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Abstract. We consider the effect of field-aligned voltages
on the magnetosphere-ionosphere coupling current system
associated with the breakdown of rigid corotation of equa-
torial plasma in Jupiter’s middle magnetosphere. Previous
analyses have assumed perfect mapping of the electric field
and flow along equipotential field lines between the equa-
torial plane and the ionosphere, whereas it has been shown
that substantial field-aligned voltages must exist to drive the
field-aligned currents associated with the main auroral oval.
The effect of these field-aligned voltages is to decouple the
flow of the equatorial and ionospheric plasma, such that their
angular velocities are in general different from each other.
In this paper we self-consistently include the field-aligned
voltages in computing the plasma flows and currents in the
system. A third order differential equation is derived for the
ionospheric plasma angular velocity, and a power series so-
lution obtained which reduces to previous solutions in the
limit that the field-aligned voltage is small. Results are ob-
tained to second order in the power series, and are compared
to the original zeroth order results with no parallel voltage.
We find that for system parameters appropriate to Jupiter the
effect of the field-aligned voltages on the solutions is small,
thus validating the results of previously-published analyses.

Keywords. Magnetospheric physics (current systems;
magnetosphere-ionosphere interactions; planetary magneto-
spheres)

1 Introduction

The physics of Jupiter’s middle magnetosphere is dominated
by the source of sulphur and oxygen plasma originating
from the moon Io (e.g. Siscoe and Summers, 1981; Hill
et al., 1983; Belcher, 1983; Vasyliunas, 1983; Bage-
nal, 1994; Delamere and Bagenal, 2003). Particle pick-up
and centrifugally-driven outflow result in sub-corotation of
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this plasma, which bends the field lines out of magnetic
meridian planes, and sets up the large-scale current sys-
tem shown in Fig. 1 (Hill, 1979; Huang and Hill, 1989;
Dougherty et al., 1993; Pontius, 1997; Bunce and Cow-
ley, 2001; Khurana, 2001). This current system commu-
nicates atmospheric torque to the magnetospheric plasma,
and is directed equatorward in the ionosphere, radially out-
ward in the equatorial plane, and closes via field-aligned
currents flowing outward in the inner region and inward in
the outer region. Current calculations were performed for a
dipole field by Hill (2001), and for both a dipole and cur-
rent sheet field by Cowley and Bunce (2001), Cowley et
al. (2002, 2003), and Nichols and Cowley (2003). For plasma
mass outflow rates of∼1000 kg s−1 and ionospheric Peder-
sen conductivities of a few tenths of a mho, the peak upward
field-aligned currents in the ionosphere were calculated to
be a few tenths of aµA m−2, in agreement with empiri-
cal estimates based on magnetospheric magnetic field data
(Bunce and Cowley, 2001; Khurana, 2001). Bunce and Cow-
ley (2001) and Cowley and Bunce (2001) also showed that
in the tenuous high-latitude Jovian environment such field-
aligned currents exceed those that can be carried by precipi-
tating hot magnetospheric electrons, thus requiring the exis-
tence of field-aligned voltages. These were computed using
Knight’s (1973) kinetic theory, with electron source plasma
parameters derived from Voyager data. The calculations of
Cowley and Bunce (2001) and Cowley et al. (2002, 2003)
yielded field-aligned voltages of∼25–100 kV for typical pa-
rameters, sufficient to produce precipitating electron energy
fluxes of up to several tens of mW m−2, thus leading to ‘main
oval’ auroras of up to several hundred kR in brightness, com-
parable to observed intensities (e.g. Satoh et al., 1996; Prangé
et al., 1998; Clarke et al., 1998; Vasavada et al., 1999; Pal-
lier and Pranǵe, 2001; Grodent et al., 2003). Most recently,
Nichols and Cowley (2004) have also self-consistently in-
cluded the effect of precipitation-induced enhancement of
the ionospheric Pedersen conductivity.

One key feature of all these calculations, however, is
the assumption of perfect mapping of the electric field and
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Fig. 1. Sketch of a meridian cross section through Jupiter’s inner and middle magnetosphere, showing the principal physical features
involved. The arrowed solid lines indicate magnetic field lines, the arrowed dashed lines the magnetosphere-ionosphere coupling current
system, and the dotted region the rotating disc of out-flowing iogenic plasma (From Cowley and Bunce, 2001).

plasma flow along equipotential field lines between the equa-
torial plane and the ionosphere. The associated field-aligned
voltages were then calculated from the field-aligned cur-
rent using Knight’s (1973) theory. In principle, however,
the field-aligned voltage modifies the mapping of the elec-
tric field, and hence the plasma flow, between the two re-
gions. This lack of internal consistency was discussed briefly
by Cowley and Bunce (2001), who argued that the effect
is likely to be small, since field-aligned voltages of∼25–
100 kV are small compared with field-perpendicular voltages
across the middle magnetosphere of the order of several MV.
However, to date no self-consistent calculation has been per-
formed which quantifies the effect of the parallel voltage on
the flow and current system, such that this argument has re-
mained untested. In view of the significance of these pro-
cesses for Jovian middle magnetosphere physics, it is impor-
tant to quantify these effects within a self-consistent calcu-
lation, and hence to determine whether previously-presented
results are indeed valid. In this paper we derive a theory
which, for the first time (to our knowledge), self-consistently
incorporates the field-aligned voltage into the calculation.
This theory is then applied to the Jovian middle magneto-
sphere, and results are compared with those previously de-
rived.

2 Governing equations

In this section we summarise the equations which gov-
ern the system, the main new feature being the self-
consistent inclusion of the field-aligned voltage calculated
from Knight’s (1973) kinetic theory. In other aspects,
however, the analysis follows those given previously by
Hill (1979, 2001), Pontius (1997), Cowley et al. (2002,
2003), and Nichols and Cowley (2003), such that only the
main results will be outlined, together with the approxima-
tions and assumptions made. We begin with a description of

the magnetic field model which serves as the essential back-
ground to the problem.

2.1 Magnetic field model

The magnetic field model is that used previously by Nichols
and Cowley (2004). The field is assumed to be axi-
symmetric, as appropriate to Jupiter’s middle magneto-
sphere, such that the poloidal components can be described
by a flux functionF (ρ, z), related to the magnetic field by

B =

(
1

ρ

)
∇F × ϕ̂, (1)

whereρ is the perpendicular distance from the magnetic axis,
z is the distance along this axis from the magnetic equator,
andϕ is the azimuthal angle. FunctionF is then constant
along a given field line, such that mapping between the equa-
torial plane and the ionosphere is obtained simply from writ-
ing Fe=Fi . Assuming the ionospheric field is purely dipolar
and neglecting any small effects due to magnetospheric cur-
rents, the ionospheric flux function is

Fi = BJ ρ2
i = BJ R2

J sin2 θi, (2)

whereBJ is the dipole equatorial magnetic field strength
(equal to 426 400 nT in conformity with the VIP 4 internal
field model of Connerney et al., 1998),RJ is Jupiter’s radius
(71 323 km),ρi is the perpendicular distance from the mag-
netic axis, andθi is the magnetic co-latitude. The absolute
value ofF is fixed by settingF=0 on the magnetic axis. The
flux function in the equatorial plane is found by integrating

Bze =
1

ρe

dFe

dρe

, (3)

whereBze is the north-south magnetic field threading the
equatorial plane

Bze(ρe) = −

{
Bo

(
RJ

ρe

)3

exp

[
−

(
ρe

ρeo

)5/2
]

+ A

(
RJ

ρe

)m
}

, (4a)
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where Bo=3.335×105 nT, ρeo=14.501 RJ , A=5.4×104 nT,
andm=2.71. This field is close to that employed by Cowley
and Bunce (2001) and Cowley et al. (2002, 2003), who used
the ‘Voyager-1/Pioneer-10’ model of Connerney et al. (1981)
(the ‘CAN’ model) in the inner region, and the Voyager-1
model of Khurana and Kivelson (1993) (the ‘KK’ model) at
large distances. The second term in Eq. (4a) is simply the
latter model, while the first is a modified dipole field. The
corresponding equatorial flux function is

Fe (ρe) = F∞ +
BoR

3
J

2.5ρeo
0

[
−

2

5
,

(
ρe

ρeo

)5/2
]

+
A

(m − 2)

(
RJ

ρe

)m−2

, (4b)

whereF∞≈2.841×104 nT R2
J is the value of the flux func-

tion at infinity, and0(a,z) is the incomplete gamma function

0 (a, z) =

∞∫
z

ta−1e−tdt . The ionospheric mapping between

the equatorial plane and the ionosphere is then given from
Eq. (2) by

sinθi =

√
Fe (ρe)

BJ R2
J

, (5)

such that the field line passing through the equatorial plane
at the outer edge of the model at 100 RJ maps to∼15.7◦ in
the ionosphere. Figure 2 shows|Bze|, Fe, andθi versusρe,
over the range 0 to 100 RJ . The solid lines show the above
model, while the long-dashed lines show the dipole values
for comparison. The dotted lines in panel (a) also show the
values for the CAN/KK models, which are projected beyond
their intersection for ease of visibility. The horizontal dotted
lines in panels (b) and (c) show the asymptotic values ofFe

andθi at large distances.

2.2 Magnetosphere-ionosphere decoupling by field-
aligned voltages

The primary new feature of this calculation is the self-
consistent inclusion of the field-aligned voltage in the map-
ping of the electric field and flow between the magnetosphere
and ionosphere. It is convenient to use the flux functionF

as the spatial coordinate, such that the equatorial and iono-
spheric plasma angular velocities and the field-aligned volt-
age are given by the functionsωe (F ), ωi (F ) and8‖ (F ),
respectively. We assume a steady flow, such that the elec-
tric field E=−v×B can be described by a scalar poten-
tial 8 throughE=−∇8. Using Eq. (1) we then find that
∇8=ω∇F , such that

ωe (F ) =
d8e (F )

dF
(6a)

and

ωi (F ) =
d8i (F )

dF
. (6b)

Taking the field-aligned voltage to be positive when the iono-
sphere has a higher potential than the equator (the case for
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Fig. 2Fig. 2. Plots showing the parameters of the current sheet field model
employed in this paper (solid lines) compared with values for the
planetary dipole field alone (dashed lines). Plot(a) is a log-linear
plot of the modulus of the north-south component of the equatorial
magnetic field|Bze| in nT threading the equatorial plane, shown
versus Jovicentric equatorial radial distanceρe. We note that the
actual values are negative (i.e. the field points south). The solid line
shows the field model employed in this paper, given by Eq. (4a),
which is based on the CAN-KK model of previous papers. The
dotted lines show the CAN and KK models themselves, plotted be-
yond their intersection for ease of visibility. Plot(b) similarly shows
the equatorial flux function of the model fieldFe in nT R2

J
versus

Jovicentric equatorial radial distanceρe, given by Eq. (4b). The
horizontal dotted line shows the value of the flux function at infin-
ity F∞. Plot (c) shows the mapping of the field lines between the
equatorial plane and the ionosphere, determined from Eq. (4). The
ionospheric co-latitude of the field lineθi is plotted versus Jovicen-
tric equatorial radial distanceρe. The horizontal dotted line shows
the ionospheric co-latitude of the field line which maps to infinity
in the equatorial plane for the current sheet field model.

upward-directed electric field and downward precipitating
electrons), then

8i (F ) = 8e (F ) + 8‖ (F ) . (7)
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Differentiating with respect toF and combining with
Eqs. (6a, b) yields

ωi (F ) = ωe (F ) +
d8‖ (F )

dF
. (8)

This is the equation which relates the ionospheric and equa-
torial angular velocities in the presence of a field-aligned
voltage, and which we refer to as the magnetosphere-
ionosphere decoupling equation.

We must also specify how8‖ depends on the conditions
present in the magnetosphere. Here, in common with previ-
ous work, we use Knight’s (1973) kinetic theory. This gives
the field-aligned voltage required to drive a field-aligned cur-
rentj‖i that exceeds the maximum valuej‖io, that can be car-
ried by unaccelerated precipitating magnetospheric electrons
alone. For an isotropic Maxwellian electron source popula-
tion of densityN and thermal energyWth (equal tokTe), j‖io
is

j‖io = eN

(
Wth

2πme

)1/2

. (9)

Under the usual simplifying assumptions (e.g. Cowley and
Bunce, 2001), the minimum field-aligned voltage required to
drive a current greater thanj‖io is then

8‖

(
j‖i

)
=

Wth

e

[(
j‖i

j‖io

)
− 1

]
. (10)

In principle,8‖ will vary with F on differing flux shells due
to variations in the source parametersN and Wth. How-
ever, in the absence of detailed models, here we employ
constant values based on Voyager data, i.e.N=0.01 cm−3

andWth=2.5 keV, as used in our previous papers (Scudder
et al., 1981). In this case8‖ varies withF due to variations
in j‖i only. Substitution of Eq. (10) into Eq. (8) then gives

ωi (F ) = ωe (F ) +
Wth

ej‖io

dj‖i

dF
. (11)

This equation is strictly valid only forj‖i≥j‖io. However,
this condition is met essentially everywhere in the middle
magnetosphere, except in the innermost region where the
field-aligned current drops to small values. Here, therefore,
we assume that Eq. (11) is valid for allj‖i>0, i.e. throughout
the middle magnetosphere. This is equivalent to making the
approximation

8‖

(
j‖i

)
≈

Wth

e

(
j‖i

j‖io

)
(12)

in Eq. (10). We also note that the corresponding precipitating
energy flux of accelerated electrons is

Ef =
Ef o

2

[(
j‖i

j‖io

)2

+ 1

]
≈

Ef o

2

(
j‖i

j‖io

)2

, (13)

a result due to Lundin and Sandahl (1978). In this expression
Ef o is the precipitating energy flux of unaccelerated mag-
netospheric electrons corresponding to field-aligned current
j‖io, given by

Ef o = 2NWth

(
Wth

2πme

)1/2

. (14)

2.3 Current circuit equations

We now outline the calculation of the current system compo-
nents illustrated in Fig. 1. This is essentially the same as that
given previously by Hill (2001), Cowley and Bunce (2001),
Cowley et al. (2002, 2003) and Nichols and Cowley (2003,
2004), except that we now specifically use the ionospheric
plasma angular velocityωi to derive the ionospheric electric
field in the rest frame of the neutral atmosphere, and hence
the Pedersen and field-aligned currents. The equatorward-
directed height-integrated Pedersen current is then

iP = 26P

(
�∗

J − ωi

)
ρiBJ = 26∗

P (�J − ωi) ρiBJ , (15)

where�∗

J is the angular velocity in the inertial frame of the
neutral atmosphere in the Pedersen layer, which is reduced
from the planet’s angular velocity�J (1.76×10−4 rad s−1)
due to ion-neutral collisional drag. This slippage can be pa-
rameterised by the factork defined by(
�J − �∗

J

)
= k (�J − ωi) , (16)

as introduced by Huang and Hill (1989). The value ofk is not
well known at present, but recent modelling suggestsk≈0.5
under Jovian auroral conditions (Millward et al., 2004). Pa-
rameter6∗

P in Eq. (15) is the effective value of the height-
integrated Pedersen conductivity, related to the true value6P

by 6∗

P = (1−k)6P . In deriving Eq. (15) we have also as-
sumed that the polar magnetic field is vertical and equal to
2BJ in strength.

Current continuity in the circuit shown in Fig. 1 requires
ρeiρ=2ρi iP , taking into account both northern and southern
hemispheres, such that the equatorial radial currentiρ is

iρ =
46∗

P F (�J − ωi)

ρe

, (17)

where we have usedF=BJ ρ2
i on a flux shell from Eq. (2).

We hence find that the total radial current, integrated in az-
imuth, is

Iρ = 2πρeiρ = 8π6∗

P �J F

(
1 −

ωi

�J

)
, (18)

which is equal, of course, to twice the azimuth-integrated
Pedersen current in each conjugate ionosphereIP . The field-
aligned current density is then calculated from the divergence
of eitherIρ or IP . Using the former, we have

j‖i = −
BJ

2π

dIρ

dF
= −46∗

P BJ �J

d

dF

[
F

(
1 −

ωi

�J

)]
, (19)

which is the parallel current to be substituted into Eq. (11).
Note that in deriving Eq. (19) we have assumed for simplicity
that6∗

P is a constant quantity.

2.4 Conservation of angular momentum (the Hill-Pontius
equation)

The analysis is completed by consideration of conservation
of angular momentum of the equatorial plasma. Following
Hill (1979) and Pontius (1997), this is described by

d

dF

(
ρ2

e

ωe

�J

)
= −

Iρ

Ṁ�J

, (20)
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whereṀ is the iogenic plasma mass outflow rate, also as-
sumed to be a constant. Substitution of Eq. (18) into Eq. (20)
then yields the modified ‘Hill-Pontius’ equation

d

dF

(
ρ2

e

ωe

�J

)
= −

8π6∗

P F

Ṁ

(
1 −

ωi

�J

)
, (21)

where we note that the LHS now specifically containsωe,
the angular velocity of the equatorial plasma, while the RHS,
representing the ionospheric torque on the equatorial plasma,
containsωi .

2.5 Governing equation of the self-consistent problem

There are three equations to be solved; the decoupling
equation incorporating Knight’s (1973) theory Eq. (11),
Eq. (19) for the parallel current, and the Hill-Pontius equa-
tion Eq. (21). Substitution of Eq. (19) into Eq. (11) yields

ωe

�J

=
ωi

�J

+
46∗

P BJ Wth

ej‖io

d2

dF 2

[
F

(
1 −

ωi

�J

)]
. (22)

We thus introduce the dimensionless parameterε given by

ε =
46∗

P Wth

ej‖ioR
2
J

, (23)

which for typical Jovian parameters6∗

P =0.1 mho,
j‖io≈0.01µA m−2, and Wth=2.5 keV, for example, has
the valueε≈1.5×10−5. Since the first term in the differen-
tial vanishes, Eq. (22) then becomes

ωe

�J

=
ωi

�J

− εBJ R2
J

d2

dF 2

(
F

ωi

�J

)
, (24)

where we note that all previous papers cited above have em-
ployed the limitε→0, such thatωe→ωi . Substitution of
Eq. (24) into the Hill-Pontius equation Eq. (21) finally yields
the governing equation forωi

d

dF

(
ρ2

e

ωi

�J

)
= −

8π6∗

P F

Ṁ

(
1 −

ωi

�J

)
+εBJ R2

J

d

dF

[
ρ2

e

d2

dF 2

(
F

ωi

�J

)]
. (25)

This is a third order linear inhomogeneous equation forωi ,
from whichωe can be obtained from Eq. (24), and the cur-
rent system and field-aligned voltage from Eqs. (18), (19)
and (12).

2.6 Series solution of the governing equation

The general solution of Eq. (25) is the sum of a complemen-
tary function which solves the homogeneous equation and
contains three arbitrary constants, plus some particular inte-
gral. The physical solution which we require here, however,
is the particular integral which reduces to our previous solu-
tions in the limitε→0. This solution may be obtained as a
power series inε(

ωi

�J

)
=

∞∑
n=0

εn

(
ωi

�J

)
(n)

, (26)

where each coefficient(ωi/�J )(n) is a function ofF . Sub-
stitution of Eq. (26) into Eq. (25) gives

d

dF

(
ρ2

e

∞∑
n=0

εn

(
ωi

�J

)
n

)
=

−
8π6∗

P F

Ṁ

(
1 −

∞∑
n=0

εn

(
ωi

�J

)
n

)

+BJ R2
J

d

dF

[
ρ2

e

d2

dF 2

(
F

∞∑
n=0

εn+1
(

ωi

�J

)
n

)]
, (27)

from which the required functions are found by equating
terms of the same power ofε. For the zeroth ordern=0,
we have

d

dF

[
ρ2

e

(
ωi

�J

)
(0)

]
= −

8π6∗

P F

Ṁ

[
1 −

(
ωi

�J

)
(0)

]
, (28)

which is just the Hill-Pontius equation solved in previous
papers. The solution required is the particular integral for
which (ωi/�J ) →1 as ρe→0, i.e. for which the plasma
rigidly corotates at small distances. Forn≥1 we have

d

dF

[
ρ2

e

(
ωi

�J

)
(n)

]
=

8π6∗

P F

Ṁ

[(
ωi

�J

)
(n)

]
+

BJ R2
J

d

dF

{
ρ2

e

d2

dF 2

[
F

(
ωi

�J

)
(n−1)

]}
, (29)

which is a first order linear inhomogeneous equation
for (ωi/�J )(n), in which the inhomogeneous term con-
tains the derivative of the solution of the previous order,
(ωi/�J )(n−1). The solutions required of these equations
are the particular integrals which satisfy(ωi/�J )(n) →0 as
ρe→0 for all n≥1. In principle, we can then solve Eqs. (28)
and (29) in sequence to any desired order inε. Here we will
obtain solutions up to second order,n=2.

The other parameters of interest are obtained by substitu-
tion of Eq. (26) into the appropriate equation and equating
powers ofε. Thus, forωe we obtain from Eq. (24)(

ωe

�J

)
(0)

=

(
ωi

�J

)
(0)

, (30a)

and forn ≥1(
ωe

�J

)
(n)

=

(
ωi

�J

)
(n)

− BJ R2
J

d2

dF 2

[
F

(
ωi

�J

)
(n−1)

]
. (30b)

The total radial and field-aligned currents follow from
Eqs. (18) and (19), respectively. The former is given by the
power series

Iρ =

∞∑
n=0

εnIρ(n), (31a)

where

Iρ(0) = 8π6∗

P �J F

[
1 −

(
ωi

�J

)
(0)

]
, (31b)
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Fig. 3Fig. 3. Plots of the sums of the first and second order terms
in the series solutions for(a) the normalised equatorial (dashed
line) and ionospheric (solid line) plasma angular velocities,(b) the
total azimuth-integrated equatorial radial current in MA, and(c)
the ionospheric field aligned current inµA m−2, all plotted ver-
sus equatorial radial distance (with ionospheric parameters being
mapped along field lines). The system parameters employed were
6∗

P
=0.1 mho andṀ=1000 kg s−1, with magnetospheric electron

source parametersN=0.01 cm−3 andWth=2.5 keV.

and forn≥1

Iρ(n) = −8π6∗

P �J F

(
ωi

�J

)
(n)

. (31c)

The field-aligned current is similarly given by

j‖i =

∞∑
n=0

εnj‖i(n)
, (32a)

where

j‖i(0) = −46∗

P BJ �J

d

dF

{
F

[
1 −

(
ωi

�J

)
(0)

]}
, (32b)

and forn≥1

j‖i(n) = 46∗

P BJ �J

d

dF

[
F

(
ωi

�J

)
(n)

]
. (32c)

Since from Eqs. (12) and (19) we can write

8‖ =

∞∑
n=0

εn8‖(n) ≈ ε
R2

J j‖i

46∗

P

= −εBJ R2
J �J

d

dF

[
F

(
1 −

ωi

�J

)]
(33a)

in the approximation employed here, we have on substituting
Eq. (26) for(ωi/�J )

8‖(0) = 0, (33b)

i.e. to lowest order the parallel voltage is zero as in previous
published solutions, while

8‖(1) = −BJ R2
J �J

d

dF

{
F

[
1 −

(
ωi

�J

)
(0)

]}
, (33c)

and forn≥2

8‖(n) = BJ R2
J �J

d

dF

[
F

(
ωi

�J

)
(n−1)

]
. (33d)

Hence, if we evaluate(ωi/�J ) and(ωe/�J ) to second or-
der, for example, we can determine the parallel voltage to
third order, etc.

With regard to the precipitating energy flux, we have from
Eqs. (12) and (13)

Ef ≈
Ef o

2

(
e8‖

Wth

)2

. (34)

Thus we expressEf to the same order as8‖, such that if we
determine the plasma flows to a given order, we can compute
the precipitating energy flux to the next highest order.

3 Results

We now present the results of numerical evaluation of the
equations in Sect. 2, in order to assess the significance of the
effects of field-aligned voltages under typical Jovian condi-
tions. We have used typical values of the system param-
eters6∗

P =0.1 mho andṀ=1000 kg s−1, along with mag-
netospheric electron source parametersN=0.01 cm−3 and
Wth=2.5 keV. For these values we findε≈1.5×10−5, as indi-
cated above, which is small, such that a power series solution
in ε seems appropriate. In Fig. 3 we show the sum of first and
second order terms of the series solution for the plasma angu-
lar velocity, the azimuth-integrated equatorial radial current,
and the ionospheric field-aligned current, all plotted versus
distance in the equatorial plane (ionospheric quantities being
mapped along the field lines). These represent the amounts
by which the previously-published zeroth order solutions are
modified by the inclusion of field-aligned voltages (hence
the “1” notation on the vertical axis labels). The solid line
in Fig. 3a shows the change in ionospheric angular velocity
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parameters. All parameters are plotted versus equatorial radial distanceρe. For comparison, the zeroth order solution alone is shown by
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(1ωi/�J ) calculated from Eq. (29), while the long-dashed
line similarly shows the change in the equatorial plasma an-
gular velocity(1ωe/�J ) obtained from Eq. (30b). It can
be seen that the ionospheric plasma angular velocity will be
modestly reduced in the region within∼35 RJ , and elevated
thereafter, while the angular velocity of the equatorial plasma
will be raised over most of the region. Using techniques in-
troduced by Nichols and Cowley (2003) (see their Eq. 7), it
is possible to show that to a first order inε the solutions for
smallρe are(

ωi

�J

)
' 1 −

Ṁ

4π6∗

P F |Bze|
− . . . (35a)

and(
ωe

�J

)
' 1 −

Ṁ

4π6∗

P F |Bze|
+

εṀ

4π6∗

P

BJ R2
J

d2

dF 2

(
1

|Bze|

)
− . . . . (35b)

That is, to a first order the ionospheric angular velocity, and
hence the current system, is unaffected by the field-aligned
voltages. This is because to the lowest order the currents
in the inner region are just such as to maintain rigid coro-
tation of the equatorial plasma, and may be deduced by
putting(ωe/�J ) =1 in the LHS of the Hill-Pontius equation,
Eq. (20). The equatorial angular velocity is modified to a first
order inε, however, falling less rapidly with distance than
when the effect of the field-aligned voltages are neglected.
The main point we wish to emphasise with regard to Fig. 3a,
however, is that for typical Jovian parameters, the changes
in the normalised angular velocity are small compared with
unity. The difference in angular velocity between the equa-
torial plane and the ionosphere due to field-aligned voltage
decoupling is typically a few thousandths of the planetary
angular velocity. Figure 3b similarly shows the sum of first
and second order terms for the azimuth-integrated equatorial
radial current1Iρ given by Eq. (31c). The profile essentially
mirrors that of the ionospheric angular velocity as expected,
such that the current is slightly raised within∼35 RJ and
decreased beyond. Figure 3c shows the sum of first and sec-
ond order terms for the field-aligned current1j‖i given by
Eq. (32c), mapped to the equatorial plane. It can be seen that
the field-aligned current is reduced over most of the middle
magnetosphere. We note that the rapid variations of these
profiles in the inner region results from theBze model used,
which exhibits rather sharp behaviour at∼20 RJ in the tran-
sition region between the dipolar form and the power law
(Fig. 2a). Such variations do not occur if a simple dipole
model is used, though the overall nature of the results re-
mains similar. We also note that the quantities shown in
Fig. 3 are dominated by the first order term, which for all
parameters is typically an order of magnitude larger than the
second order term.

The effect of including these terms on the overall solu-
tion for the angular velocity and currents is shown in Figs. 4
and 5. Figure 4 shows these parameters plotted versus radial
distance in the equatorial plane, while Fig. 5 shows profiles
mapped along field lines to the ionosphere and plotted ver-
sus co-latitude. The solid lines in the figures show the sums

of the zeroth, first, and second order terms for the angular
velocity and current parameters (i.e. the zeroth order terms
summed with the profiles shown in Fig. 3), while the short-
dashed lines show the zeroth order terms alone for compar-
ison. Figure 4 shows (a) the equatorial plasma angular ve-
locity (ωe/�J ), (b) the azimuth-integrated equatorial radial
currentIρ , (c) the ionospheric field-aligned currentj‖i , and
(d) a log-linear plot of the equatorial electrostatic potential
8⊥e computed from the equatorial plasma angular velocity
profiles shown in Fig. 4a using

8⊥e =

∫ F(100RJ )

F

ωe (F )dF, (36)

where the arbitrary zero of potential is taken to be at the
outer edge of the solution at 100 RJ . Also shown in Fig. 4d
is the field-aligned voltage8‖ computed from the respec-
tive orders of the plasma angular velocity using Eqs. (33c,
d), such that this is shown to first and third orders by the
dashed and solid lines respectively (recalling that the zeroth
order field-aligned voltage is zero). It can be seen directly
from these plots that the effect of the self-consistent inclu-
sion of the field-aligned voltage in the solution is small. The
equatorial angular velocity profiles (and hence the equato-
rial electrostatic potential profiles) are closely similar, such
that their difference cannot be distinguished on this scale,
while the magnitudes of the perpendicular and parallel cur-
rents are slightly reduced in the outer region, corresponding
to the negative values of1Iρ and1j‖i in Fig. 3. We also note
from Fig. 4d that the drop in8⊥e across the middle magne-
tosphere, between∼20 RJ and the outer edge of the model
at 100 RJ , is ∼3 MV. This is approximately two orders of
magnitude larger than8‖. This formed the basis of Cowley
and Bunce’s (2001) conjecture that the field-aligned voltage
would have little effect on the solutions, as is now confirmed
quantitatively here.

Figure 5 similarly shows the system parameters plotted
in the ionosphere versus co-latitude. Specifically, we show
(a) the ionospheric plasma angular velocity(ωi/�J ), (b)
the ionospheric field-aligned currentj‖i , (c) the field-aligned
voltage8‖ (also shown by the ‘lower’ line in Fig. 4d), and
(d) the precipitating energy fluxEf calculated from the field-
aligned voltages shown in Fig. 5c using Eq. (34). As with the
equatorial parameters, the effect of the higher order terms is
seen to be small. The difference between the ionospheric an-
gular velocity profiles is almost indistinguishable, while the
peaks in Figs. 5b, c and d are reduced in amplitude by values
approximately two orders of magnitude below the zeroth or-
der results, and are shifted equatorward by∼0.1◦, which is
small with respect to the∼2◦ width of the peaks.

4 Summary and conclusion

In this paper we have considered the magnetosphere-
ionosphere coupling current system that flows in Jupiter’s
middle magnetosphere, which is believed to be associated
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with the Jovian main auroral oval. Previous analyses have as-
sumed a perfect mapping of the electric field and flow along
equipotential field lines between the ionosphere and the mag-
netosphere, while it is known that substantial field-aligned
voltages must exist to drive the currents responsible for the
main oval auroras. Cowley and Bunce (2001) suggested that
the effect of the field-aligned voltages on the solutions would
not be great, but did not compute quantitative results. In
this paper we have self-consistently incorporated the field-
aligned voltages into the analysis of the system, such that
the plasma angular velocities in the magnetosphere and the
ionosphere are in general different, with consequences for
the currents flowing in the system. The field-aligned volt-
ages were incorporated using Knight’s (1973) kinetic theory,
and a third order linear inhomogeneous equation for the iono-
spheric plasma angular velocity was derived (Eq. 25) that can
be solved as a power series under appropriate conditions. The
zeroth order solution corresponds to those which have been
obtained previously, in which there is no decoupling between
the ionosphere and magnetosphere. Higher orders then intro-
duce decoupling due to field-aligned voltages, such that the
ionospheric and equatorial plasma angular velocity profiles
are modified, as are the resulting current profiles. Here the
solution has been taken to a second order. The results of nu-
merical evaluation show that, for parameters which are rep-
resentative of Jovian middle magnetosphere conditions, the
decoupling effect of the field-aligned voltages is small. The
equatorial and ionospheric plasma angular velocity profiles
differ by only a few thousandths of the planetary angular ve-
locity, while the currents, and hence the auroral parameters,
are slightly reduced in magnitude by up to a few percent. Our
most important conclusion, however, is that our calculations
have confirmed the essential validity of previously-published
results that did not self-consistently include the decoupling
effect of field-aligned voltages in the Jovian middle magne-
tosphere.
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