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Abstract. Milan et al. (2004) have recently reported on
close-range E region decameter size echoes that seem to be
relatively weak, have apparently unusually large aspect an-
gles, and possess Doppler shifts that are slow and are clearly
consistent with the ion drift of the medium as opposed to,
say, its electron drift or its ion-acoustic speed. We argue that
these irregularities are the result of a nonlinear wave conver-
sion process triggered by the nonlocal evolution of decameter
Farley-Buneman waves. According to this picture, structures
which have weak spontaneous growth rates and are initially
field-aligned undergo an evolution of their aspect angle that
results in a jump in the aspect angle at some point in time
and space. When this takes place, a rapid mode conversion
must follow, which takes energy away from a standard two-
stream signature and converts it either to a strongly damped
ion-acoustic mode or to a purely decaying mode, depending
on altitude.

Keywords. Ionosphere (auroral ionosphere; ionospheric
irregularities; plasma waves and instabilities)

1 Introduction

Milan et al. (2004) have used the SuperDARN chain of HF
radars (e.g.Greenwald et al., 1985) to study high-latitude
E region echoes. They found an unusual class of close-
range E region echoes from an apparent “high-aspect angle
irregularity region” (HAIR) that are relatively weak, have
unusually high aspect angles, and possess Doppler shifts
that are slow and are clearly consistent with the ion drift of
the medium as opposed to, say, its electron drift or its ion-
acoustic speed.

Milan et al.(2004) used an often-quoted approximation of
the root to the fluid dispersion relation in order to analyze
the results. We show here, however, that this formula is not
valid at the large aspect angles considered by the authors.

Correspondence to:J. Drexler
(josef@geology.cornell.edu)

While the resulting frequency appears to be valid, applying
the usual root of the fluid dispersion relation at large aspect
angles yields strong decay rates which are at odds with the
small growth rate approximation that was used to derive it.
However, when a dispersion relation valid at large aspect an-
gles is analyzed, it yields the solutions whichMilan et al.
(2004) expected, namely, modes that move at the ion drift
speed in the majority of cases. Nevertheless, this still leaves
one important question open, namely: one still has to figure
out how the HAIR modes have acquired their energy, since
they are purely decaying modes in the first place.

We propose here that the modes are fed by a nonlinear
mode-coupling mechanism triggered by the nonlocal evolu-
tion of slowly growing primary waves. We show that even
initially field-aligned structures evolve to non-zero aspect an-
gles, but that while the mode does not develop large aspect
angles as such, it will have a jump in the aspect angle. Even
when the aspect angle itself remains relatively small (less
than two degrees), this jump has properties that are entirely
equivalent to a large aspect angle case. In the nonlinear con-
text, our explanation for the HAIR echoes is similar to the
one that was advanced for the “type II” modes uncovered
years ago in the equatorial E region (Sudan et al., 1973), in
that the modes are linearly stable but are nevertheless excited
to detectable levels by nonlinear processes.

2 The roots of the dispersion relation

2.1 Nonlocal generalization of the dispersion equation

Drexler et al.(2002) have presented a nonlocal description
of Farley-Buneman waves based on a standard linearization
procedure which can be found in many papers (e.g.Sudan,
1983). The nonlocal effects came from having a variation
along the magnetic field of the various parameters that drive
the roots of the dispersion relation. Thus, in lieu of a paral-
lel wavevector (or aspect angle) description along the mag-
netic field (or z) direction, Drexler et al.(2002) used the
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Fig. 1. Panel(a): Profile of the high-aspect angle phase speedω/k seen by a ground-based observer (solid) and of the ion drift (dashed).
Panel(b): Corresponding plots of the normalized decay rateγ /k (solid), as well as of−νi/2 (dashed) and−k2

⊥
c2
s /νi (dash-dotted).

original spatial derivatives for thez direction, while still
Fourier analyzing the waves in the plane perpendicular to
the magnetic field. From this, they found the following lin-
earized partial differential equation in terms of the perturbed
densityδn/n0
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where∂/∂t ′=∂/∂t+ik⊥·vi represents the time derivative in
the frame of reference moving with the ions, at velocityvi .
The subscriptse and i refer to the electron and ion popu-
lations, respectively. The symbolsνj and �j are the col-
lision and cyclotron frequencies of speciesj , vd=ve−vi is
the relative electron-ion drift,cs is the ion-acoustic speed,
and90=(νeνi)/(�e�i).

This nonlocal description of E region irregularities al-
lowed Drexler et al.(2002) to describe how coupling with
the neutral background forces the instability to evolve in the
parallel direction. This coupling is associated with a corre-
sponding parallel group velocity that means waves can satu-
rate by moving through the unstable region until the growth
rate decreases to zero. This motion is similar to mecha-
nisms proposed originally byKaw (1972) andLee and Ken-
nel (1973), in a different context for the equatorial electro-
jet. In the present paper, we show that it is not only satura-
tion from a zero-growth condition that produces ion-acoustic
modes, but that shocks stemming from a nonlinear evolution
of the aspect angle can excite ion-acoustic modes as well.

2.2 The standard (local) dispersion relation and its roots

In the event that the collision frequency and/or the back-
ground temperature gradients can be neglected, we can use a
plane wave decomposition ofδn/n0 along thez-direction in
order to solve Eq.1. In that case, we immediately recover the

traditional Farley-Buneman dispersion relation for the com-
plex frequencyω′

c, namely,

ω′
c(ω
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(3)

2.3 The small9 limit

As far as an analysis of the roots of this dispersion relation
is concerned, it will be important to note below that a proper
perturbation scheme in terms of an expansion based on9�1
is the better way to recover the well-known so-called “small
growth rate approximation”, because the growth rate will not
in fact turn out to be small compared to the frequency for the
modes we are interested in. To this goal, we just rewrite the
previous equation as

9
(
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c2
s

)
+ iνi

(
ω′

c + 9ω′
c − k⊥·vd

)
= 0 (4)

If we now expand in terms of the small parameter9 we then
assume

ω′
c = ω0 + 9ω1 (5)

From this, we require the following leading order solutions

ω0 = k⊥·vd (6)

and

9ω1 =
9
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Combining these two solution we then obtain

ω′
c = k⊥·vd(1 − 9) − i

9
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s − ω2
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)
(8)

For9�1, this is essentially the solution that has been repeat-
edly used in the past (see e.g.Fejer et al., 1984), including by
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Milan et al.(2004). One important point about the derivation,
however, is that we do not have to assume that the growth
rate, that is, the imaginary part ofω′

c, is “small” (which is
normally implicitly assumed to mean “by comparison to the
real part of the frequency”). Instead, the smallness of9 itself
directs the solution to having a small growth rate in the event
thatk⊥·vd is large. However, the solution is valid even when
k⊥·vd is small. It is important to consider this possibility in
modern studies. For instance, in so-called “type II” modes,
the wave vector and relative drift tend to be at right angles to
one another. In principle, in such cases, a solution based on
the “small growth rate approximation” should not be used.
However, this inconsistency is removed very easily by using
the small9 approximation instead of the less general small
growth rate approximation.

2.4 The large9 limit

For the work at hand it is also very important to look at
the approximate solutions in terms of large magnitudes in
9 when considering the large aspect angle limit, asMilan
et al. (2004) were attempting to do. According to Eq.3 the
value of9 rapidly becomes greater than 1 as the aspect angle
increases above 0.5◦, for the ionospheric situations of inter-
est. As a result, we find that, to leading order, at large aspect
angles, the 1/9 term disappears from Eq. (2) so that the dis-
persion relation now becomes

ω′
c(ω

′
c + iνi) − k2

⊥
c2
s ≈ 0 (9)

We find the solution to be that of a damped harmonic oscil-
lator, namely,

ω′
c = ±

√
k2
⊥
c2
s − ν2

i /4 − iνi/2 (10)

Whenνi/2 is small by comparison tok⊥cs (typically, above
115 km for decameter structures) these modes have a damped
ion-acoustic signature and might be identified by experimen-
talists as being so-called “type I” modes in spite of their large
aspect angles.

For νi/2>k⊥cs on the other hand (below approximately
115 km), the large-aspect angle dispersion relation has, in-
stead, a purely damped, non-oscillating character, namely,

Re(ω′
c) = 0 Im(ω′

c) = −νi/2 ±

√
ν2
i /4 − k2

⊥
c2
s (11)

In the limit of very large collision frequencies this yields
the heavily damped solutionγ=Im(ω′

c)=−νi as well as the
more weakly-damped root given by

γ ≈ −
k2
⊥
c2
s

νi

(12)

The bottom line is that if, well below 115 km (say 105 km),
a large aspect angle decameter mode is excited (by whatever
mechanism) it will have one root that is relatively weakly
damped. A ground-based observer will see a weak Doppler
shift associated with that mode, since it will be created in the

neutral frame of reference. In other words, we will observe a
frequency given by

ω = Re(ω′
c) + k⊥·vi = k⊥·vi (13)

We claim that these are the HAIR modes that were observed
by Milan et al. (2004) since these authors were adamant
about the fact that they had observed larger aspect angle
modes with a phase velocity that matched the ion drift along
the line of sight, just as indicated by Eq. (13).

Profiles ofω and γ (not using the Eq.(12) approxima-
tion) are shown in Fig.1. As expected, below approxi-
mately 115 km (whereνi/2=k⊥cs), the frequency follows
the ion drift, and has an additional component from Eq. (10)
above this altitude that rapidly goes tok⊥cs . Similarly, the
growth rate follows the small magnitudes from Eq. (12) be-
low 110 km, but switches toνi/2 above 115 km.

2.5 How nonlocal effects generate large aspect angle solu-
tions

Thus far we have shown that, in the context of the standard
local dispersion relation, if large enough aspect angles are
generated in the 100 km to 110 km region they will match
the observed properties of the HAIR echoes. It is not clear
in that context, however, how modes could be generated with
these large aspect angles, since they are strongly damped and
cannot be generated directly.

The answer to the mystery seems to be rooted in the non-
local evolution of decameter structures. We will show in the
next section that one consequence of the nonlocal evolution
undergone by slowly growing structures is that they evolve
a large derivative in their parallel wave vector (or aspect an-
gle). If we then return to our first equation and explore what
happens under conditions for which the secondz-derivative
is trying to become very large (equivalent to a study of large
aspect angle solutions in standard local theory, but not for
the same physics) we find that the first term in Eq. (1) has
to dominate the second term. However, since the two terms
must add up to zero, this means that the first term has to go to
zero by itself. Not only that, but it is the term whose second
z-derivative is taken that has to go to zero. When that hap-
pens, however, the equation being solved becomes identical
to Eq. (9).

We conclude from this that the HAIR echoes are generated
because decameter structures evolve discontinuities in their
aspect angles, which then feed purely decaying modes be-
low 110 km altitude. This means that the Doppler shift of the
modes will match the line of sight velocity of the ions. Fur-
thermore, in the likely event that energy is fed to the modes at
a rate faster than their natural decay rate (which seems likely
in mode-coupling situations such as this), the spectral width
should be comparable to the magnitude of the growth rate,
given by Eq. (12).



770 J. Drexler and J.-P. St.-Maurice: Possible origin of SuperDARN HAIR echoes

(a) Aspect angle (b) Parallel group velocity

−1.5

−1

−0.5

0

0 0.2 0.4 0.6 0.8 1
85

90

95

100

105

110

115

120

125

PSfrag replacements

z
[k

m
]

t [s]

θ [rad]
vph [m/s]
v′

ph
[m/s]

Phase S [rad]

(δn/n0)2 [dB]

γlocal [s−1]

γconv [s−1]
γeff [s−1]

θ
[deg]

Ψ

Ψ0

v′
ph

/cs

vg‖ [m/s]

c2s [m2/s2]

νi [s−1]
ˆ̃
k⊥ · ~vd [m/s]

γvert [s−1]

γFB [s−1]

γGD [s−1]
γdiff [s−1]

δn2 [dB]

Ne [m−3]

L−1 [km−1]
γeff [s−1]

γvert [s−1]
γFB + γdiff [s−1]

δE/E0

δE/B [m/s]
ˆ̃
k⊥ · ~vd/(1 + Ψ) [m/s]

Energy (arb. units)

δEp [mV/m]
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

0 0.2 0.4 0.6 0.8 1
85

90

95

100

105

110

115

120

125

PSfrag replacements

z
[k

m
]

t [s]

θ [rad]
vph [m/s]
v′

ph
[m/s]

Phase S [rad]

(δn/n0)2 [dB]

γlocal [s−1]

γconv [s−1]
γeff [s−1]

θ [deg]

Ψ

Ψ0

v′
ph

/cs

v
g
‖

[m
/s]

c2s [m2/s2]

νi [s−1]
ˆ̃
k⊥ · ~vd [m/s]

γvert [s−1]

γFB [s−1]

γGD [s−1]
γdiff [s−1]

δn2 [dB]

Ne [m−3]

L−1 [km−1]
γeff [s−1]

γvert [s−1]
γFB + γdiff [s−1]

δE/E0

δE/B [m/s]
ˆ̃
k⊥ · ~vd/(1 + Ψ) [m/s]

Energy (arb. units)

δEp [mV/m]

Fig. 2. Typical aspect angle and group velocity evolution from initial condition ofk‖=0. Panel(a): Aspect angle in degrees shown as function
of altitude and time. Color indicates the value of the aspect angle, with black contours corresponding to the horizontal lines in the color bar
to the right. Panel(b): Corresponding group velocity forE/B=1000 m/s, in the same format. Positive values represent motion to higher
altitudes.

3 Nonlocal theory

Drexler et al. (2002) have solved the nonlocal Farley-
Buneman generalization provided by Eq. (1) using a WKB-
like description of the density perturbation, namely, a pertur-
bation of the form
δn

n0
(z, t) = A(z, t) exp

[
iS(z, t)

]
(14)

whereA andS were considered real.Drexler et al.(2002)
used a multi-timing multi-scaling expansion of Eq. (1) to de-
scribe the evolution of the system. From the fastest time and
spacial scales they uncovered that the following expression
for the generalized wave frequency,∂S/∂t≡ω, had to replace
the root of the ordinary (local) dispersion relation

ω(z, t) =
k⊥·vd(z)

1 + 9(z, t)
+ k⊥·vi(z) (15)

The similarity with the local frequency expression (see e.g.
Fejer et al., 1984) is obvious, but notice that unlike the eigen-
value problem, the generalized frequency is now allowed to
be a function of time and space.

From the next order equation in time and spaceDrexler
et al.(2002) were able to obtain an equation to describe the
change in the amplitude of the structure. They also showed
that this second equation could be obtained by invoking con-
servation of wave-action. Essentially, wave action is defined
as wave energyU divided by the so-called “intrinsic” fre-
quencyω′. Once local growth or decay are taken into ac-
count, wave action should be conserved for motion through
a slowly changing background (e.g.Bretherton and Garret,
1969; Andrews and McIntyre, 1978). At E region altitudes,
wave energy is essentially given by the perturbed kinetic en-
ergy of the ions, i.e.,

U =
1

2
n0mi

ω′2

k2
|A|

2 (16)

Since energy is carried by the group velocity, conservation of
wave action (or, more precisely, balance of wave action in the

presence of a local growth termγ ) then leads to an equation
for the wave amplitudeA(z, t),
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(17)

whereγ is the usual local growth rate for the instability. No-
tice once again that we are now using a generalization of the
parallel wave vector, which is defined byk‖=−∂S/∂z and
that, as a result,k‖ can also be a function of time and space,
unlike what is found in a plane wave decomposition.

Equation (17) clearly shows how local and nonlocal pro-
cesses compete. For instance, when local processes dominate
only the first terms on each side of the equation are involved
and we have standard linear instability theory. The converse
is that nonlocal effects become important when the growth
rate is unable to compete with terms that involve the parallel
group velocityvg‖. The latter is given by the usual definition
as

vg‖ = B̂ · vg = B̂ · ∇kω =
∂ω

∂k‖

(18)

whereB̂=B/B. Together with Eqs. (3) and (15), we then
find that

vg‖ = −2
ω′

k

90

(1 + 9)

k‖

k

�2
e

ν2
e

(19)

can easily be of the order of 10 to 20 km/s at small but
nonzero aspect angles.

A central point in the description of the evolution of the
structures is that the aspect angle must evolve constantly in
time and space. This evolution has to simply be described by
the so-called Whitham relation, namely,

∂k‖

∂t
= −

∂ω

∂z
(20)
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Above 105 km,∂9/∂z is small, and therefore so is∂ω/∂z

(see Eq.15). As a result, there is relatively little evolution in
k‖ above 105 km. At lower altitudes however,9 is no longer
negligible with the result thatω has a large gradient in thez
direction (withω itself being larger at higher altitudes). This
means thatk‖ has to become increasingly negative as time
goes on, as can readily be seen from Eq. (20).

One consequence of the evolution ofk‖ is the correspond-
ing evolution of the parallel (nearly vertical) group velocity
vg‖. Sincek‖ stays small above 105 km, so does the group
velocity there, and therefore the upper parts of the wave have
practically no vertical motion. At lower altitudes however,
k‖ decreases monotonically, and the group velocity grows
larger. This means that the lower parts of the wave will move
upwards, eventually colliding with its upper parts. As this
happens, the solution ultimately develops a shock, as the as-
pect angle and associated group velocity evolve an increas-
ingly strong gradient, and, in the end, a discontinuity.

The evolutions of the aspect angle and group velocity are
illustrated in Fig.2 for ionospheric parameters of interest. In
this particular example, becauseω is a strong function ofz
below 115 km, the aspect anglek‖/k reaches more than 1◦

in 1 s. The corresponding group velocity reaches more than
40 timesE/B. However, most important for the problem at
hand is the fact that after approximately 0.3 s, a discontinuity
forms in the aspect angle. It can be identified as the sharp
transition from almost-zero aspect angles and group veloci-
ties above to larger values below.

While the production of a large jump in the derivative of
the aspect angle guarantees that the structure will be feed-
ing damped ion-acoustic modes above 115 km, and purely
damped modes below that height, we still need to know if
the new modes are fed enough energy for the process to mat-
ter. To this goal we have to look at the amplitude reached
by the structures just prior to the shock, using the solution to
Eq. (17). Such a solution is shown in Fig.3, calculated for
the conditions associated with the aspect angle and parallel
group velocity plots presented in the previous figures. We
can clearly see from this calculation (and many more cases
studied byDrexler et al., 2002) that the structures can in-
deed gain a substantial amplitude before feeding their energy
to the large aspect angle modes. In the example presented
here, the largest amplitudes being fed to the shocked modes
are seen around 0.5 s after the initial perfectly field-aligned
perturbation. At that point we should note that the aspect an-
gle is larger than at earlier times, but it is not really out of the
ordinary. However, this does not stop the derivative of the as-
pect angle (second derivative of the phase with respect toz)
from taking a large value. This point is illustrated more pre-
cisely with Fig.4, where the aspect angle evolution is shown
as a function of altitude for different times. As a word of cau-
tion, we note, however, that whether or not the same aspect
angle should be found in the damped modes that receive the
energy is another question that cannot be addressed with the
limited tools that we have used here.

We can summarize the physical principles at work in the
nonlocal evolution as follows: 1) the inhomogeneity in the

−10

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
85

90

95

100

105

110

115

120

125

PSfrag replacements

z
[k

m
]

t [s]

θ [rad]
vph [m/s]
v′

ph
[m/s]

Phase S [rad]

(δ
n
/
n

0
)
2

[dB
]

γlocal [s−1]

γconv [s−1]
γeff [s−1]

θ [deg]

Ψ

Ψ0

v′
ph

/cs

vg‖ [m/s]

c2s [m2/s2]

νi [s−1]
ˆ̃
k⊥ · ~vd [m/s]

γvert [s−1]

γFB [s−1]

γGD [s−1]
γdiff [s−1]

δn2 [dB]

Ne [m−3]

L−1 [km−1]
γeff [s−1]

γvert [s−1]
γFB + γdiff [s−1]

δE/E0

δE/B [m/s]
ˆ̃
k⊥ · ~vd/(1 + Ψ) [m/s]

Energy (arb. units)

δEp [mV/m]

Fig. 3. Wave amplitude corresponding to the parameters of Fig.2.
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neutral atmosphere causes an evolution of the aspect angle of
a structure (through∂ω/∂z); 2) this in turn causes the lower
altitude parts of the structure to move upwards and collide
with the largely stationary upper parts; 3) this collision leads
to a shock, i.e., a discontinuity, which affects the aspect an-
gle, the group velocity, the amplitude and all other derived
quantities; 4) as far as where the energy goes once the shock
is triggered, all we can state at this point is that it has to be
fed to the damped modes that we have identified in the previ-
ous section but the question of what aspect angle these modes
should have cannot be addressed with the tools that we have
used here.
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4 Conclusions

Starting from the work of Drexler et al. (2002) we
have demonstrated how the inhomogeneity in the neutral
atmosphere forces slowly growing E region decameter insta-
bilities to undergo an evolution in their aspect angle so that
they develop an aspect angle discontinuity or shock. When
this happens, the wave must switch to a different mode with
zero frequency (or slightly larger above 115 km) in the ion
frame of reference. A ground-based observer would there-
fore see radar echoes from below 115 km with a Doppler
shift near the line-of-sight component of the ion drift, simi-
lar to what would be seen when observing large aspect angle
waves.

While we have been able to identify the Doppler velocity
and damping rate of the new modes triggered by the evo-
lution of a discontinuity in aspect angle, we are unable at
this point to predict what the aspect angle of the secondary
echoes should be. This is because with the tools that we have
been able to use, these echoes may appear at any aspect an-
gle, their aspect angle being in fact undefined. All we can
tell is that before the mode conversion, the aspect angle is
within the usual range expected for the nearly-field-aligned
irregularities that have been observed over the years. Also
notice that the perpendicular component of the wave vector,
k⊥, will remain in the direction of the original wave.

Since their origin is an unstable Farley-Buneman wave,
it is to be expected that the new crashed modes will start
out with fairly large amplitudes. Having a moderately large
negative growth rate, these modes are then damped fairly
quickly. It is possible in fact that the decay rate given by
Eq. (12) could be comparable to the spectral width of the ob-
served modes, if the energy happens to be fed quickly, as we
might expect from mode-coupling episodes.

We conclude that theDrexler et al.(2002) nonlocal model
analysis can be used to provide an explanation for the echoes
observed byMilan et al. (2004). The model can be used
to explain the Doppler characteristics as well as to obtain a
mechanism to provide energy to the damped modes.
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