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Abstract. Modern large-scale models (LSMs) rely on sur-
face drag coefficients to parameterize turbulent exchange be-
tween surface and the first computational level in the atmo-
sphere. A classical parameterization in an Ekman boundary
layer is rather simple. It is based on a robust concept of a
layer of constant fluxes. In such a layer (log-layer), the mean
velocity profile is logarithmic. It results in an universal de-
pendence of the surface drag coefficient on a single inter-
nal non-dimensional parameter, namely the ratio of a height
within this layer to a surface roughness length scale. A re-
alistic near-neutral planetary boundary layer (PBL) is usu-
ally much more shallow than the idealized Ekman layer. The
reason is that the PBL is developing against a stably strat-
ified free atmosphere. The ambient atmospheric stratifica-
tion reduces the PBL depth and simultaneously the depth of
the log-layer. Therefore, the first computational level in the
LSMs may be placed above the log-layer. In such a case, the
classical parameterization is unjustified and inaccurate.

The paper proposes several ways to improve the classi-
cal parameterization of the surface drag coefficient for mo-
mentum. The discussion is focused on a conventionally neu-
tral PBL, i.e. on the neutrally stratified PBL under the sta-
bly stratified free atmosphere. The analysis is based on large
eddy simulation (LES) data. This data reveals that discrep-
ancy between drag coefficients predicted by the classical pa-
rameterization and the actual drag coefficients can be very
large in the shallow PBL. The improved parameterizations
provide a more accurate prediction. The inaccuracy is re-
duced to one-tenth of the actual values of the coefficients.

Key words. Meteorology and atmospheric dynamics (Gen-
eral circulation; Turbulence; Instruments and techniques)

1 Introduction

Despite of the complexity of the Earth’s surface, widely
used parameterizations of the turbulent exchange in the sur-

Correspondence to:I. N. Esau
(igore@nersc.no)

face layer generally remain rather simple. The most of the
large-scale models (LSMs) participating in the atmospheric
model intercomparison program (AMIP) rely on the Monin-
Obukhov similarity theory (Monin and Obukhov, 1954) in
their calculations for a surface drag coefficient,CD,

τ = CDuu, (1)

whereτ is a turbulent vertical momentum flux, andu is flow
velocity at the first model level.

This approach has been developed from studies ofvon
Karman(1975) andPrandtl(1932). Within a surface layer,
i.e a layer of constant turbulent fluxes, in terms of the first-
order turbulence closure (Holt and Raman, 1988) one can
write

dτ

dz
=

d

dz
Km

d|u|

dz
= 0 or

d|u|

dz
=

const

Km

. (2)

The constant in Eq. (2) is simply a turbulent flux at the
surface,τ(z=0)=u2

∗, whereu∗ is so-called friction veloc-
ity and |u| is the wind speed. Dimensional analysis suggests
thatKm=l·us is a combination of length,l, and velocity,us

scales. von Karman proposedl=κz andus=u∗ on the ba-
sis of laboratory experiments with a well-established layer
of constant turbulent fluxes. Here,z is the height above the
surface. The constantκ=0.41 is known as the von Karman
constant.

Integration of Eq. (2) gives an expression for the logarith-
mic velocity profile in the surface layer

|u(z)| =
u∗

κ
ln

z

z0
, (3)

wherez0 is surface roughness. The log-law is an essential
part ofCD-parameterizations. Since the atmospheric PBL is
always stratified, Monin and Obukhov suggested a universal
stability correction of Eq. (3) in the following form

|u(z)| =
u∗

κ

(
ln

z

z0
− 9(z/L)

)
, (4)

whereL=−u3
∗/Fbs is the Monin-Obukhov length scale and

Fbs is a buoyancy flux at the surface.9(z/L) is an empir-
ical function, which is not defined in the theory. Empirical



3354 I. N. Esau: Surface drag coefficient in the PBL

essence of9(z/L) has resulted in a great variety of possi-
ble forms of9(z/L) (Abdella and McFarlane, 1996). How-
ever, historically first expressions proposed by Businger et
al. (1971), Dyer (1974) and Webb (1970) still remain the
most popular. The Monin-Obukhov similarity theory can be
developed to theCD-parameterization in two ways. The first
way follows from the straightforward application of Eq. (4)
as

CD(z) =
τ(z=0)

|u(z)|2
=

(
κ

ln(z/z0)−9(z/L)

)2

=

(
C

−1/2
Dn − κ−19(z/L)

)−2
.

(5)

The second way is to redefine9(z/L) as
F−2

M =(1−9(z/L)/ ln(z/z0)), where FM could be seen
as a new empirical function. Louis (1979), Abdella and
McFarlane (1996) and many others consideredFM as a
function of the Richardson number, Ri. It gives

CD(z) =
τ(z=0)

|u(z)|2
=

(
κ

ln(z/z0)

)2
FM(Ri)

= CDnFM(Ri).
(6)

Here, the classical expression for a drag coefficient for mo-
mentum in the Ekman boundary layer reads

CDn =

(
κ

ln(z/z0)

)2

. (7)

Lange et al. (2004) demonstrated a systematic discrepancy
betweenCD predicted by Eq. (5) and measured in the PBL
over the Danish Baltic Sea during the Rodsand measurement
program. The discrepancy remains significant even in the
near-neutral PBL at largeL or small Ri. The discrepancy
was found for a wide range of wind speed and at different
distances from the sea shore. This work will show that it is
necessary to account for an effect of stability of the atmo-
sphere above the PBL. This effect has been overlooked in the
above equations. Therefore, it is still absent in the large-scale
models. Already Csanady (1974) concluded from his theo-
retical considerations that the effect should be significant in
shallow PBLs. However, he obtained only asymptotic solu-
tions. He only mentioned that in the absence of experimental
evidence it is difficult to speculate on the intermediate varia-
tions ofCD. This work and Lange et al. (2004) provide such
evidences.

The stratification of the atmosphere above the PBL does
not depend on the stability of the PBL. Therefore, it is rea-
sonable to account for this effect not throughFM (Ri) or
9(z/L) but throughCDn, as it has been done by Csanady.
Such an approach will considerably alleviate the following
verification.

Until very recently, the near-neutral atmospheric PBL
has been considered as a truly neutral or Ekman bound-
ary layer (Zilitinkevich and Esau, 2002). The truly neutral
boundary layer was seen to be similar to the Ekman layer in
laboratory experiments and numerical simulations (Hess and
Garratt, 2002). The only non-dimensional governing param-
eter in the Ekman layer is the Rossby number, Ro=Ug/(f z0),

whereUg is a geostrophic wind speed andf is the Coriolis
parameter. Using scaling analysis and the von Karman scal-
ing,Rossby and Montgomery(1935) proposed an expression
for the Ekman layer depth

H = Ch

u∗

|f |
, (8)

whereCh is a constant. The friction velocity,u∗, can be
found from the following non-linear equation (Zilitinkevich,
1989)

Ro = sign(f ) exp(− ln Cg + κ/Cg + A), (9)

whereCg=u∗/Ug is a geostrophic drag coefficient andA
is a constant. DNS (Coleman, 1999) and LES (Mason and
Thompson, 1987) gives an estimationCh ∈ [0.5; 0.7]. These
values of Ch result in unrealistically large values ofH ,
which has been never observed in the atmosphere. Atmo-
spheric measurements provideCh∈[0.05; 0.3] (Tjernstr̈om
and Smedman, 1993).

A vertical resolution of modern LSMs still remains rather
coarse. The first computational level,zLSM

1 , in fine resolu-
tion LSMs is at about 20 m above the surface. Coarse res-
olution LSMs havezLSM

1 at more than 100 m above the sur-
face. It would not cause any problem in the Ekman layer
sincezLSM

1 <hs<0.1H , whereH is taken from Eq. (8) with
Ch=0.65. In this case,zLSM

1 would always be placed well
within the log-layer of the depthhs . However, both coarse
and fine resolution LSMs would have problems in the at-
mospheric conventionally neutral PBLs. The conventionally
neutral PBL is a PBL developing against a stably stratified
free atmosphere. Such PBLs are usually shallow, so the level
zLSM

1 is often placed above the log-layer or even above the
entire PBL.

This study addresses the problem of shallow logarithmic
layers in the parameterization of the surface drag coefficients.
It is worth noting that several attempts have been made to in-
corporate the stability effects of the free atmosphere into the
CD-parameterization. For instance, Fairall et al. (1996), fol-
lowing Schumann(1988), proposed to use an effective wind,
S=(|u|

2
+Cw2

∗)
1/2, in Eq. (1). Here, w∗=(FbsH)1/3 is a

convective velocity andC is a constant. The convective ve-
locity is proportional to the PBL depth. This parameteriza-
tion recovers Eq. (1) in the near-neutral case,Fbs→0. Cas-
sano and Parish(2001) proposed to use an efficient surface
roughness for temperature in stably stratified PBLs. In or-
der to account for non-local effects,z0T �z0 was proposed.
It should account for an additional surface drag due to inter-
nal waves in the PBL. Such waves become evanescent in the
near-neutral PBL. Therefore, the waves cannot exert signifi-
cant drag in this case.Zilitinkevich et al. (2002) suggested
to add an additional term to the log-law in the stably strati-
fied PBL. This term accounts for the stability of the free at-
mosphere above the PBL. The method reminds the Csanady
approach and will be followed in this paper.

Contrary to the above mentioned papers, this paper is
focused on theCDn-parameterization in the conventionally
neutral PBL, i.e. the PBL with (i) a negligible buoyancy flux
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at the surface,Fbs→0, (ii) near-neutral stratification in the
surface layer, Rig(z<hs)→0, and (iii) considerable stratifi-
cation of the free atmosphere above the PBL, Rig(z>H)6=0.
Advanced parameterizations for the non-neutral (convective
and stably stratified) PBLs can be derived by substitution of
the obtainedCDn expressions into Eqs. (5) and (6).

Section2 describes relevant physical processes and fea-
tures of turbulence within the conventionally neutral PBL.
Section3 describes the method and problems related to cal-
culation ofCDn from a LES database. Section4 discusses
several ways to account for the non-local effects in an im-
provedCDn-parameterization. Section5 outlines the conclu-
sions of this study.

2 Relevant physical processes in conventionally neutral
PBLs

In the Ekman boundary layer, turbulent kinetic energy (TKE)
is mainly in a local balance with dissipation. The exces-
sive TKE is generated at the top of the surface layer and
then transported downward and upward. This process main-
tains the surface layer as the layer of constant fluxes with
the logarithmic velocity profile. The planet rotation has a
negligible effect on small turbulent eddies within the surface
layer. However, larger eddies above the surface layer experi-
ence a significant damping effect due to the planet rotation.
The damping maintains an equilibrium PBL depth,H , given
by Eq. (8). The equilibrium PBL depth is defined by the
balance between the excessive TKE production and the ex-
cessive TKE dissipation due to the planet rotation (Tritton,
1992). In the case of the conventionally neutral PBL, the ex-
cessive TKE production is consumed both by the planet rota-
tion and by the ambient stratification of the free atmosphere
above the PBL.

There are two competing mechanisms of the turbulent ex-
change which are sensitive to the ambient atmospheric strat-
ification. The most obvious mechanism is gradual mixing
due to the entrainment of potentially warm air from the free
atmosphere. It results in a gradual deepening of the PBL. An-
other process is radiation of internal waves from the PBL top
to the free atmosphere. The waves take out the TKE but leave
temperature variations at the PBL top. Therefore, the wave
radiation works against the mixing. It increases the tempera-
ture gradient across the PBL top (Zilitinkevich, 2002). These
two processes result in an equilibrium PBL depth.

Csanady (1974) noticed that the equilibrium depth de-
pends on the ambient stratification of the free atmosphere.
LES data allowedZilitinkevich and Esau(2002) to derive
a quantitative measure of this dependence. The stratifica-
tion can be characterized by a non-dimensional Zilitinkevich
number,Zn=µN=N/|f | (Zilitinkevich and Calanca, 2000),
whereN is the Brunt-V̈ais̈alä frequency in the atmosphere
above the PBL. The LES studies have shown that the PBL
depth decreases more than 10 times from the case withZn=1
to the case withZn=350 (see Fig.1). The turbulent stress at
the surface also decreases (see Fig.2). The reason is that
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Fig. 1. The dependence of the normalized depth,Ch=H |f |/u∗, of
the conventionally neutral PBL on the stratification of the free atmo-
sphere above the PBL. The strength of the stratification is expressed
through the Zilitinkevich number,Zn. Data is taken from the au-
thor’s LES database. Squares, circles and diamonds denote individ-
ual LES runs with the log-layer more shallow than 20 m, 50 m and
100 m.

large eddies become limited in size by the PBL depth and
therefore less energetic.Zilitinkevich and Esau(2002) gen-
eralizedRossby and Montgomery(1935) expression forH ,
which includesZn as an additional external governing pa-
rameter. This expression reads

H = Ch

u∗

|f |
, where Ch = CR(1 + C0Zn)

−1/2. (10)

Here, CR=0.65±0.08 and C0=0.23±0.05 are empirical
constants obtained from the LES database. The ambient sta-
bility is actually the controlling factor forH in the atmo-
spheric range ofN∈[3·10−3

; 3·10−2
] s−1. This is true for

virtually any realistic surface heat flux, i.e.|L|>102. The
finding has been recently confirmed in the analysis of atmo-
spheric data byHess(2004).

Summing up, the near-neutral atmospheric PBLs are usu-
ally much more shallow than it follows from the theoretical
analysis of the idealized Ekman layer. The reason for this
is considerable stratification of the free atmosphere imme-
diately above the PBL. This stratification was neglected in
the earlier theoretical works. The first computational level in
the modern LSMs is usually placed outside the surface layer
or even outside the entire shallow PBL. It suggests that the
CDn-parameterization given by Eq. (1) and Eq. (7) does not
properly represent the surface drag coefficient in the major-
ity of LSMs. The error inCDn leads to considerable errors
in CD according to Eqs. (5) and (6).

3 Surface drag coefficient in large eddy simulations

LES is a powerful technique to study turbulent exchange in
the PBL. The detailed description of the LES code and the
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Fig. 2. The dependence of the turbulent surface stress,τs=u2
∗ on

the PBL depthH . Data and notation are as in Fig.1.

LES database is out of scope of this paper. It can be found
in Esau(2004).

However, several important aspects of the LES technique
should be highlighted here. The LES technique resolves only
relatively large scales of motions. The author’s LES code,
LESNIC, maintains the statistically correct amount of the
TKE down to the first computational level. The price is a
noticeable overamplification of the shortest resolved scales
at the first 2–3 computational levels. An estimated sub-grid
TKE at the first computational level is about 30% of the re-
solved TKE. The sub-grid part of the TKE decreases rapidly
with height. Distinct to the LSMs, the LES resolves the
three-dimensional (3-D) structure of turbulence. There is a
direct energy cascade in 3-D turbulence. Since the upper part
of the Kolmogorov inertial subrange of scales is resolved,
small-scale turbulence has only a minor effect on the re-
solved turbulence. This is easy to see in comparisons of LES
with different sub-grid closures and mesh resolutions (Esau,
2004).

The boundary conditions in the LES code are prescribed
locally in the form of the log-law, as in Eq. (3). Thus,
any LES studies of the surface layer are unavoidably af-
fected by the log-law boundary conditions in the LES code
itself. The influence of the boundary conditions, however,
decreases very rapidly with height. It follows from analysis
of non-dimensional gradients. Application of the log-law in
the form of Eq. (3) supplies incorrect boundary conditions in
the case of stable and convective PBLs. In the case of the
stably stratified PBL, the Monin-Obukhov similarity theory
suggests the following expression for the non-dimensional
velocity gradient

κz

u∗

∂|u|

∂z
=

(
1 + Cu

z

L

)
. (11)

Here,L=−u3
∗/Fbs is the Monin-Obukhov length scale,Fbs

is a surface buoyancy flux andCu is supposed to be a con-
stant. Figure3 showsCu defined from the author’s LES and

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
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z/L

C
u

Fig. 3. Values of the constantCu of the Monin-Obukhov similarity
theory for the non-dimensional velocity gradient given by Eq. (11).
The values ofCu are plotted against non-dimensional parameter
z/L, accounting both for the stability of the surface layer and the
height of the computational level in LES. Squares represent LES
data; other symbols represent atmospheric data.

Cu defined from the atmospheric data sets. Recall that the
LES code employs Eq. (3) but not Eq. (11) to account for
the velocity at the first computational level. The discrep-
ancy between the Monin-Obukhov theory and LES is clearly
seen at smallz/L, i. e. at the very first computational levels
in LES. However, LES demonstrates rather good agreement
with the Monin-Obukhov already at the second and higher
computational levels, wherez/L>0.25. Mayor, Tripoli and
Eloranta(2003) have independently assessed the LES qual-
ity for the convective PBL. They compared 3-D turbulence
structures simulated by a coarse resolution LES and obtained
by a volume imaging lidar. To the authors’ surprise, they had
to conclude that LES reproduced reasonable structures in the
surface layer where “the technique is expected to perform
poorly”. Therefore, except the first and perhaps the second
computational levels, the effect of surface layer parameteri-
zation on LES data is rather small.

The vertical resolution of the LES is much better than the
resolution of the LSMs. The LES runs have the height of the
first computational level,zLES

1 , between 19.5 m in the deepest
truly neutral PBL (Zn=0,H=2000 m) and 1.5 m in the PBL,
capped by the strongest inversion (Zn=400,H=60 m). All
LES runs have about 45 levels within the PBL and, therefore,
4-5 levels within the surface layer. Here, the LES mesh was
almost isotropic, as the technique of 3-D turbulence resolv-
ing modeling requires. In most of the LES runs, the horizon-
tal grid resolution was1x=1y=4zLES

1 . Only very shallow
PBL, where the flow is naturally anisotropic, was simulated
with a grid resolution1x=1y=8zLES

1 .
The difference in the vertical resolution causes some prob-

lems in data analysis. Obviously, the vertical resolution in the
LES runs should not be coarser than the vertical resolution of
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Fig. 4. The dependence of the surface drag coefficient for momen-
tum,CLES

Dn
, on the internal dimensionless parameterz/z0. CLES

Dn
is

calculated from the author’s LES database atzLSM
1 =20 m (squares),

zLSM
1 =60 m (circles) andzLSM

1 =150 m (diamonds).

the LSMs. Hence, the coarsest LES runs with smallZn can-
not be involved in the evaluation of the finest LSMs. Simul-
taneously, the first computational level in the LSMs must be
still placed within the PBL. Hence, the finest LES runs with
largeZn cannot be involved in the evaluation of the coarsest
LSMs. In order to avoid these problems, three specific LSM
levels were selected.CDn at zLSM

1 =20 m represents the drag
coefficient in the LSMs with a relatively fine vertical reso-
lution. LES data at this level is denoted by squares in the
following text. CDn at zLSM

1 =60 m represents the drag co-
efficient in the LSMs with a typical vertical resolution. LES
data at this level is denoted by circles.CDn at zLSM

1 =150 m
represents the drag coefficient in the LSMs with a relatively
coarse vertical resolution. LES data at this level is denoted by
diamonds. The analysis involves only those LES runs which
satisfyzLSM

1 <H andzLES
1 �zLSM

1 for the givenzLSM
1 .

The drag coefficient for momentum can be calculated in
the LES as

CLES
Dn =

(
κ

ln(zLES
1 /z0)

|u(zLES
1 )|

|u(zLSM
1 )|

)2

, (12)

wherezLES
1 is a height of the first computational level in the

LES and|u(zLSM
1 )| is the wind speed atzLSM

1 computed in
LES. This drag coefficient is shown in Fig.4 as a function
of the local parameterzLSM

1 /z0. All variables inCDn com-
putation are averaged over the horizontal plain and addition-
ally over a 30-min interval of time. The levelzLES

1 is always
placed well within the log-layer. It ensures that the parame-
terization in Eq. (1) and Eq. (7) provides an accurate approxi-
mation of the turbulence exchange in the LES. The non-local
effects, which are the subject of the study, are hidden in the
well resolved ratio|u(zLES

1 )|/|u(zLSM
1 )|.

10
1

10
2

10
3

0.4

0.6

0.8

1

1.2

1.4

1.6

H (m)

C
D

n
LE

S
/C

D
n

Fig. 5. The dependence of the normalized surface drag coefficient
CLES

Dn
/CDn on the PBL depthH . CDn is the classical parameteri-

zation by Eq. (7). The solid line shows the ideal scaling. The dashed
line shows an empirical dependence by Eq. (13). Crosses and error-
bars represent atmospheric data forCatm

D
/CCharnok

D
from Lange et

al. (2004), whereH has been recalculated according to Eq. (10) in
the present study from Eq. (17) in Lange et al. work. Other symbols
are the same as in Fig.4.

All LES runs accurately resolve the entire PBL. The
PBL depth, H , can be diagnosed as a height, where
τ(H)=0.05u2

∗. It is worth noticing that other definitions of
H are also possible. It means thatH is an ambiguous pa-
rameter. The definition ofH affects values of empirical con-
stants in the following analytical expressions. The value of
the friction velocity,u∗, is also defined only approximately.
Indeed, advection and pressure terms have been neglected in
the layer between the surface andzLES

1 . This is not justified
for the coarse LES runs. This simplification and the notice-
able overamplification of the resolved TKE atzLES

1 result in a
slightly larger value of the von Karman constant in the LES.
The valueκ=0.44 is used in this study.

4 Methods to improvedCDn-parameterizations

Figure5 showsCLES
Dn normalized by the classical local scal-

ing by Eq. (7). Recently, comparable deviations have been
found in the atmospheric data (Lange et al., 2004). This
data is also shown in Fig.5. Apparently, the local scaling,
z/z0, does not work properly in the shallow PBLs. There
are several possible ways to incorporate non-local effects of
the ambient stratification into the surface drag parameteri-
zation. One can modify the von Karman length scale,l,
in such a way that it would account for the actual position
of zLSM

1 within the PBL. Indeed, it is understandable that
l must be limited. Both LES and data show saturation of
the mixing length scale at the top of the surface layer (see
Fig. 6). Obviously, the saturation ofl has to be taken into
account atzLSM

1 >hs . Blackadar(1962) proposed the most
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Fig. 6. The dependence of the non-dimensional mixing length scale,
l/H , from the non-dimensional height,z/H . The mixing length
scale is calculated asl=τ(z)/∇z|u(z)|u−1

∗ from the author’s LES
database.

straightforward extension of the length scale. He suggested a
linear interpolation between reciprocals to the von Karman,
κz, and external,κH , scales. His external scale was, how-
ever, based onRossby and Montgomery(1935) analytical
expression for the depth of the idealized Ekman layer. More
exactly,Blackadar(1962) used the following external scale
λ=2.7·10−4Ug/|f |. This scale givesλ≈0.01H , whereH

is given by Eq. (8). After Blackadar(1962) work, a num-
ber of modification of this scaling for stable and convective
PBLs have been proposed (Holt and Raman, 1988). Mason
and Thompson(1992) found that the best result in the neutral
PBL is obtained by interpolation of squared reciprocals. The
Blackadar’s method immediately involvesH . It can be fur-
ther developed to an expression in terms of large-scale vari-
ablesN ,f andUg.

There is also another method possible. It does not change
l. It proposes a linear combination of an additional non-local
term and the log-law (Zilitinkevich et al., 2002). The method
will be referred to as the Zilitinkevich’s method.

4.1 Empirical relation

Figure5 reveals thatCLES
Dn systematically deviates from the

value predicted by Eq. (7). One can assume thatl/H is a
logarithmic function ofz/H . The author’s attempts to find
an empirical form for this function have resulted in an ex-
pression with at least three empirical constants. This ex-
pression gave an integral in a slowly converging series of
(ln(H/λ0))

n, wheren=0, −1, . . .. This is apparently not a
constructive approach. However, these attempts suggested a
possible form of an empirical relation betweenCDn andH ,
namely,

CE
Dn = CempCDn ln(ln(H/λ0)), (13)
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Fig. 7. The dependence ofCLES
Dn

/CH1
Dn

on the PBL depthH . CH1
Dn

is given by Eq. (15). Symbols and lines are the same as in Fig.5.

whereCemp=0.5 is an empirical constant andλ0=1 m is a
normalization length scale. This empirical relation is easy to
apply in practical LSMs but it does not have physical argu-
mentation behind.

4.2 Blackadar’s method

Blackadar(1962) incorporated the PBL depth into the log-
law by interpolating reciprocals

1

l
=

1

κzLSM
1

+
C1

κH
, (14)

whereC1 is a dimensionless constant, which accounts for
the relative significance of the external scaling. The original
Blackadar’s estimation gave too largeC1≈50. It has been
consequently reduced inHolt and Raman(1988), C1≈33,
and further inMason and Thompson(1992), C1≈7. In this
work, C1 is reduced even more. The best fit givesC1=3.
The same value was specified inBallard, Colding and Smith
(1991). Substitution of Eq. (14) into Eq. (2) and integration
gives

CH1
Dn =

 κ

C1z
LSM
1 /H + ln

(
zLSM

1
z0

)


2

. (15)

Figure 7 showsCLES
Dn normalized by the non-local scaling

in Eq. (15). There is considerably smaller systematic bias
of data in Fig.7 than in Fig.5. Equation (15) predicts the
values ofCLES

Dn with an accuracy of±20%. Equation (15) can
be seen as a direct implementation of the Monin-Obukhov
theory with a new universal function9nl(z/H)= − C1z/H .
Hence, Eq. (5) becomes

CD(z) =

(
C

−1/2
Dn − κ−19(z/L) − κ−19nl(z/H)

)−2
. (16)
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Fig. 8. The dependence ofCLES
Dn

/CH2
Dn

on the PBL depthH . CH2
Dn

is given by Eq. (18). Symbols and lines are the same as in Fig.5.

This parameterization works as well for the deep PBL
capped with a weak inversion as it does for the shallow and
very shallow PBLs capped with a strong inversion. Equa-
tion (15) recovers Eq. (7) only whenH→∞. This is phys-
ically inconsistent as it should recover the classicalCDn-
parameterization atH given by Eq. (8).

Direct accounting for the equilibrium depth of the Ekman
layer is problematic. However, it suggests that theMason
and Thompson(1992) length scale will probably work better.
This mixing length scale reads(

1

l

)2

=

(
1

κzLSM
1

)2

+

(
C2

κH

)2

. (17)

The best fit for the empirical constantC2 is 2.4. It is perhaps
also possible to adoptC1=C2. Substitution of Eq. (17) into
Eq. (2) with integration gives

CH2
Dn =

 κ

Y − 1 + ln

(
zLSM

1
z0

2
Y+1

)


2

, where (18)

Y=

1+

(
C2z

LSM
1

H

)2
1/2

.

Figure 8 showsCLES
Dn normalized by the non-local scaling

in Eq. (18). There is noticeable improvement in theCDn

prediction, especially for largeH . The overall accuracy of
the prediction is still about±20%.

Unfortunately, one cannot use Eq. (15) and Eq. (18) in the
LSMs directly. These expressions contain the unknown pa-
rameterH . To expressH in terms of resolved variables and
boundary conditions, one can involve Eq. (10). In this equa-
tion, u∗ is also unknown parameter. One can assume thatu2

∗

is the surface turbulent stress, which is induced by the mean
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Fig. 9. The dependence ofCLES
Dn

/CG1
Dn

on the PBL depthH . CG1
Dn

is given by Eq. (19). Symbols and lines are the same as in Fig.5.

wind in a deep PBL. Implicitly, it assumes that the effect of
the large eddies is entirely accounted for throughZn. This
is a strong assumption but it allows one to use the classical
log-law from Eq. (7) for elimination ofu∗. This assumption
also demands that one changes the values of constantsC0,
C1 andC2. After the substitution, Eq. (15) and Eq. (18) read

CG1
Dn =

 κ

C∗

1zLSM
1 H−1

u + ln

(
zLSM

1
z0

)


2

, (19)

CG2
Dn =

 κ

Yu − 1 + ln

(
zLSM

1
z0

2
Yu+1

)


2

, where (20)

Yu=

1+

(
C∗

2zLSM
1

Hu

)2
1/2

,

Hu=
(1 + C∗

0Zn)
1/2

|f | ln( z
z0

)

κCRUg

.

The empirical constants areC∗

1=2, C∗

2=2.5, C∗

0=9 in
Eq. (19) andC∗

0=2 in Eq. (20). Certainly, other values of
these constants are possible, since changes inC∗

1, C∗

2 com-
plement changes inC∗

0 . Figures9 and10showCLES
Dn normal-

ized by Eq. (19) and Eq. (20). The comparison of Figs.7, 8, 9
and10reveals that the above assumptions are surprisingly ro-
bust. Indeed,CG1

Dn predictsCDn values even better than the
original formulationCH1

Dn . The data scatter is noticeably re-
duced in Fig.9. The overall accuracy of theCG1

Dn expression
is about±10%. This is within the accuracy of calculations
of CLES

Dn . Moreover, it is generally better than the accuracy of
atmospheric measurements over complex surfaces. TheCG2

Dn
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Fig. 10.The dependence ofCLES
Dn

/CG2
Dn

on the PBL depthH . CG2
Dn

is given by Eq. (20). Symbols and lines are the same as in Fig.5.

expression exhibits larger data scatter. Its overall accuracy is
±20%.

The major problem of the Blackadar’s method is that it
does not recover the classicalCDn-parameterization in the
limit Zn→0 exactly. The inconsistency is small. Neverthe-
less, a more consistent method is still desirable.

4.3 Zilitinkevich’s method

The above-mentioned inconsistency does not appear in Zil-
itinkevich’s method. The method is based on the idea that
the increasing temperature flux modifies the velocity profile
above the surface layer. This modification is similar to the
modification of the velocity profile in the Monin-Obukhov
similarity theory. The only difference is that the tempera-
ture flux is not due to surface cooling but due to PBL top
warming. Mathematically, one can write (Zilitinkevich et al.,
2002)

d|u(z)|

dz
=

u∗

κz
+ auZn|f |, (21)

where au=0.35 is an empirical constant. Integration of
Eq. (21) gives a modified expression for the turbulent fric-
tion velocity

u∗ =
κ(|u(zLSM

1 )| − auz
LSM
1 Zn|f |)

ln

(
zLSM

1
z0

) . (22)

Substitution of Eq. (22) into Eq. (7) results in

CZ
Dn = CDn

(
1 −

auZn|f |zLSM
1

|u(zLSM
1 )|

)2

. (23)

One can define a new correction function
F nl

M =(1−auZnRo−1)2, where Ro=|u(z)|/|f |z is the
local Rossby number. Hence, Eq. (6) becomes

CD(z)=CDnFM(Ri)F nl
M (Zn; Ro). (24)
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Fig. 11. The dependence ofCLES
Dn

/CZ
Dn

on the PBL depthH . CZ
Dn

is given by Eq. (23). Symbols and lines are the same as in Fig.5.

This expression recovers the classicalCD-
parameterization in the limitZn→0.

Figure11 showsCLES
Dn normalized by Eq. (23). Zilitinke-

vich’s method is rather accurate; its accuracy is about±10%
within a typical range of the atmosphericH .

It is also possible to rewrite Eq. (23) in terms of the
geostrophic wind speed,Ug. The expression reads

CZG
Dn = CDn

(
1 −

auZn|f |zLSM
1

Ug

)2

. (25)

Figure12 showsCLES
Dn normalized by Eq. (25), an equation

that Eq. (25) works slightly worse than Eq. (23); however,
the accuracy is still within±20%.

4.4 Significance of improvements

A number of field measurements (Tjernstr̈om and Smedman,
1993) reveals that the near-neutral atmospheric PBL is usu-
ally quite shallow. The typical range of the atmosphericH

is from 200 m to 600 m. The near-neutral PBL can be even
more shallow in the case of a slow geostrophic wind. It is
worth mentioning that this study involves LES runs withUg

ranging from 1 m s−1 to 15 m s−1. The PBL depth was just
about 40 m atUg=1 m s−1 andZn=100. Figure5 shows
the deviation of the actualCLES

Dn from the predictedCDn in
the classical parameterization. The deviation becomes sig-
nificant atH<600 m for the coarse resolution LSMs and at
H<200 for the fine resolution LSMs. This fact generally
corroborates the common assumption thaths≈0.1H . As a
matter of fact, the surface layer in LES is deeper than the
atmospheric surface layer. This is due to a smaller effective
Reynolds number of LES. One can argue that the discrep-
ancy between actual and predictedCDn is even larger in the
atmospheric PBL.

Figure13 shows the ratio of the improved parameteriza-
tions of the surface drag coefficients,CG1

Dn, CG2
Dn, CE

Dn and
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Dn

/CZG
Dn

on the PBL depthH . CZ
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is given by Eq. (25). Symbols and lines are the same as in Fig.5.

CZ
Dn to the classical parameterization by Eq. (7). The ratio

is close to unity in the deep PBLs (smallZn) but it rapidly
decreases in the shallow PBLs (largeZn). The improved
parameterizations predict significantly smaller turbulent ex-
change in the LSMs. For instance, the turbulent exchange
can be reduced by 20%–30% under typical atmospheric con-
ditions in the LSM.

5 Conclusions

Modern large-scale meteorological models parameterize the
turbulent exchange between the first computational level in
the atmosphere and the underlying surface using a concept
of the surface drag coefficients. This concept assumes the
existence of a layer of constant fluxes. In this layer, the mean
velocity profile is logarithmic. Assuming the first computa-
tional level in the LSMs is placed within this layer, one can
derive a very simple classical parameterization of the surface
drag coefficients given by Eq. (7).

Direct atmospheric measurements and LES data revealed
that the conventionally neutral PBL is usually much more
shallow than the idealized Ekman layer. The equilibrium
depth of the conventionally neutral PBL is strongly reduced
by the ambient stratification of the free atmosphere above
the PBL. This has been noticed by Csanady and explained in
Zilitinkevich’s theory of the non-local turbulence. The the-
ory has also gained strong support from LES. The modern
LSMs usually have a rather coarse vertical resolution. Hence,
the LSMs may have the first computational level well above
the log-layer in the realistic near-neutral PBL. The discrep-
ancy between the parameterized and actualCDn andCD can
be significant. The classical parameterization systematically
overestimates the turbulent exchange in the modern LSMs by
20%–30%.

It is possible to improve the parameterization of the sur-
face drag coefficient. The improved parameterization must
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Fig. 13. Significance of the improvements. The curves show
the ratio between the improved and classical parameterizations.
Panel (a) shows theoretical dependences: —CE

Dn
/CDn; – – –

CH1
Dn

/CDn; – · – CH2
Dn

/CDn. Panel(b) shows practical expres-

sions: —CG1
Dn

/CDn; – – –CG2
Dn

/CDn; – · – CZ
Dn

/CDn. Param-

eters for calculation wereUg=10 m s−1, z=50 m., z0=0.1 m.,
f =10−4 s−1. All non-dimensional coefficients were as in text.

account for the non-local effect of the ambient atmospheric
stratification. The effect can be quantified using the Zilitinke-
vich number,Zn.

To do this, two methods have been used. Blackadar’s
method is based on the redefinition of the mixing length
scale,l, in the log-law. Zilitinkevich’s method is based on
the redefinition of the log-law itself. Both methods resulted
in considerable improvements in the prediction of the surface
drag coefficient, especially in the very shallow PBLs. How-
ever, the new parameterizations are not perfect. They still
show irregular scatter of the actual values ofCDn around
its predicted values. The best accuracy gives Eq. (19). In
this case, the scatter is only±10%. Further improvements
require an LES of significantly better resolution in the sur-
face layer. Equation (25) in Zilitinkevich’s method gives
comparably accurate parameterization. This equation is also
more mathematically consistent. It recovers the classical
CD-parameterization in both limitsZn→0 andz→0.
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