes poleward of 70◦ magnetic
latitude during quiet conditions, but to expand to lower lati-
tudes at times of higher activity. A longitudinal dependence
in the trough location was attributed to the offset between
the geographic solar terrestrial reference frame and the ge-
omagnetic frame in which the high-latitude convection pat-
tern resides. Whalen (1989) proposed that the trough oc-
curred in regions of sunward convective plasma transport,
with low-density nighttime plasma displacing high-density
daytime plasma. In-situ satellite observations of the trough
at high altitudes under quiet geomagnetic conditions were in-
cluded in the study of Tulunay and Grebowsky (1978), show-
ing a midday trough near the shell L=9, and tomographic re-
sults from a 2-week campaign near solar minimum showed
the trough to be north of 70◦ CGM when geomagnetic condi-
tions were extremely quiet, but to migrate to lower latitudes
with increasing activity (Pryse et al., 1998). Observations
by incoherent scatter radar of high-latitude dayside troughs
during active conditions were reported by Evans et al. (1983)
and Holt et al. (1984). In these studies the trough had mi-
grated to lower latitudes, and its formation was attributed to
plasma erosion associated with intense electric fields.

Routine measurements of the ionospheric plasma distri-
bution in the remote auroral and polar regions have been
scarce, mainly confined to spot NmF2 measurements from
ionospheric sounders and in-situ topside satellite data. Ra-
dio tomography (Kunitsyn and Tereshchenko, 2003; Pryse,
2003 and references therein) is a relatively new technique
for imaging the spatial distribution of the ionospheric plasma
over extended height-versus-latitude planes. It is particularly
adept at imaging the plasma distribution in regions of density
troughs (Andreeva et al., 1990; Kersley et al., 1997) and en-
hancements (Moen et al., 1998; Walker et al., 1999; Pryse et
al., 2000). Routine radio tomography measurements lead to
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Fig. 1. Tomography image from a satellite pass crossing a latitude
of 75◦ N at 13:03 UT on 23 December 2001.

coverage of the ionosphere at all Universal Times, seasons,
geomagnetic and solar conditions. The technique gives wide
spatial coverage from a limited number of ground stations
and is ideal for monitoring the remote inaccessible regions
of the high latitudes. It is used in the current study to pro-
vide the general latitudinal spatial distribution of the dayside
trough under quiet geomagnetic conditions near winter sol-
stice and solar maximum.

The basic physics and chemistry of ionisation production
and loss in the dayside auroral regions are reasonably well
understood. However, the actual electron density structure
present in a given situation depends on the relative contri-
butions of various processes such as photoproduction, par-
ticle precipitation and large-scale electrodynamic drift, with
the balance of the effects remaining an open question that
needs to be addressed. Ionospheric models such as the Cou-
pled Thermosphere Ionosphere Plasmasphere model (Que-
gan et al., 1982; Fuller-Rowell et al., 1984) and the Utah
State University time dependent ionospheric model (Sojka et
al., 1981) have been used to investigate the interplay of these
influences on the plasma. Sojka et al. (1990) modelled low
densities from the nightside being convected sunward in the
dusk convection cell to produce a depleted dayside trough as
suggested earlier by the IGY observations (Whalen, 1989),
while Fuller-Rowell et al. (1991) studied the effects of parti-
cle precipitation and magnetospheric convection on the high
latitude ionosphere by systematically “switching-off” their
contributions in the model. To date, only a limited number of
studies have been made of comparisons between model out-
put and experimental observations at auroral and polar lati-
tudes. For example, Moffett and Quegan (1983) in their re-
view compared the consensus of experimental results for the
mid-latitude trough, believed to be the nightside extension
of the dayside trough, while Schoendorf et al. (1996) com-
pared electron densities measured in the auroral region by the
EISCAT incoherent scatter radar under moderately disturbed
geomagnetic conditions with model output. These studies
produced encouraging results on the potential of models to

reproduce the observed densities, but also highlighted that
uncertainties in the input parameters at high latitudes are a
limitation to modelling, in particular to obtain agreement at
all UTs and geographic locations.

The aim of this current study is to combine model and ex-
perimental observations to elucidate the interplay between
the physical processes responsible for the formation of the
post-noon high latitude trough, in particular the roles of pho-
toproduction, particle precipitation and high-latitude convec-
tion. Attention is confined to the baseline conditions of win-
ter solstice and quiet geomagnetic activity. An extended set
of tomographic images from December 2001 provides av-
erage latitudinal distributions of plasma density over a 6-h
interval of UTs. Comparisons with the output from the CTIP
model are used to interpret the balance of the physical pro-
cesses. Standard inputs are used for the model that are ap-
propriate for the geophysical conditions, and no attempt is
made to adapt the model or the available inputs for improved
agreement with the observations. To our knowledge this is
the first systematic comparison of the model densities at high
latitudes with averaged observations spanning a range of lat-
itudes and a range of UTs.

2 Radio Tomography

The radio tomography experiment operated by the Uni-
versity of Wales Aberystwyth comprises a chain of re-
ceivers at four locations in northern Scandinavia at
Ny Ålesund (78.9◦ N, 12.0◦ E), Longyearbyen (78.2◦ N,
15.7◦ E), Bjørnøya (74.5◦ N, 19.0◦ E) and Tromsø (69.8◦ N,
19.0◦ E). These monitor the phase coherent signals from the
polar orbiting satellites in the Navy Ionospheric Monitoring
System (NIMS), previously known as the Navy Navigational
Satellite System (NNSS), and enable the measurement of
total electron content along a large number of intersecting
satellite-to-receiver ray-paths. Inversion of the data yields
the distribution of electron density over a meridional section
of the high-latitude ionosphere. Figure 1 shows as an ex-
ample the spatial structure of the plasma, measured during
a north-to-south satellite pass on 23 December 2001, with
the satellite crossing latitude 75.0◦ N at 13:03 UT. The pixel
dimensions for the reconstruction were 0.25 deg latitude by
15 km altitude. Photoionisation gives rise to enhanced densi-
ties at the lower latitudes of the field-of-view, with densities
generally decreasing with increasing latitude. Enhanced den-
sities also occur in the auroral region at the higher latitudes,
separated from the photoionisation by a trough centred near
73◦ N.

Tomographic images were reconstructed for all satel-
lite passes with maximum elevation above 40◦ that were
monitored at two or more sites between 08:30 UT and
14:30 UT in December 2001 under quiet geomagnetic con-
ditions (Kp≤2). The resulting images were binned into one-
hour intervals of UT. The analysis focussed on the horizon-
tal (latitudinal) spatial structure of the ionosphere, and the
density at the peak of the F2 region was used as reference
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for comparisons with the model. For each reconstruction in
all UT bins, the latitudinal variation of the electron density
at the altitude of the F-region peak density was determined
at latitude increments of 0.25 deg. The average latitudinal
density variation was then found for each UT bin. Those
corresponding to the time interval 11:30–12:30 UT (labelled
12:00 UT) are shown in Fig. 2 as an example, together with
the median values on which outlying traces have less of an
effect. The uncertainty bars indicate the inter-quartile ranges
for each 0.25 deg latitude step. Figures 3a–f show the median
curves for all six time bins labelled 09:00 UT to 14:00 UT.
The number of passes corresponding to each bin is indicated
on the relevant panel. All traces reveal a distinct trend of
decreasing density with increasing latitude above 65◦ N that
forms the equatorward wall of the high-latitude trough, al-
though by 14:00 UT the wall is displaced significantly equa-
torward and is almost out of the field-of-view. The ionisation
of the wall is dominated by photoionisation, with the solar
control being revealed by the density values at 65◦ N max-
imising at about 9×1011 m−3 near 11:00 UT and by the wall
moving out of the field-of-view as the solar zenith angle in-
creases with time. In contrast, the poleward side of the trough
is a weak feature with densities reaching only 2×1011 m−3 at
09:00 UT and 10:00 UT but increasing to some 4×1011 m−3

at the later times. The modestly increased densities of the
poleward wall are the effect of the structured ionisation at the
higher latitudes. The trough minimum migrates equatorward
from about 79◦ N at 09:00 UT to near 70◦ N at 14:00 UT,
with minimum densities of about 1×1011 m−3 in the plots for
the earlier times, but marginally increased from 12:00 UT.

3 Coupled thermosphere ionosphere plasmasphere
model (CTIP)

The high-latitude ionosphere is to varying degrees influenced
by solar EUV radiation, the precipitation of charged parti-
cles, electrodynamic drift, diffusion, thermospheric winds
and temperature-sensitive chemical reactions. The CTIP
model can be used to investigate the interplay between these
various elements in the interpretation of the density distri-
bution observed by the tomography experiment. The devel-
opment of the model at the University of Sheffield and Uni-
versity College London is well documented, covering early
work on the thermospheric model (Fuller-Rowell and Rees,
1980, 1983) and its integration with the plasmasphere and
the high-latitude ionospheric model with plasma convection
and precipitation energy inputs (Quegan et al., 1982). The
integration of the models provided a powerful tool to investi-
gate the interplay between the thermosphere and ionosphere
(Fuller-Rowell et al., 1987). In brief, coupled equations of
momentum, energy and continuity are solved at fixed grid
points to calculate values of density, temperature and veloc-
ity of the neutral atmosphere, and of the O+ and H+ ions on
open flux tubes at high latitudes and closed flux tubes in the
plasmasphere. The output quantities, of ion and neutral den-
sities, temperatures, and velocities as well as derived quanti-
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Fig. 2. Average and median electron densities at the F-region peak
from the tomography images under quiet geomagnetic conditions
between 11:30 UT and 12:30 UT in December 2001. The uncer-
tainty bars indicate the inter-quartile ranges.
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Fig. 3. Median values for the tomography electron densities at the
F-region peak under quiet geomagnetic conditions within each one-
hour bin between 08:30 UT and 14:30 UT in December 2001.

ties such as Joule heating are determined on a geocentric grid
with a resolution of 2◦ latitude, 18◦ longitude and one scale
height from a lower boundary fixed at 80 km at 1 Pa. Since
the early development of the coupled model, various adap-
tations have been carried out at the University of Sheffield,
University College London and the Space Environment Lab-
oratory, USA. The model used in the current study is the
Sheffield University CTIP model. Inputs were chosen from
the standard selection available to the model appropriate to
the geophysical conditions of observations.

The day number was set to 347, 13 December 2001, taken
to be representative of the month of December. The f10.7
index was set to 213, the average solar condition of the
month. The precipitation energy input was according to the
classification of DMSP satellite measurements by Hardy et
al. (1985), with aKp level of 1 being selected for the lowest
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Fig. 5. Ionisation density distribution at 18◦ E and 13:00 UT from
the CTIP model run with precipitation and convection input (Mpc)

as a function of latitude and altitude.

level of precipitation input permitted by the model. A range
of 37 electric potential patterns, based on Millstone Hill
plasma flow measurements (Foster et al., 1986), were avail-
able to describe the high-latitude convection pattern pole-
ward of 67◦ MLAT. The selected pattern, shown in Fig. 4,
has a standard 2-cell configuration, corresponding to anti-
sunward cross-polar flow and return flows at lower latitudes.
It has a cross polar-cap potential of about 25 kV, commen-
surate with a low geomagnetic activity. Of relevance to the
current study is the post-noon section of the dusk cell with
antisunward flow in the polar regions, flow reversal centred
near 78◦ MLAT (81◦ N) and return flow at geomagnetic lat-
itudes broadly covering 70◦ MLAT to 75◦ MLAT (73◦ N to
78◦ N). Equatorward of the high-latitude potential pattern the
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Fig. 6. Ionisation densities from the CTIP model at 18◦ E and al-
titude of 260 km at hourly intervals from 09:00 UT to 14:00 UT
with precipitation and convection inputs, Mpc, (long dashed curve),
convection input and precipitation switched off, Mc, (long-short
dashed curve) and no precipitation and no convection input, M,
(short dashed curve). Also shown are the corresponding median
electron densities from the tomography observations (solid curve)
averaged over 2◦ latitude for comparison with the model output.

plasma co-rotates with the Earth.
A typical latitude-versus-height cross-section through the

post-noon high-latitude ionosphere along 18◦ E at 13:00 UT
is shown in Fig. 5 for a run of the model (Mpc). It shows
enhanced densities at the equatorward and poleward sides of
a trough with minimum near 72◦ N (69◦ MLAT), with the F2
density peak at an altitude of 260 km. To a first approxi-
mation there is broad likeness between this and the tomog-
raphy image at a similar UT in Fig. 1. However, there are
also clear differences, with the observed ionisation levels be-
ing larger in the modelled ionosphere. Such disparities will
be considered further in the following section, with compar-
isons made between the observations and model output. Two
further model runs were performed, one in which the precip-
itation energy source was turned off and convection retained
(Mc) and the other with both precipitation and convection
switched off (M).

4 Comparison of tomography and modelled densities

The median values of the observed tomography peak den-
sities for the six UT epochs of interest are reproduced in the
six panels of Fig. 6. These have been averaged over 2 degrees
latitude for comparison with the model output. The distribu-
tions of the F-region peak ionisation densities along the 18◦ E
meridian for the model run with both precipitation and con-
vection, Mpc, are also shown in the appropriate UT panels.
Included for reference are the corresponding modelled den-
sities for the runs with convection and without precipitation,
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Mc, and without both precipitation and convection, M. Broad
agreement occurs between the observations and the modelled
values at the lowest latitudes at all UTs but the values deviate
substantially at the higher latitudes.

The observed densities on the left-hand-side of the panels
between 09:00 UT and 11:00 UT, and to a lesser extent those
at 12:00 UT, show a decrease with increasing latitude that is
more gradual than in the M curve. Thus observed densities
are significantly higher on the equatorward trough-wall than
predicted by solar illumination alone. This is then followed
by a decrease at a steeper gradient in the observed densities
into the trough minimum, where levels as low as the mod-
elled curve are attained. This will be discussed at a later
stage. The full model Mpc yields density levels generally
higher than those observed. It appears that the precipitation
energy not only increases the density within the source re-
gion, but also has an indirect influence of increasing densities
at lower latitude.

In the northern field-of-view, within the precipitation
source region, the model produces densities that are sub-
stantially larger than the observations. The poleward side of
the trough is identified in the observed densities as enhance-
ments above the background density levels of M, which be-
come more apparent with increasing UT. At 09:00 UT and
10:00 UT the higher level is clearer in the densities prior to
averaging over latitude (Fig. 3). Modelled densities Mpc on
the poleward side maximise near 81◦ N (78◦ MLAT) near the
convection reversal of the afternoon cell, but these are clearly
too large. Two possible factors that would lead to a reduction
in the modelled densities in this region are lower precipita-
tion energy input to reduce direct ionisation production, and
increased high-latitude convection flow for greater ionisation
loss. In the case of the precipitation, the lowest level had
been selected in the model run and it was not possible to re-
duce the effect further other than by switching the precipita-
tion off. The effect of the high-latitude flow was investigated
by changing the convection pattern to a two-cell pattern with
a larger cross-polar potential. Inspection of the cross-polar
potentials on the Convection Map Archive of the SuperDarn
website(http://superdarn.jhuapl.edu)for the times of inter-
est, revealed values that were generally lower than 70 kV,
and below 50 kV for some 70% of the times under consid-
eration. Hence a convection pattern with an extreme cross-
polar potential of some 70 kV was selected. The resulting
modelled peak F-region densities for 11:00 UT are shown in
Fig. 7, together with the corresponding modelled densities,
Mpc, and the averaged observations. The introduction of this
drastic measure for the cross-polar potential produced densi-
ties reduced at northern latitudes to levels comparable to the
observations, but it also reduced the densities over the entire
latitude range to an extent that the trough is not readily iden-
tified. It is therefore unlikely that the observed levels in the
northern field-of-view are explained entirely by a stronger
convection flow.

The densities in the trough minimum were overestimated
by model Mpc with the observed values being some two to
three-fold smaller and essentially at or below the level of
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Fig. 7. Ionisation densities from the CTIP model at 18◦ E and al-
titude of 260 km at 11:00 UT from the model run Mpc with cross-
polar potential of about 25 kV (solid curve) and identical model run
but with an electric potential pattern with a cross-polar potential of
about 70 kV (long dashed curve). Also shown are the corresponding
median electron densities from the tomography observations aver-
aged over 2◦ latitude (short dashed curve).

the photoionisation. An equatorward movement of the ob-
served trough minimum occurs with a displacement from
about 80◦ N at 09:00 UT to some 70◦ N at 14:00 UT. A sim-
ilar equatorward migration is also apparent in modelled den-
sities Mpc, although the corresponding latitudinal range is
reduced from approximately 74◦ N to 71◦ N.

5 Discussion

The general consensus portrayed in the literature is that the
dayside trough is formed by photoionisation on the equator-
ward wall, precipitation on the poleward wall, and cold low-
density plasma at the minimum that is carried by the sunward
return flow from the nightside into the dayside sector. This
study supports this in part, but also reveals that the balance
and interplay between the different factors is not fully under-
stood.

The observed densities at the equatorward extreme of the
region of interest near 65◦ N are supported by the model out-
put. This region is likely to behave akin to the mid-latitude
ionosphere, where solar control is the influencing factor. On
the equatorward trough wall the densities are expected to de-
crease in response to an increasing solar zenith angle, how-
ever, the observed densities are maintained at a higher level
than anticipated. This may be explained in terms of the inter-
action of photoproduction and the high-latitude convection
pattern. Near magnetic noon (09:00 UT) the higher densi-
ties can be explained to be those of the tongue-of-ionisation
that draws photoionisation from lower latitudes towards the
polar region (Sims et al., 2005). At later times they may be
attributed to plasma exposed to sunlight for an extended time
as it moves very slowly sunward at the equatorward extreme
of the return flow of the afternoon cell (Pryse et al., 2004).
However, neither of these explanations is borne out in the
model runs, with the density levels of the run with solar pro-
duction and convection, Mc, being lower than those of the

(http://superdarn.jhuapl.edu)
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run with only the solar production, M. A further explanation
is that it may be an indirect effect of precipitation, with en-
ergy input at the higher latitudes affecting the thermospheric
morphology with the neutral wind flow driving ionisation up
the magnetic field to regions of less molecular species and
hence slower recombination rate (Fuller-Rowell et al., 1991).
Increased levels are given by the full model run Mpc that in-
cludes the effect of precipitation in addition to convection,
but this fails to model the observed steeper reduction of den-
sity into the trough minimum.

From 09:00 UT to 12:00 UT the densities at the trough
minimum revert to the densities modelled in the absence of
precipitation, with those at 13:00 UT and 14:00 UT being
even smaller. The low densities in the trough have been mod-
elled by Sojka et al. (1990) and attributed by Whalen (1987,
1989) to low densities from the nightside being carried in the
return sunward flow of the dusk cell to displace the higher
densities of the dayside. This interpretation is supported in
the current study by the trough residing in the return flow of
the cell, and by the density measurements at 13:00 UT and
14:00 UT being lower than those modelled with only solar
production as input, M. However, the model run Mc, which
accommodates convection in addition to the solar produc-
tion, fails to model densities significantly lower than those of
M at the relevant times.

The main difference between the observations and mod-
elled density levels Mpc occurs on the poleward side of the
trough. While both reveal the effect of the precipitation, the
model significantly overestimates the densities. It is unlikely
that the large densities are explained by the cross-polar po-
tential being too small, although this could be a contribu-
tory effect. The disparity is mainly because of energy in-
put from precipitation being too high. In this current study,
the precipitation was set to the lowest level accommodated
by the model, and hence could not be reduced further other
than by switching off. This level accommodates the Hardy
et al. (1985) statistical precipitation category forKp=1−, 1
and 1+, which tend to be at the higher extreme of the condi-

tion of Kp≤2 used for the classification of the observational
data. The inclusion of data for conditionKp=0, but omis-
sion of the condition from the modelling, may partly account
for the observed densities being smaller than those modelled,
however it is unlikely to be the sole reason. It can also be
noted, although outside the main scope of the present study,
that subsidiary investigations into the effects of the precip-
itation levels on the modelled density reveal that variations
in the precipitation flux and average energy, consistent with
the low Kp values, can lead to an uncertainty in the auro-
ral electron density of up to an order of magnitude. In the
longer term, the effect of precipitation input in the model
needs to be addressed, although in the first instance the ex-
istence of other disparities need to be established at different
geomagnetic activity levels, universal times and geographic
locations, so that any changes to the model are considered
within the global framework rather than tuning the model to
this data set alone (Schoendorf et al., 1996). Radio tomogra-
phy offers the potential for such comparisons, with long term
observations being made in the European sector and also by
the recently established International Ionospheric Tomogra-
phy Community with receivers in the high-latitude sector in
Alaska, Greenland, and Europe (Kersley et al., 2005).

This investigation has aimed to look at the observations in
a semi-statistical fashion, rather than on the basis of obser-
vations from individual passes. Measurements from a total
of 63 passes were used. Attempts to increase the number
of passes by including data from other winter months were
abandoned for this particular study, when it became clear
that observations from November 2001 were yielding sig-
nificantly increased density levels because of increased solar
production. Similarly, observations from the month of De-
cember in other years were not included because of the ef-
fect of solar activity on the density levels. The geophysical
conditions for the observations were hence restricted so that
they were as representative as possible of the input conditions
used for the model runs. Such comparisons pave the way for
systematically addressing the model inputs, in particular un-
certainties in the electric potentials and in the intensity and
position of the auroral energy source (Moffett and Quegan,
1983).

The study has classified the data for quiet conditions in
terms of the globalKp index, this being the parameter that
sets the level of precipitation input in the model. However,
the high-latitude ionosphere is mainly driven by the inter-
action of the interplanetary magnetic field (IMF) with the
Earth’s magnetic field, with the auroral emissions and den-
sity structures showing a dependence on the orientation and
strength of theBz component of the IMF. An investigation of
the effect of the polarity ofBz revealed insignificant differ-
ences in the trough morphology underBz positive and neg-
ative. Figure 8 is a scatter plot of the latitude of the trough
minimum versus UT, where each point relates to an individ-
ual tomographic image with a discernable trough minimum
and is categorised in terms ofBz positive or negative. No
clear distinction is revealed in the location of the trough un-
derBz>0 andBz<0, but this is not surprising as the trough
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location and structure at the time of interest is located in the
dusk viscous cell, with precipitation straddling the flow re-
versal and the return sunward flow at lower latitudes. Such
a cell is characteristic of bothBz positive and negative under
quiet conditions (Cowley, 1998).

6 Conclusions

In conclusion, average density distributions from tomo-
graphic observations have been obtained that show the lat-
itudinal characteristics of the dayside high-latitude trough in
the post-magnetic-noon sector under quiet geomagnetic con-
ditions near solar maximum. The latitudinal variations have
been compared with those given by the CTIP model under
similar conditions, revealing that:

– Densities well equatorward of the trough were con-
trolled by solar input,

– Densities on the equatorward trough-wall were larger
than expected by solar input alone, and consequently
resulted in a steep gradient leading into the trough min-
imum. The model did not reproduce this effect.

– Densities at the trough minimum between 09:00 and
12:00 UT were comparable to those of solar produc-
tion. At later times the observed densities were lower
than those of solar production, supporting the explana-
tion proposed by Whalen (1989) of low densities being
carried sunward from the nightside into the dayside.

– Densities forming the poleward trough wall were pro-
duced by precipitation, but the CTIP model significantly
over estimated the ionisation levels. The precipitation
energy input in the model increased the density levels
over the entire latitude range of interest.

The latitudinal variation of the density through the post-
noon dayside trough is clearly a balance of solar produc-
tion, high-latitude convection, and intensity and location of
precipitation energy input. However, this study shows that
the details of the balance of the processes are not full un-
derstood, with the model not replicating the observed densi-
ties. The combination of radio tomography observations and
modelling output has the potential to interpret the roles of
these physical processes responsible for the large-scale ioni-
sation structure in the ionosphere, and to validate and develop
the physical models of the high-latitude ionosphere.
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