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Abstract. We investigate a new mechanism for the forma-
tion of a parallel electric field observed in the auroral iono-
sphere. For this purpose, the excitation of acoustic waves
by propagating Alfv́en waves was studied numerically. We
find that the magnetic pressure perturbation due to finite am-
plitude Alfvén waves causes the perturbation of the plasma
pressure that propagates in the form of acoustic waves, and
gives rise to a parallel electric field. This mechanism ex-
plains the observations of the strong parallel electric field in
the small-scale electromagnetic perturbations of the auroral
ionosphere. For the cases when the parallel electric current
in the small-scale auroral perturbations is so strong that the
velocity of current carriers exceeds the threshold of the ion
sound instability, the excited ion acoustic waves may account
for the parallel electric fields as strong as tens of mV/m.

Key words. Ionosphere (Electric fields and currents; Plasma
waves and instabilities; Polar ionosphere)

1 Introduction

One of the most important questions of the auroral physics
is the origin of strong small-scale electric fields (transverse
to the ambient magnetic field) and their relation to the au-
roral phenomena, in particular, to the parallel electric fields
and particle acceleration. Since the existence of a strong
localized electric field has been observed by S3-3 satellite
(Mozer et al., 1977), numerous studies of spatial distribution
of these events have established that small-scale strong trans-
verse electric fields are common in the regions connected to
the auroral zone up to the altitude of at least 20 RE (Mozer
et al., 1980; Mizera et al., 1981; Temerin et al., 1981; Mozer,
1981; Cattell et al., 1982; Levin et al., 1983; Bennett et al.,
1983; Burke et al., 1983; Gurnett et al., 1984; Redsun et al.,
1985; Lindqvist and Marklund, 1990; Weimer and Gurnett,
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1993; Karlsson and Marklund, 1996). Moreover, there is ev-
idence that the same phenomena are observed in the distant
geomagnetotail (Cattell et al., 1994; Streed et al., 2001). The
above observations show that significant parallel component
of the electric field usually accompanies a strong transverse
electric field. The existence of a parallel electric field was
suggested long ago by McIlwain (1960), based on the spec-
tra of precipitating electrons. Evidence of parallel fields was
obtained by observation of upstreaming ion beams (Shelley
et al., 1976).

The auroral electric field measured at different altitudes re-
sults from the electric field of the magnetospheric convection
by mapping along almost equipotential magnetic field lines.
Geometrical convergence of the magnetic field lines results
in an increase of the transverse electric field on approach
to Earth. The fact that the electric field at lower altitude is
weaker than expected from simple geometrical consideration
is interpreted as an evidence for a field-aligned electric poten-
tial drop (e.g. Mozer, 1981). However, the parallel electric
field accompanying the mapping of the electrostatic struc-
tures is expected to be of the order of<1 mV/m, whereas the
direct measurements of the parallel component of the electric
field are indicative of larger values of tens mV/m (Mozer et
al., 1977; Dubinin et al., 1985). Unfortunately, initial mea-
surements of a strong parallel electric field were received
skeptically by the scientific community and had small impact
on the auroral research, perhaps due to the lack of theory ex-
plaining large values of the parallel electric fields.

Simultaneously with the development of electrostatic the-
ory of the phenomenon, other theoretical studies suggested
that at least some of the observed events can be caused by
Alfv én waves having, therefore, an electromagnetic nature
(Hasegawa, 1976; Malinckrodt and Carlson, 1978; Goertz
and Boswell, 1979; Lysak and Dum, 1983; Haerendel, 1983;
Goertz, 1984; Glassmeier et al., 1984). This point of view
found experimental support in the results of Intercosmos-
Bulgaria-1300 satellite, which performed simultaneous mea-
surements of electric and magnetic fields along with plasma
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Fig. 1. An example of auroral electromagnetic perturbation ob-
served by the Intercosmos-Bulgaria-1300 satellite. From top to bot-
tom: transverse magnetic fieldBy and electric fieldEy perturba-
tions, parallel electric fieldEz, number densityn, and downward
and upward fluxes of electrons with the energy 1 keV.

and energetic particles (Dubinin et al., 1985, 1990). Alfvén
waves were also observed during the rocket experiments at
regions of auroral arcs (Gelpi and Bering, 1984). Recently, a
case study by Wygant et al. (2000) confirmed that some elec-
tric field structures seen in the auroral zone and above could
be caused by Alfv́en waves.

The transverse component of the wave vector in small
scale Alfv́enic perturbations is much larger than the parallel
componentk⊥�k||. For the cases wherek⊥λe=k⊥c/ω0≥1
(whereλe is the electron inertial length, andω0 is the plasma
frequency), the wave becomes an inertial Alfvén wave and
carries parallel electric fieldE||∼E⊥k|| /k⊥. In principle, this
parallel electric field component may account for the particle
acceleration in the small-scale electromagnetic structures.

Another approach to explain the existence of parallel elec-
tric fields combines electromagnetic and anomalous resis-
tivity effects (e.g. Lysak and Carlson (1981); Lysak and
Dum (1983); Volokitin et al. (1983); Streltsov et al. (2002)).
Dubinin et al. (1984) have tried to relate an intense localized
disturbance with processes of Alfvén wave propagation and
plasma turbulence excitation within auroral flux tube. How-
ever, even in the framework of such models, it is difficult to
understand the existence of cavities of the ion density (Du-
binin et al., 1985), large (tens of mV/m) field-aligned elec-
tric fields, and phase relations between electric and magnetic
fields.

Some phenomena of electrostatic nature are closely related
with the small-scale Alfv́en waves and have been studied in-
tensively. For example, electrostatic convective cells may
form with spatial scales larger than the scale of the Alfvén
wave. Pokhotelov et al. (2003) suggested parametric insta-
bility of the initial inertial Alfvén wave as a mechanism re-
sponsible for the convection cells formation. Another, pos-
sibility for small-scale electromagnetic perturbation is often
associated with waves at hydrogen and oxygen local gyrofre-
quencies (e.g. Kintner, 1980; Andre et al., 1987; Cattell et
al., 1998). These waves are interpreted as electrostatic ion
cyclotron (EIC) waves due to the instability of the particle
beams (Kindel and Kennel, 1971)

However, electromagnetic models of small-scale auroral
structures still contain difficulties with the explanation of ob-
servations, and with the understanding of the nature of strong
parallel electric fields.

Figure 1 shows an example of localized electromagnetic
perturbation in the auroral ionosphere as observed on the
Intercosmos-Bulgaria-1300 satellite at the altitude of 900 km
in the morning sector within the region of a large-scale down-
ward field-aligned electric current. Such a pattern is typi-
cal for the observations of strong small-scale auroral elec-
tromagnetic perturbation at these altitudes. From top to bot-
tom we show the X- and Y-components of the magnetic field
perturbation, X-, Y-, and Z-components of the electric field,
plasma density and upward and downward fluxes of 1-keV
electrons. (The Z axis is directed along the ambient magnetic
field and is close to the local vertical.) The transverse (to
the ambient magnetic field) component of the electric field
is predominantly in the X direction, and the transverse com-
ponent of the magnetic field perturbation is predominantly
in the Y direction. The ratio of amplitudes ofEx to 1By

equals to local Alfv́en velocity, as expected for the elec-
tromagnetic wave. BothEx and1By have similar spectra,
but the magnetic field harmonics are shifted byπ /2 with
respect to the electric field harmonics. This phase relation
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is rather typical for the small-scale electromagnetic auro-
ral perturbations (Streltsov and Lotko, 2003; Streltsov and
Mishin, 2003; Mishin et al., 2003). Using this phase relation,
Dubinin et al. (1985, 1990) interpreted the perturbation as a
standing monochromatic Alfv́en wave and separated tempo-
ral and spatial effects in the observations. The separation
results in the frequency of the wavef ≈1 Hz, and transverse
and parallel wave vector components k⊥≈7×10−6 cm−1 and
k||≈3.5×10−8 cm−1, respectively. The local electron iner-
tia length isλe≈5×103 cm, thus, at least at these altitudes,
k⊥λe�1 and the electron inertia can be neglected.

However, a standing localized Alfvén wave does not ex-
plain the variations of density and the presence of a strong
(up to 30 mV/m) parallel electric field (see panels (e) and (f)
in Fig. 1). The number density andEz oscillate with the fre-
quency twice larger than that of the standing Alfvén wave re-
sponsible for theEx and1By components (≈2 Hz). Strong
perturbation of the parallel electric fieldEz is of an electro-
static nature, since no perturbation at the same frequency is
observed in the magnetic field.

The perturbation is accompanied by a burst of energetic
electrons. Upward and downward fluxes of electrons at 1
keV have the opposite phase which is indicative of particle
flux modulation by alternating parallel electric field.

The observedEz cannot be ascribed to the electrostatic
ion cyclotron waves for the following reasons. First, the fre-
quency of the local ion gyrofrequency is∼470 Hz for H+

and∼30 Hz for O+. Second, the EIC waves have been ob-
served at local ion gyrofrequency by the satellites at differ-
ent altitudes; e.g. S3-3 (Kintner 1980); Viking (Andre et al.,
1987), and FAST (Cattell et al., 1998). This means that EIC
waves are excited locally and do not propagate to large dis-
tances. Therefore, it is unlikely that the observed event is an
EIC wave excited in the region with the local field∼300 nT
(at R∼2.5 RE). Third, the EIC waves propagate predomi-
nantly across the magnetic field (k⊥�k||); this means that
in the structures associated with the EIC waves E⊥�E||, at
the same frequency, which is not the case for the event under
consideration.

In the opposite case, for the observed parallel electric field
perturbation there is no significant perturbations of E⊥ at the
same spatial/temporal scales, hence E||� E⊥ and k||� k⊥,
as it happens for the ion acoustic wave. In this paper, we
argue that the parallel electric field, as well as density vari-
ations, are produced by ion acoustic waves excited by pri-
mary Alfvén wave. First, we will describe a simple numeri-
cal 1-D model which demonstrates the parametric excitation
of acoustic waves by Alfv́en waves in a single fluid plasma.
Finally, we will discuss the possibility of similar excitation
of ion acoustic waves in real auroral plasma.

2 Single fluid one-dimensional model

We have performed a simulation of a standing Alfvén wave
evolution in a single fluid magnetohydrodynamic (MHD) ap-
proximation in one spatial dimension, with three components

of B andV included in the model (i.e. 1.5-D MHD). The
normalized 1.5-D MHD equations (e.g. Ofman, 2002) in the
ideal limit are:

∂ρ

∂t
+

∂

∂x
(ρVx) = 0 (1)

ρ

(
∂V

∂t
+ Vx

∂

∂x
V

)
= −∇p + (∇ × B) × B (2)

∂B

∂t
= ∇ × (V × B) , (3)

where only ∂/∂x terms are included in the curl in
Eqs. (1)–(3). In the present model we have used the isother-
mal energy equation (T =T0=const.), andp is then propor-
tional to ρ. The excitation of the compressional waves oc-
curs through the second term on right-hand side of Eq. (2).
The x-component of this quadratically nonlinear term can be
written as−1

2
∂
∂x

B2, whereB is the transverse magnetic field
fluctuation due to the Alfv́en wave. Thus, the temporal and
the spatial fluctuations of the magnetic pressure produced
by the Alfvén wave drive the fluctuations in the parallel (x
component) velocity, and consequently in density coupled
through the continuity Eq. (1), producing the acoustic waves.
This mechanism was found to generate low frequency acous-
tic waves in the solar wind, in models that include Alfvén
waves (e.g. Ofman and Davila, 1998).

The use of a single fluid approximation is justified by the
following reasons. Of course, for the single fluid MHD, the
true electric field equals zero in the frame of reference mov-
ing along with the plasma. However, such a model enables
us to follow the development and propagation of the sound
wave and to calculate the plasma pressure gradient associated
with the wave. On the other hand, according to a two-fluid
model, neglecting the electron inertia and gravity, the effec-
tive measured electric field isE∗

=E −
∇pe

ne
∼

∇pe

ne
, i.e. the

force acting on electrons is balanced by the electron pressure
gradient. In our single fluid model, the ion and electron pres-
sure gradients are equal. Therefore, using the results of the
single fluid model,Ex can be estimated as12

∇p
ne

=
T

2ne
∂n
∂x

.
All parameters were assumed to change only along thex-

direction in the region 0<×<100. Unperturbed dimension-
less values are chosen asB0≡Bx=1 for the magnetic field and
ρ0=1 for the mass density. The pressurep0=0.1/4π was cho-
sen in such a way that the speed of sound is ten times smaller

that the Alfv́en velocity:cs=

√
γ

p0
ρ0

=0.1VA=0.1 B0√
4πρ0

. For

simplicity, we assume that the adiabatic indexγ≡1 (isother-
mal process). The Alfv́en wave was excited by applying the
following boundary condition:

By(0) = 0.1B0 sinωAt (4)

By(100) = −0.1B0 sinωAt , (5)

where ωA=
√

π/200 was chosen in such a way that the
Alfv én wavelengthλA is twice the length of the simulation
box. As a result, a standing Alfvén wave arises with a node
atx=0 and anti-nodes at the boundaries.
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Fig. 2. Spatial and temporal dependence of the magnetic field per-
turbationBy . Horizontal axes give the time inTA units, and vertical
axes give the length along the simulation box inλA units. Color
scale shows the magnitude ofBy . (a) Time interval (0–15TA);
(b) time interval (10–15TA).

Additional boundary conditions were:

vx(0) = vx(100) = 0 (6)

∂ρ(0)

∂z
=

∂ρ(100)

∂z
= 0 . (7)

The 1.5-D single fluid MHD equations were solved by the
4th order Runge-Kutta method in time, and 4th order differ-
encing in space (e.g. Ofman, 2002).

Figure 2a shows the time evolution of theBy(x) compo-
nent for the time intervalt=0–15TA (hereTA=2π /ωA is the
period of the excited wave). Starting fromt∼4TA the sym-
metry between positive and negative half-periods is violated
indicating the nonlinear evolution of the original wave. This
effect is illustrated in figure 2b which shows theBy(t ,x) de-
pendence in increased scale fort=10TA–14 TA.

Figures 3 and 4 give the time dependences (from top to
bottom) ofvy , By , Ex, vx , andρ, for x=25 andx=50, re-
spectively.

One can see that perturbations of parallel velocity and
plasma density, which are absent in the linear Alfvén wave,
develop in the system. These perturbations are produced by

Fig. 3. Time variation of the plasma parameters at the distancex=25
(quarter of the simulation box). From top to bottom: transverse
components of the velocityvy and the magnetic fieldBy , parallel
electric fieldEx and parallel velocityvx , and the plasma densityn.

acoustic waves rather than by Alfvén wave nonlinearity. In-
deed, let us consider the temporal evolution of spatial spec-
tra of plasma parametersBy(k), vx(k), andρ(k) which are
shown in Fig. 5. The spatial spectra of the magnetic field per-
turbationBy (Fig. 5a) do not exhibit significant change with
time. These spectra possess strong maximum corresponding
to the primary wavelength (kA=2π /λA=2π /200), and addi-
tional small maxima atk=3kA andk=5kA. As the nonlinear
effects become significant (t>4TA, see Fig. 2a), the spec-
tra become wider and differ significantly for two adjacent
half-periods of the original Alfv́en waves, but no additional
maxima appear. In contrast, dynamical spatial spectra of
the parallel electric field (Fig. 5b), starting fromt∼5TA, de-
velop new maxima atk=9kA andk=11kA corresponding to
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Fig. 4. Same as Fig. 3, but for x=50 (midpoint of the simulation
box).

the wavelengthλ∼20. Note that this is the wavelength for
the acoustic wave with the frequencyωA. Later, additional
maxima at higherk appear in spatial spectra of the parallel
electric field which might indicate the development of acous-
tic turbulence in the system.

In order to verify whether the perturbations of plasma den-
sity, parallel velocity and parallel electric field are produced
by acoustic waves rather than by a nonlinear Alfvén wave, we
have calculated 2-D Fourier transformations of the simulated
variables. The results are shown in Fig. 6. Straight lines show
the dispersion relations for Alfv́en waveω=VAkand for the
acoustic waveω=csk. The 2-D-spectrumBy(ω,k) (Fig. 6a)
fits well the Alfvén wave dispersion curve. Spatial pertur-
bations with zero frequency are also seen in this spectrum.
They result from the distortion of the background due to
propagation of the Alfv́en wave with finite amplitude.

Fig. 5. Time dependence of spatial spectra of the magnetic field
perturbationBy(t, k) (a), and the parallel electric fieldEx(t, k) (b).
Horizontal axes give the time inTA units, and vertical axes give the
wave number inkA units. The values ofBy(t, k) andEx(t, k) are
shown in arbitrary units by color scale.

Two-dimensional spectrum of the parallel electric field
Ex(ω,k) (Fig. 6b) fit perfectly the acoustic wave dispersion
curve. Having maximum nearωA, acoustic waves cover wide
range of frequencies.

The mechanism of acoustic wave excitation in this numer-
ical experiment is quite clear. Magnetic pressure perturba-
tion appearing in the nonlinear Alfvén wave produces per-
turbation of the plasma pressure. The latter possesses the
frequency and wavelength of primary Alfvén waves, and can
propagate along the magnetic field lines as acoustic waves.
The frequencies of acoustic waves are determined by the
space/time properties of the plasma pressure perturbation
produced by the Alfv́en wave. Therefore, the major frequen-
cies areωA andcs /λA=ωAcs /VA and their harmonics, the ef-
fect of which can be seen in Fig. 6.

3 Discussion

In real ionospheric plasma, the acoustic waves may be ex-
cited not only by the magnetic pressure perturbation pro-
duced by a nonlinear Alfv́en wave. Ion sound instability, as
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Fig. 6. Two-dimensional spectra of the magnetic field perturba-
tion By (ω,k) and the parallel electric fieldEx (ω,k), calculated for
the time interval 10TA-15TA. Horizontal axes give the frequency
in ωA units, and vertical axes give the wave number inkA units.
The values ofBy (ω,k) andEx (ω,k) are shown in arbitrary units by
color scale. Solid lines denote the dispersion curves for Alfvéng
and sound waves.

well, may initiate ion sound waves in the strong electromag-
netic auroral perturbations, and can be modeled by two fluid
plasma. These perturbations are localized (k⊥�k||) stand-
ing Alfv én waves, hence, they can also be interpreted as an
oscillating localized field-aligned current. It is also known,
(e.g. Dubinin et al., 1985, 1986, 1990) that the parallel elec-
tric field appears only in especially strong perturbations. We
theorize that this occurs when the velocity of current carriers
of the field-aligned current exceeds a certain critical value,
for example ion sound velocity.

Let the electromagnetic perturbation be the standing
Alfv én wave. If the amplitude of the parallel (to the magnetic
field) velocity of electrons,ve, in the wave becomes larger
than the ion sound velocity, then during these time intervals
the ion sound instability may develop in the plasma. The fre-
quency of these intervals is double the frequency of the initial
Alfv én wave. Thus, we obtain a kind of parametric resonance
excitation of ion sound waves with the frequency equal to
double the frequency of the primary Alfvén wave. This was
the case for the observed event shown in Fig. 1. The parallel
electric field,Ez, can be estimated asEz=

∇pe

ne
∼

Te

ne
∂n
∂z

. If it

results from the propagation of ion sound waven=n0cos kz,
then the amplitude of the parallel electric field is

Ez ∼
Te

e
k =

c2
s M

e

2πf

cs

= cs

2πf M

e
, (8)

wherek is the wave number,f is the frequency of parallel
electric field oscillations,cs is the ion sound velocity, andM
is the ion mass (O+ in our case). If the waves are excited
by the ion sound instability, then the phase velocity of the
wave equals the velocity of the current carriers andcs can
be estimated asj /ne, wherej is the electric current density
in the localized electromagnetic perturbation. The latter is
given byj≈

c
4π

1By

1x
, where1By is the magnetic field per-

turbation and1x is the transverse characteristic scale of the
perturbation. Substituting1By=120 nT,1x=5·105 cm, and
n=8·103 cm−3, one obtains the estimate for the ion sound ve-
locity cs

∼=1.4·106cm/s.
The sound velocity corresponds to the electron tempera-

ture of 30 eV, which seems reasonable for the auroral zone at
the altitude of 1000 km. Taking the frequency of the parallel
electric field oscillation to be 2 Hz (see Fig. 1), the paral-
lel electric field perturbation isEz

∼=28.2mV/min agreement
with the observations.

4 Discussion and conclusion

The existence of upward and downward beams of energetic
particles indicates that a drop in the electric potential of the
order of several kV occurs along the auroral magnetic field
lines. It is clear from observations that the regions of acceler-
ation are rather large, at least larger than 1RE . Therefore, the
electric field responsible for the field-aligned particle accel-
eration cannot exceed more than∼2 mV/m. Hence, strong a
parallel electric field reaching tens of mV/m is not the direct
cause of the acceleration.

There are several ways to explain the appearance of the
potential drop along the auroral field lines, for example, by
the presence of a parallel component of the electric field in
the inertial Alfvén wave. However, the most promising ap-
proach is the development of anomalous resistivity. Recently,
parallel electric field perturbations (for higher altitudes rel-
evant to Polar satellite) have been modeled by Streltsov et
al. (2002). Using nonlinear two-fluid MHD simulations, they
have shown that parallel convective nonlinearity (which is in
fact due to the electron inertia) does not produce significant
a parallel electric field that may be responsible for particle
acceleration into the ionosphere, whereas the relevant values
of the parallel electric field can be explained by the pres-
ence of anomalous resistivity (AR). However, the AR was
not included self-consistently in their model; instead, the ef-
fective collisional frequency was adopted from the model by
Lysak and Dum (1983) for EIC instability. Therefore, the
spatial/temporal scales for E|| in their model are the same as
for E⊥. This is quite natural, since self-consistent consider-
ation of the effects of anomalous resistivity requires kinetic
simulation.
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In fact, the local electric field measurements by satellites
refer to the field of the waves responsible for the AR rather
than to the “global accelerating” field. This is the reason
why the observed parallel electric field is so strong – the
wavelengths producing the AR are small, and the parallel
potential drops due to these waves are of the order of tens of
volts. These small drops only modulate the accelerated beam
on a global scale, as can be seen in the two lower panels of
Fig. 1. As we discussed above, the structure of the electro-
static wave producing strong parallel electric field (at least at
the altitudes∼1000 km) is similar to the ion acoustic rather
than the EIC wave. Acoustic waves are excited in the plasma
as a result of the propagation of the Alfvén wave with finite
amplitude and account for the parallel electric field observed
in the small-scale electromagnetic perturbations of auroral
plasma. This effect is modeled by a single fluid MHD model.
In our simulation, the magnetic pressure perturbation appear-
ing in the nonlinear Alfv́en wave produces perturbation of the
plasma pressure with the same frequencyωA and wavelength
λA as those of the primary Alfv́en wave. The plasma pres-
sure perturbation propagates as an acoustic wave. Therefore,
new frequencies∼λA/cs and wavelengths∼cs /ωA arise in
the spectrum of secondary acoustic waves. The excitation of
acoustic modes is extremely effective if the parallel electric
current associated with the localized standing Alfvén waves
is so strong that the velocity of current carriers exceeds the
threshold of the ion sound instability.

Acknowledgements.PLI would like to acknowledge support by the
Binational Science Foundation (BSF) grant. LO would like to thank
the Department of Geophysics for the hospitality during his visits
at Tel Aviv University, and acknowledge support by NASA Sun-
Earth Connection Theory program, and NASA grant NAG5-11877.

Topical Editor M. Lester thanks a referee for his help in evalu-
ating this paper.

References

Andre, M., Koskinen, H., Gustafsson, G., and Lundin, R.: Ion
waves and upgoing ion beams observed by the Viking satellite.
Geophys. Res. Lett., 14, 463–466, 1987.

Bennett, E. L., Temerin, M. and Mozer, F. S.: The distribution of
auroral electrostatic shocks below 8000 km altitude, J. Geophys.
Res. 88, 7107–7120, 1983.

Burke, W. J., Silevitch, M. and Hardy, D. A.: Observations of
small scale auroral vortices by S3-2 satellite,J. Geophys. Res.
88, 3127–3137, 1983.

Cattell, C. A., Kim, M., Lin, R. P., and Mozer, F. S.: Observations
of large electric fields near the plasma sheet boundary by ISEE-1,
Geophys. Res. Lett., 9, 539–542, 1982.

Cattell, C. A., Mozer, F. S., Tsuruda, K., Hayakawa, H., Nakamura,
M., Okada, T., Kokubun, S., and Yamamoto, T.: Geotail obser-
vations of spiky electric fields and low-frequency waves in the
plasma sheet and plasma sheet boundary, Geophys. Res. Lett.,
21, 2987–2990, 1994.

Cattell, C., Bergmann, R., Sigsbee, K., Carlson, C., Chaston, C.,
Ergun, R., McFadden, J., Mozer, F. S., Temerin, M., Strangeway,
R., Elphic, R., Kistler, L., Moebius, E., Tang, L., Klumpar, D.,
and Pfaff, R.: The association of electrostatic ion cycltron waves,
ion and electron beams, and field-aligned currents: FAST obser-
vations of an auroral zone crossing near midnight, Geophys. Res.
Lett., 12, 2053–2056, 1998.

Dubinin, E. M., Podgorny, I. M., Balebanov, V. M., Bankov, L.,
Bochev, A., Gdalevich, G. L., Dachev, Tz., Zhuzgov, L. N., Ku-
tiev, I., Lazarev, V. I., Nikolaeva, N. S., Serafimov, K., Stanev, G.
and Teodosiev, D.: Intense localized disturbances of the auroral
ionosphere, Kosmicheskiye Issledovaniya, 22, 247–254, 1984.

Dubinin, E. M., Israelevich, P. L., Kutiev, I., Nikolaeva, N. S. and
Podgorny, I. M.: Localized auroral disturbance in the morning
sector of topside ionosphere as a standing electromagnetic wave,
Planet. Space Sci. 33, 597–606, 1985.

Dubinin, E. M., Israelevich, P. L., Nikolaeva, N. S., Podgorny, I. M.,
Bankov, N. and Todorieva, L.: The electromagnetic structures at
the auroral altitudes, Kosmicheskie Issledovaniia 24, 434–439,
1986.

Dubinin, E. M., Israelevich, P. L., and Nikolaeva, N. S.: Auroral
electromagnetic disturbances at an altitude of 900 km: The rela-
tionship between the electric and magnetic field variations, Plan-
etary Space Science, 38, 97–108, 1990.

Gelpi, C. G. and Bering, E. A.: The plasma wave environment of an
auroral arc—2. ULF-waves on an auroral arc boundary, J. Geo-
phys. Res. 89, 10 847–10 864, 1984.

Glassmeier, K.-H., Lester, M., Mier-Jedrzejowicz, W. A. C., Green,
C. A., Rostoker, G., Orr, D., Wedeken, U., Junginger, H., and
Amata, E.: Pc5 pulsations and their possible source mechanisms:
a case study, J. Geophys., 55, 108–119, 1984.

Goertz, C. K., (1984), Kinetic Alfv́en waves on auroral field lines,
Planetary Space Sci, 32, 1382–1387, 1984.

Goertz, C. K. and Boswell, R. W.: Magnetospheric-ionospheric
coupling. J. Geophys. Res., 84, 7239–7246, 1979.

Gurnett, D. A., Huff, R. L., Menietti, J. D., Winningham, J. D.,
Burch, J. L. and Shawhan, S. D.: Correlated low-frequency elec-
tric and magnetic noise along the auroral field lines, J. Geophys.
Res., 89, 8971–8985, 1984.

Haerendel, G.: An Alfv́en wave mode of auroral arcs, in: High Lat-
itude Space Plasma Physics, edited by Hultquist, B. and Hagfors,
T., Plenum Publishing Corporation, New York, 515–535, 1983.

Hasegawa, A.: Particle acceleration by MHD surface wave and for-
mation of aurora, J. Geophys. Res., 81, 5083–5089, 1976.

Karlsson, T., and Marklund, G. T.: A statistical study of intense
low-altitude electric fields observed by Freja, Geophys. Res.
Lett., 23, 1005–1008, 1996.

Kindel, J. M. and Kennel, C. F.: Topside current instabilities, J.
Geophys. Res., 76, 3055–3078, 1971.

Kintner, P. M.: On the distinction between electrostatic ion cy-
clotron wave and ion cyclotron harmonic waves, Geophys. Res.
Lett., 8, 585–588, 1980.

Levin, S., Whitley, K., and Mozer, F. S.: A statistical study of large
electric field events in the Earth’s magnetotail, J. Geophys. Res.,
88, 7765–7768, 1983.

Lindqvist, P.-A. and Marklund, G. T.: A statistical study of high-
altitude electric fields measured on the Viking satellite, J. Geo-
phys. Res., 95, 5867–5876, 1990.

Lysak, R. L. and Carlson, C. W.: Effect of microscopic turbulence
on magnetosphere-ionosphere coupling. Geophys. Res. Lett., 8,
269–272, 1981.

Lysak, R. L. and Dum, C. T.: Dynamics of magnetosphere-
ionosphere coupling including turbulent transport. J. Geophys.
Res., 88, 365–380, 1983.

McIlwain, C. E.: Direct measurement of particles producing visible
auroras, J. Geophys. Res., 65, 2727–2749, 1960.

Mallinckrodt, A. J. and Carlson, C. W.: Relations between trans-
verse electric fields and field-aligned currents. J. Geophys. Res.
83, 1426–1432, 1978.



2804 P. L. Israelevich and L. Ofman: Parallel electric field in the auroral ionosphere

Mishin E. V., Burke, W. J., Huang, C. Y., and Rich, F. J.: Electro-
magnetic wave structures within subauroral polarization streams,
J. Geophys. Res., 108, A8, 1309, doi:10.1029/2002JA009793,
2003.

Mizera, P. F., Fennell, J. F., Croley, D. R., Vampola, A. L., Mozer, F.
S., Torbert, R. B., Temerin, M., Lysak, R., Hudson, M., Cattell,
C., Johnson, R. J., Sharp, R. D., Ghielmetti, A. G. and Kinter, P.
M.: The aurora inferred from S3-3 particles and fields. J. Geo-
phys. Res., 86, 2329–2339, 1981.

Mozer, F. S.: ISEE-1 observations of electrostatic shocks on auroral
zone field lines between 2.5 and 7 Earth radii, Geophys. Res.
Lett., 8, 823–826, 1981.

Mozer, F. S., Carlson, C. W., Hudson, M. K., et al.: Observations
of paired electrostatic shocks in the polar magnetosphere, Phys.
Rev Lett., 38, 292–295, 1977.

Mozer, F. S., Cattell, C. A., Hudson, M. K., Lysak, R. L. Temerein,
M. and Torbert, R. B.: Satellite measurements and theories of
low altitude auroral particle acceleration, Space Sci. Rev. 11,
155–213, 1980.

Ofman, L.: Chromospheric leakage of Alfvén waves in coronal
loops, Ap. J., 568, L135–L138, 2002.

Ofman, L. and Davila, J. M.: Solar Wind Acceleration by Large-
amplitude Nonlinear Waves: Parametric study, J. Geophys. Res.,
103, 23 677–23 690, 1998.

Pokhotelov O. A., Onishchenko, O. G., Sagdeev, R. Z., and
Treumann, R. A.: Nonlinear dynamics of inertial Alfvén
waves in the upper ionosphere: Parametric generation of
electrostatic convective cells, J. Geophys. Res., 108, 1291,
doi:10.1029/2003JA009888, 2003.

Redsun, M. S., Temerin, M., and Mozer, F. S.: Classification of au-
roral electrostatic shocks by their ion and electron associations,
J. Geophys. Res., 90, 9615–9633, 1985.

Shelley, E. G., Sharp. R. D., and Johnson, R. G.: Satellite observa-
tions of an ionospheric acceleration mechanism, Geophys. Res.
Lett., 3, 654–656, 1976.

Streed, T, C., Cattell, F., Mozer, S., Kokubun, and Tsuruda, K.:
Spiky electric fields in the magnetotail, J. Geophys. Res., 106,
6276–6289, 2001.

Streltsov, A. V. and Lotko, W.: Small-scale electric fields in down-
ward auroral current channels, J. Geophys. Res., 108, A7, 1289,
doi: 10.1029/2003JA009858, 2003.

Streltsov, A. V. and Mishin, E. V.: Numerical modeling of localized
electromagnetic waves in the nightside subauroral zone, J. Geo-
phys. Res., 108, A8, 1332, doi:10.1029/2003JA009858, 2003.

Streltsov, A. V., Lotko, W., Keiling, A., and Wygant, J. R.: Numer-
ical modeling of Alfv́en waves observed by the Polar spacecraft
in the nightside plasma sheet boundary layer, J. Geophys. Res.,
107, A8, doi:10.1029/2001JA000233, 2002.

Temerin, M., Cattell, C. A., Lysak, R., Hudson, M., Torbert, R. B.,
Mozer, F. S., Sharp, R. D. and Kintner, P. N.: The small scale
structure of electrostatic shocks, J. Geophys. Res. 86, 11 278–
11 298, 1981.

Volokitin, A. S., Krasnoselskikh, V. V., Mishin, Ye. V., Tyurmina,
L. O., Sharova, V. A. and Shkolnikova, S. I.: On the small
scale structure of field aligned currents at high latitudes. Preprint
IZMIRAN, N 18 (429), 1983.

Weimer, D. R. and Gurnett, D. A.: Large-amplitude auroral electric
fields measured with DE 1, J. Geophys. Res., 98, 13 557–13 564,
1993.

Wygant, J. R., Keiling, A., Cattell, C. A., et al.: Polar spacecraft
based comparison of intense electric fields and Poynting flux near
and within the plasma sheet-tail lobe boundary to UVI images:
An energy source for the Aurora, J. Geophys. Res., 105, 18 675–
18 692, 2000.


