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Abstract. A numerical solution of the problem on dynamics
of shear-mode Alfv́en waves in the ionospheric Alfvén res-
onator (IAR) region at middle latitudes at nighttime is pre-
sented for a case when a source emits a single pulse of dura-
tion τ into the resonator region. It is obtained that a part of
the pulse energy is trapped by the IAR. As a result, there oc-
cur Alfvén waves trapped by the resonator which are being
damped. It is established that the amplitude of the trapped
waves depends essentially on the emitted pulse durationτ

and it is maximum atτ=(3/4)T , whereT is the IAR funda-
mental period. The maximum amplitude of these waves does
not exceed 30% of the initial pulse even under optimum con-
ditions. Relatively low efficiency of trapping the shear-mode
Alfv én waves is caused by a difference between the optimum
duration of the pulse and the fundamental period of the res-
onator. The period of oscillations of the trapped waves is
approximately equal toT , irrespective of the pulse duration
τ . The characteristic time of damping of the trapped waves
τdec is proportional toT , therefore the resonator Q-factor
for such waves is independent ofT . For a periodic source
the amplitude-frequency characteristic of the IAR has a lo-
cal minimum at the frequencyπ /ω=(3/4)T , and the waves of
such frequency do not accumulate energy in the resonator re-
gion. At the fundamental frequencyω=2π /T the amplitude
of the waves coming from the periodic source can be ampli-
fied in the resonator region by more than 50%. This alone is
a basic difference between efficiencies of pulse and periodic
sources of Alfv́en waves. Explicit dependences of the IAR
characteristics (T , τdec, Q-factor and eigenfrequencies) on
the altitudinal distribution of Alfv́en velocity are presented
which are analytical approximations of numerical results.
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1 Introduction

Shear-mode Alfv́en waves in the ionosphere in the frequency
range 0.1 to 10 Hz can be reflected from regions above and
below the F2-layer maximum because of large (relative to
the wave length in the medium) gradients of the refractive
index (Polyakov and Rapoport, 1981; Belyaev et al., 1990).
The occurrence of such reflections and the absence of a
group velocity transverse to the geomagnetic field implies
that the resonator for shear-mode Alfvén waves – the iono-
spheric Alfv́en resonator (IAR) – should exist (Polyakov and
Rapoport, 1981).

The IAR has been identified in the ground-based observa-
tions both at middle (Belyaev et al., 1990, 2000) and high
(Belyaev et al., 1999) latitudes. Analysis of Freja satel-
lite data (e.g. Grzesiak, 2000) also confirms the existence
of this phenomenon in the topside ionosphere. The IAR
properties have been studied theoretically by Polyakov and
Rapoport (1981); Trakhtengertz and Feldstein (1984, 1991);
Lysak (1986, 1988, 1991); Belyaev et al. (1990); Demekhov
et al. (2000); Pokhotelov et al. (2000, 2001) and Prikner et
al. (2000).

The first numerical model that fully resolved the vertical
ionospheric structure has been presented by Lysak (1997,
1999). While previous models studied the response of the
ionosphere to waves at a fixed frequency, this model was the
first that allowed one to investigate the effects in the iono-
sphere under action of a field-aligned current pulse with ar-
bitrary time dependence generated by a source of this current
in the magnetosphere.

In this paper a numerical model of similar type is used but
with another position of the source and a number of simplifi-
cations specified by the statement of the problem. The main
objective of this work is to analyse features of trapping by
the ionospheric resonator of a single pulse of a shear-mode
Alfv én wave for the case when the energy losses of the wave
at the E-layer heights are insignificant. This corresponds to
night-time conditions at middle latitudes which according to
observation data, the IAR Q-factor is relatively high (Belyaev
et al., 2000). The E-layer is optically thin at frequencies
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lower than 5 to 10 Hz for these geophysical conditions, and
it allows us to use integrated conductivity of the ionosphere.
Besides, low losses of energy of shear-mode Alfvén waves
at the E-layer heights allow us to neglect the connection of
these waves with isotropic fast compressional waves. This
connection was the focus of Lysak’s (1997, 1999) results.
Therefore, Lysak’s (1997, 1999) model is two-dimensional
while our model is one-dimensional. Note that a single pulse
of Alfv én wave is generated at an artificial action (chemical
release experiment or rocket exhaust gases) in the ionosphere
(see, e.g. Marklund et al., 1987; Gaidukov et al., 1993; Demi-
nov et al., 2001). Therefore, we put a source of Alfvén waves
inside the resonator, more precisely, at the heights close to
the upper border of the E-layer.

The other purpose of this work is to compare character-
istics of the Alfv́en waves generated by a pulse source and
trapped by the resonator with characteristics of the Alfvén
waves generated by a periodic source and retained by the res-
onator. Therefore, two versions of the Alfvén wave genera-
tors – a single pulse and a periodic wave – will be considered
below.

2 Formulation of the problem

Propagation of magnetohydrodynamic waves in three regions
is taken into account: in the upper ionosphere at the heights
h≥h0≈150 km, where the plasma is magnetized and iner-
tial currents are important; in the E layer of the ionosphere
(h0≥h≥hB≈100 km), where ionospheric conductivity cur-
rents are important; and in the electrically neutral atmosphere
betweenhB and the highly conducting surface of the Earth,
where there are no charges and currents if the displacement
current is neglected (see, e.g. Nishida, 1978).

It is assumed that background electric fields and currents
are absent, i.e. the high-latitudes conditions are not con-
sidered. We shall consider only the shear-mode Alfvén
wave, i.e. the effects of transformation of this wave into the
isotropic fast compressional wave will be neglected. There-
fore, in what follows for brevity the shear-mode Alfvén wave
will be called the Alfv́en wave or simply the wave. The sys-
tem of equations for Alfv́en waves in the upper mid-latitude
ionosphere is

1/(µ0V
2
A) · ∂/∂t∇⊥ · E=−∂Jz/∂z, (1)

µ0∂Jz/∂t=−∂/∂z∇⊥ · E, (2)

where thez axis is directed upwards opposite to the geo-
magnetic field (ez=−B0/B0), Jz and ∇⊥·E are the field-
aligned current and divergence of the wave electric field,
respectively, the fieldE is orthogonal toB0, VA is the
Alfv én velocity, andµ0 is the magnetic permeability of free
space. The first equation is deduced from the current conti-
nuity condition and from Ohm’s law for collisionless plasma
J⊥=1/(µ0V

2
A)∂E/∂t (see, e.g. Nishida, 1978). The sec-

ond equation is the consequence of Faraday’s and Amper’s
laws. Note that Eqs. (1) and (2) coincide with the equations

of Lysak’s detailed model (1997, 1999), if in Lysak’s equa-
tions one neglects collisions, assumes that the cross scale of
the wave is not too small, and takes into account that for the
Alfv én wave the following condition is valid:

∇⊥×E=0. (3)

The continuity equation for the current can be written as

∂Jz/∂z+∇⊥ · (J⊥+J ext
⊥

)=0, (4)

whereJ ext
⊥

is the transverse component of extrinsic current
which is considered as a source of waves. Taking into ac-
count Eq. (3), the continuity equation in the conducting layer
can be written as

∂Jz/∂z+∇⊥ · (σpE+J ext
⊥

)=0, (5)

whereσp is the Pedersen conductivity of the ionosphere. For
definiteness, we place the source inside the conducting layer.
In Sect. 5 we shall return to this question and show that our
conclusions basically do not depend of the source localiza-
tion. The conducting layer was assumed to be optically thin,
and Eq. (5) was integrated overz from the bottom up to the
top border of the conducting layer. Taking into account that
at the bottom border of the conducting layer there are no cur-
rents, we obtain the boundary condition for the system of
Eqs. (1) and (2) at the heighth=h0=150 km:

Jz(h0=150 km)=(−6p∇⊥ · E−∇⊥ · ∫ J ext
⊥

dz)/ sinI, (6)

where6P is the height-integrated Pedersen conductivity of
the ionosphere andI is the magnetic inclination. The bound-
ary condition (Eq. 6) is the condition of short circuit of the
source current by conductivity currents and the field-aligned
current of the wave. It allows us not to consider propagation
of the waves at the region below the E-layer.

The processes inside the source are not studied here, there-
fore, we put

−∇⊥ · ∫ J ext
⊥

dz=J0F(t),

where|F(t)|≤1. For this case, the wave is radiated into the
regionh>h0, andJ0 is the amplitude of the field-aligned cur-
rent of this wave close to the source, if energy losses of this
wave in the E-layer are neglected.

The upper boundaryh1 for Eqs. (1) and (2) is located
above the IAR. At this height the condition for radiation of
waves along the geomagnetic field into the magnetosphere
is specified and the subsequent reflection of waves from the
conjugate ionosphere is ignored.

The system of Eqs. (1) and (2) was solved numerically
by the method of characteristics (see, e.g. Rozhdestvensky
and Yanenko, 1978) in the following variables (Riemannian
invariants):

p=∇⊥ · E+RJz, q=∇⊥ · E−RJz, (7)

whereR=µ0VA=1/6A, and 6A is the wave conductivity.
Using these variables, the system of Eqs. (1) and (2) takes
the characteristic form

(1/VA)∂p/∂t+∂p/∂z=D, (1/VA)∂q/∂t−∂q/∂z=D, (8)
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whereD=0.5 (p−q)∂ ln(VA)/∂z. Boundary conditions for
Eq. (8), taking into account Eq. (6), are

p[1+6P /(6A sinI )]−

q[1−6P /(6A sinI )]=2J0F(t)/6A for h=h0,
(9a)

q=0 for h=h1. (9b)

From Eq. (8) it is seen that the wavep propagates only
upwards, andq only downwards. The boundary condition
(Eq. 9b) is the condition for radiation of the whole wave up-
wards into the magnetosphere at the upper boundary, so that
no part of this wave is reflected downwards. Equations (7) to
(9) are the formulation of the problem. Note that the waves
p andq are always present simultaneously in a non-uniform
medium (∂ ln(VA)/∂z 6=0), and the termD in Eq. (8) describes
the redistribution of energy between these waves. In this for-
mulation of the problem the direction of Pointing vector of
the Alfvén wave coincides withJz. Therefore in what fol-
lows the main attention will be given to the dynamics of the
field-aligned currents in the IAR region.

3 Geophysical conditions

From ground-based observations at middle latitudes it is
known that the IAR Q-factor is maximum at night (Belyaev
et al., 2000). Figure 1a shows the altitude distribution (along
the geomagnetic field) of the Alfvén wave refractive index
nA=c/VA obtained using the IRI model (Bilitza, 1997) for
medium solar activity – a relative sunspot numberW=70,
middle latitudes – anL-shell equal to 1.8, in February, at
midnight.

The analytical approximation ofnA altitude distribution
for the F2-layer, where O+ ions dominate, is

nA=nAm exp(0.25(1−x− exp(−x))), x=4(h−hm)/L, (10)

where hm is the height of nA maximum for which
nA=nAm=c/VAm andL is the characteristic scale of thenA

change with height forh>hm. In the case under consid-
erationnAm=407, hm=345 km, andL=240 km. Note that
qualitatively the relationL=L(O+)=2k(Te+Ti)/m(O+)g is
valid for the F2-layer in the region above the layer maxi-
mum. Above the F2-layer, in the protonosphere, where H+

becomes the dominant ion, the characteristic scale ofnA in-
creases with height. At the heights where protons domi-
nate (N (H+)�N (O+)) the scale is given by 1/L=1/L(H+)

=0.5m(H+)g/k(Te+Ti)+∂ ln(B0)/∂z, whereB0 is the geo-
magnetic field and∂ ln(B0)/∂z≈−3/(RE+h). The height
where 1/L(H+)=0 corresponds tonA minimum. In our
case thisnA minimum is located close to 1300 km, and the
protonosphere is located higher than 700 km.

In what follows, the region near thenA maximum is called
the central part of the IAR. The upper and lower walls of the
IAR are located above and below the central part of the IAR
wherenA decreases with distance from this central region. In
the considered case the lower wall of the IAR is very steep
and extends to the upper boundary of the E-layer at 150 km.
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Fig. 1. Dependence on heighth of: (a) the Alfvén wave refractive
indexnA, (dots are the analytical approximation ofnA according to
Eq. (10);(b), (c) relative values of the field-aligned current of the
Alfv én wavesJz/J0 at fixed points in time. Numerals at the curves
are timest in seconds from the turn on of the pulse source. The
duration of the pulse isτ=π /ω=0.68 s.

The upper wall is less steep and extends up to≈1300 km
wherenA=nAmin=66. In this case the condition (Eq. 9b) for
radiation of the wave into the magnetosphere is specified at
the heighth=h1=1500 km, i.e. higher than the IAR.

By analogy with analytical studies of the resonator
(Polyakov and Rapoport, 1981; Lysak, 1991) we designate
the depth of the resonator asε:

ε=nAmin/nAm. (11)

In the considered caseε=0.16.
In Eq. (6) it was taken that the conducting E-layer is opti-

cally thin for the Alfvén wave of frequencyω. This condition
is valid if (see, e.g. Lysak, 1999):

δ=(2/µ0ωσP )1/2
�LP ,

whereδ is the skin-depth,LP is the width of the conductive
layer of the ionosphere,6P =LP σP . In this caseσP =2·10−6

mho/,6P =0.05 mho,LP =25 km, and the conductive layer is
optically thin for frequenciesf =ω/2π�100 Hz. Hence, for
the analyzed range of frequencies 0.1 to 10 Hz the condition
is valid so long as the conductive layer of the ionosphere is
thin.

Note one of the consequences of Eq. (10). For this pur-
pose we take into account that at middle latitudes the change
in height by dh corresponds to a distance along the geomag-
netic fieldds=dh/ sinI . If one accepts that Eq. (10) is valid
at all heights and sinI does not depend on height, then in-
tegration of 2 (nA/c) along the geomagnetic field from the
Earth’s surface up to infinity gives the period of movement of
the Alfvén wave between these boundaries (bounce period):

Tbmax=(1/
√

2) exp(1/4)0(1/4)(L/ sinI )/VAm

=3.29(L/ sinI )/VAm,

where0(1/4) is a Gamma function. In this caseTbmax=1.2 s.
This value ofTbmax remains constant if the bottom border of
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Fig. 2. Dependence on timet of relative values of the Alfv́en wave
field-aligned currentJz/J0 at three fixed heightsh for the emitted
pulse durationsτ=0.2, 0.68, and 2 s. Time is measured from turn on
of the pulse source.

integration is located at the heighth0=150 km. Integration
between the bottom and top borders of the F2-layer (in this
case from 150 up to 700 km) givesTb=1 s. It is seen that
theTb value does not strongly differ fromTbmax and the dif-
ference between them is near 20%. It allows us to assume
thatTb dependence on the ionosphere parameters is similar
to aboveTbmax dependence on these parameters:

Tb=2.7(L/ sinI )/VAm, �b=2π/Tb=2.3(VAm/L) sinI. (12)

Equation (12) can be considered as analytical approxima-
tion of numerical solution of this problem which is applica-
ble for the whole really observed range ofnAm, L andhm

changes in Eq. (10). Comparison ofTbmax andTb shows that
the inaccuracy of such approximation is smaller than 20%.
This property of Eq. (10) is used below for the approxima-
tion of the IAR eigenfrequencies.

4 Single pulse of the Alfv́en wave

Let the functionF(t) in the boundary condition (9a) be

F(t)= sin(ωt) for 0≤t≤π/ω; F(t)=0 for t>π/ω, (13)

i.e. the source radiates upwards (into the regionh>h0) an
Alfv én wave as a pulse of durationτ=π /ω. The field-aligned
current amplitude of this wave near the source is equal toJ0 if
one neglects the Alfv́en wave energy losses into the E-layer.
Below we consider relative changes in the field-aligned cur-
rent of the Alfv́en wavesJz/J0 in the IAR region.

We put frequencyω=4.6 s−1 (f ≈0.7 Hz) which corre-
sponds to the pulse duration of the emitted Alfvén wave
τ=0.68 s. Figures 1b and c show the altitude distribution of

the field-aligned current of the Alfv́en wavesJz/J0 for fixed
times t from the moment the source was switched on. At
t=0.34 s the generated pulse is maximum near the source. At
this time just above the source (h≈150 km) the field-aligned
current isJz/J0=0.925, i.e. the energy losses in the E-layer
do not exceed 7 to 8% (see Eq. 9a), and reflection of the
waves from the IAR lower wall is almost specular. By the
time the source is switched off (t=0.68 s) the pulse maximum
reaches the IAR upper wall. At this timeJz>0 in the whole
IAR region. At further propagation of the pulse some part
reflects from the IAR upper wall and then reflects from the
lower wall. As a result, a region is formed whereJz<0. At
t=0.9 s this region is located below approximately 450 km.
At t=1.1 s a very wide maximum of the pulse reaches the
IAR upper wall. By this timeJz<0 in the whole region of
the F2-layer (200≤h≤600 km) andJz minimum is located
in the central part of this region. This extremum is formed
by p andq waves in whichJz<0 (see Eq. 7). Theq wave
is the wave reflected from the upper wall of the resonator
and after that it reachesJz minimum. Thep wave is associ-
ated with theq waves from previous times where it reached
the lower wall of the resonator, then reflected from this wall
and reachedJz minimum. At t>1.1 s thep and q waves
continue their movement and, having reflected from the res-
onator walls, reach the central part of the resonator again.
They formJz maximum, as at this timeJz>0 in thep andq

waves due to their reflections. In Fig. 1 this maximum is seen
at t=1.5 s. These are just the oscillations of the Alfvén waves
between the resonator upper and lower walls, i.e. the waves
trapped by the resonator. The frequency of these oscillations
is �≈6.9 s−1.

It was noted above that reflections of the waves from the
IAR lower wall are almost specular and the energy losses in
the E-layer are insignificant. The energy losses through ra-
diation to the magnetosphere are important. This is evident
from the sharp decrease inJz/J0 at the heightsh>800 km
at transition fromt=1.1 tot=1.3 s when the main maximum
of the Alfvén wave pulse crosses the IAR upper boundary.
Therefore, most of the energy of the waves trapped by the
resonator is concentrated close to the central part of the res-
onator, i.e. at the heights of the F2-layer. This is evident
from Fig 2, whereJz/J0 dependences on time at three fixed
heights are shown for different durations of the emitted pulse
of the Alfvén wave. Secondary maxima ofJz/J0 are most
distinct near the IAR central part at the heighth=400 km, but
they are much weaker ath=600 km and practically absent at
h=200 km. At the height of 400 km the intervals between
maxima, beginning with the second maximum (for a short
pulse, with the third one), almost do not depend on the emit-
ted pulse duration:T =0.91±0.04 s. The valueT ≈0.91 s is
the fundamental period of the IAR which corresponds to the
fundamental frequency of the resonator�≈6.9 s−1.

The frequency� is determined by internal properties of
the resonator, i.e. depends only on the altitude distribution of
the Alfvén wave refractive indexnA in the resonator region.
An approximation of this dependence, taking into account
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Eq. (10), is

�≈2.6(c/nAmL) sinI≈2.6(VAm/L) sinI. (14)

The fact that most of the wave energy trapped by the res-
onator is concentrated at the F2-layer heights was taken into
account in deducing Eq. (14). Therefore,� dependence on
the ionosphere parameters is similar to the one for�b (see
Eq. 12). Calculations show that for night hours at middle lat-
itudes Eq. (14) is valid for any level of solar activity and for
any season with a deviation of less than 15 to 20%.

If approximation (Eq. 10) is used, the IAR fundamen-
tal period corresponds approximately to the double time of
the Alfvén wave propagation from 200 up to 600–650 km.
Hence, almost the whole F2 region participates in the for-
mation of the trapped waves. Heighth∗

≈hm+L/4≈400 km
corresponds to the half time of the wave propagation at the
distance from 200 to 650 km. This height corresponds to the
area of peak values ofJz/J0 in the trapped waves, as super-
position of the waves reflected from the top and bottom walls
of the resonator occurs in this area (see Figs. 1 and 2). The
distance from 200 km up tohm is half the interval fromhm

up to 650 km, and for qualitative estimations one can take
the characteristic scale ofnA change in the region of the res-
onator bottom wall to be equal to 0.5L.

The waves trapped by the resonator are damped out (see
Fig. 2). Their characteristic damping timeτdec can be found
from the ratio ofJz/J0 maxima in the central part of the res-
onator, beginning with the second maximum, i.e. the ratio of
the second maximum to the third one, etc. In the considered
caseτdec/T ≈0.95±0.1 irrespective of the emitted pulse du-
ration. Additional calculations at fixed T show thatτdec∼1/ε

for the case when energy losses of the waves in the E-layer
can be neglected. Similar dependence ofτdec on ε also fol-
lows from the analytical solution of the problem for a peri-
odic source (Belyaev et al., 1990). Therefore, approximately

τdec=(0.15/ε)T =(0.15/ε)2π/�. (15)

Calculations for mid-latitude winter conditions at near-
midnight hours at low, middle and high solar activity show
that the inaccuracy of approximation (Eq. 15) does not ex-
ceed 10 to 15%. Nevertheless, it should be noted once more
that this approximation is applicable only for a case when
energy losses of the waves in the E-layer can be neglected.

The resonator Q-factor is usually calculated as a ratio of
the real part of the resonator eigenfrequencyω∗ to its imag-
inary part: Q=0.5 Re (ω∗)/Im(ω∗). In the considered case
Re(ω*)=�, Im(ω∗)=1/τdec for the trapped waves, and it fol-
lows from Eq. (15) that the IAR Q-factor for these waves is

Q≈0.5/ε. (16)

For the reasons noted above this equation is valid only for a
version when energy losses of the waves in the E layer can
be neglected.

The amplitude of the trapped waves (Jz/J0)max depends on
the duration of the emitted pulseπ /ω. Here (Jz/J0)max has its
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Fig. 3. Amplitude-frequency characteristics of the resonator for a
single pulse(a) and a periodic wave after a stationary state has been
attained(b). (Jz/J0)max is the maximum of the relative value of the
Alfv én wave field-aligned current in the resonator region,ω is the
wave frequency,� is the IAR fundamental frequency.

greatest value at the second maximum ofJz/J0 in the height
interval 200 to 650 km. This amplitude is maximum when

ω=ωR≈�/1.5. (17)

The frequency ωR corresponds to the pulse duration
τR=π /ωR, and from Eq. (17) it follows that the amplitude
of the waves trapped by the resonator is maximaum at the
emitted pulse duration

τ=τR≈(3/4)T .

We nameωR as the optimum frequency of the emitted pulse.
It is seen that this frequency is smaller than the resonator fun-
damental frequency�. It is caused by the fact that (Jz/J0)max
is formed as a result of superposition of the waves reflected
from the resonator bottom and top walls which have been
formed by one pulse of the wave emitted upwards. The wave
reflected from the resonator bottom wall passes twice to the
IAR central part, more precisely, to the heighth∗

≈400 km:
it is reflected from the lower part of the top wall and then
is reflected once more from the bottom wall. The wave re-
flected from the upper part of the resonator top wall passes
once toh∗. The numerical coefficient 1.5 in Eq. (17) cor-
responds to optimum conditions when the times of passage
of these waves are in agreement between themselves. Note
that the characteristics of the Alfvén wave shown in Fig. 1
correspond to the optimum duration of the emitted pulse
τ=τR=π /ωR=0.68 s.
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Table 1. Parameters of maxima at the amplitude-frequency characteristic of the resonator for a periodic source obtained from the numerical
solution of the problem and from approximation of the resonant frequencies by Eq. (19) (ωn/�)ap.

N 1 2 3 4 5 6 7 8 9

ωn/� 1.00 1.69 2.33 2.94 3.55 4.06 4.61 5.19 5.79
(Jz/J0)max 1.63 1.37 1.31 1.42 1.53 1.60 1.67 1.68 1.70
(ωn/�)ap 1.00 1.66 2.30 2.92 3.52 4.11 4.68 5.23 5.76
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 Fig. 4. Dependence ofJz/J0 on timet at the fixed height 400 km
for the periodic source with the frequencyω=�=2π /T , whereT is
the IAR fundamental period.

Dependence of (Jz/J0)max on the emitted pulse duration
is shown in Fig. 3a more evidently. A clear main maxi-
mum (Jz/J0)max=0.235 is seen in it which corresponds to
the frequencyωR=�/1.5. At a lower frequencyω/�≈0.2
an additional maximum is seen where (Jz/J0)max=0.192.
For ω/�<0.2 the amplitude of the trapped waves decreases
quickly with decreasing frequency, despite the increase of
time integrated energy in the pulse emitted by the source.
The frequency of the waves trapped by the resonator is
close to�. These waves are generated by a pulse from
the source, and each of the trapped waves is damped out.
If the frequency isω��, then only the waves generated
during the last passage of the emitted pulse through the res-
onator can be detected as trapped waves separately from this
pulse. The characteristic time of this pulse decrease is ap-
proximately equal to 1/ω. The trapped waves can be de-
tected separately if this time is smaller than the characteristic
time of damping of the trapped waves (see Eq. 14), i.e. if
1/ω<2π/� or ω/�>1/2π≈0.16. The low-frequency maxi-
mum atω/�≈0.2 corresponds to this condition.

5 Periodic Alfvén wave

Let functionF(t) in the boundary condition (Eq. 9a) be

F(t)= sin(ωt) for t≥0, (18)

i.e. the source is switched on at timet=0 and radiates a pe-
riodic Alfv én wave. After some time a periodic process will
be established in the resonator region whose amplitude will
not vary in time.

The process of a steady-state establishment forω=� is
shown in Fig. 4. It is seen that it takest≈8T for the solu-
tion to come to a steady-state whereT =2π /�. But even at
t=4T the amplitude of the waves retained by the resonator is
not very different from the maximum one: (Jz/J0)max=1.55,
1.62 and 1.63 att=4T , 8T , and 10T .

Figure 3b shows the amplitude-frequency characteristic of
the resonator for the steady-state situation, where (Jz/J0)max
is the greatest value ofJz/J0 maximum in the height interval
200 to 800 km. It is seen that for a wide range of frequen-
cies (Jz/J0)max>1, i.e. the energy which has come from a
periodic source can be stored by the resonator and exceed
the losses due to radiation into the magnetosphere. At the
amplitude-frequency characteristic of the resonator a num-
ber of maxima can be seen. The frequencies corresponding
to these maxima are resonant frequencies.

Table 1 gives the resonant frequenciesωn and (Jz/J0)max
values for the steady-state situation. The approximation of
these frequencies for 1≤n<10 is

ωn=�
[
(n+0.5)/1.5−0.009(n−1)2

]
. (19)

Table 1 shows that the approximation (Eq. 19) is suffi-
ciently exact. Note that the contribution of the nonlinear
term in Eq. (19) becomes appreciable only at n>5. There-
fore, it can be neglected in most cases of practical interest.
In Fig. 3b, the most clear (Jz/J0)max maximum is seen at the
fundamental resonant frequencyω1=�. As the frequency in-
creases, the (Jz/J0)max maxima become less distinct. The
main part of energy of the waves retained by the resonator is
concentrated close to the central part of the resonator in the
height intervalh≈hm±0.25L. It is evident from Fig. 5, that
the dependences ofJz/J0 on height are given for the first four
resonant frequencies at fixed points in time when for each of
these frequencies the (Jz/J0)max value becomes maximum at
one of these points. In the considered case these maxima
are located at the heights 390, 340, 315 and 295 km for the
resonant frequenciesω1, ω2, ω3, andω4, correspondingly.
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Table 2. Dependence of the resonator eigenfrequencies on factorK

in Eq. (20).

K ω ω2/� ω3/� ω4/� ω5/�

0.6 6.19 1.67 2.30 2.90 3.48
0.8 6.67 1.67 2.28 2.87 3.44
1.0 7.02 1.67 2.27 2.86 3.44
1.2 7.25 1.67 2.27 2.86 3.44
1.4 7.43 1.67 2.27 2.86 3.44

The resonant frequenciesωn are eigenfrequencies of the
resonator. In order to check this conclusion we have in ad-
dition solved the problem on eigenvalues when in the initial
Eq. (8) the derivative on time is replaced with the complex
frequency which was determined from the problem solution.
The real values of the resonator eigenfrequencies obtained
from this solution differ from the approximation (Eq. 19) by
less than 4% forn<10. It implies, in particular, that resonant
frequencies will not change if the periodic source is placed
in the magnetosphere, under the additional condition that the
emitted wave frequency does not change over the wave prop-
agation way from the source to the IAR.

Note that if one sets formallyn=0.5 in Eq. (19) then the
optimum frequencyωR can be obtained for a single pulse
(Eq. 17) when the amplitude of the waves trapped by the
resonator is maximum. Nevertheless, the difference be-
tween dependences of amplitudes of trapped and retained
waves on frequency is essential. For example, Fig. 3 shows
that for a periodic source with frequencyω=ωR the am-
plitude of retained waves corresponds to a local minimum
((Jz/J0)max=0.98), i.e. the energy of the waves with this
frequency is not accumulated by the resonator. For a sin-
gle pulse of durationτ=π /ωR the amplitude of the trapped
waves is maximum ((Jz/J0)max=0.235). In turn, optimum
conditions for trapping the waves are at a pulse duration
which does not correspond to an eigenfrequency of the res-
onator, therefore, the amplitude of the waves trapped by the
resonator is relatively low even for optimum conditions.

The above estimations were obtained for a specific kind of
dependence of the Alfv́en wave refractive indexnA on height
h (see Eq. 10). In a more general case one can assume that
in Eq. (10)

x=4(h−hm)/L for h≥hm, x=K4(h−hm)/L for h≤hm, (20)

whereK is a numerical factor for the IAR bottom wall. The
interval 0.6≤K≤1.4 seems to overlap a possible range ofK

change for typical daytime and nighttime conditions at mid-
dle and high latitudes. Analysis showed that for this range of
K change the resonator fundamental frequency� depends
on K but ωn/� values almost do not depend onK, at least,
for n≤5. It is seen more evidently from Table 2 where results
of the solution of the problem on eigenvalues are shown for
the case when for the intervalh0≤h≤hm the approximation
(Eq. 10) is used in whichx is described by Eq. (20). For the
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Fig. 5. Altitudinal distributions of relative values of the field-
aligned currentJz/J0 for four resonant frequencies at fixed points
in time t which correspond toJz/J0 maximum in the IAR.

intervalhm≤h≤h1 the IRI model is used as before. Table 2
shows that in the interval 0.6≤K≤1.4 the fundamental fre-
quency� changes approximately by 20% and changes in the
resonant frequenciesωn/� do not exceed 2%. The difference
betweenωn/� values given in Table 2 and the approximation
(Eq. 19) does not exceed 2–3%. It implies that Eq. (19) for
n≤5 is almost universal, i.e. it is applicable for a wide range
of geophysical conditions, including day hours. More de-
tailed analysis of this property of IAR is beyond the scope of
this paper.

6 Discussion

The above stated dependences of� andQ onnA altitude dis-
tribution were obtained on the basis of the analytical approx-
imation of the problem numerical solution. Similar depen-
dences were obtained on the basis of analytical solution of
the problem on eigenvalues with simplifying assumptions of
nA distribution (Polyakov and Rapoport, 1981; Lysak, 1991,
1999). We compared both results using the above notations
and neglecting energy losses of the waves in the E layer. For
the version when sinI=1,

n2
A=n2

Am(ε2
+ exp(−2(h−hm)/L), h≥hm

n2
A=n2

Am, hm>h≥h0
(21)

andεωL/VAm�1 it was obtained (Polyakov and Rapoport,
1981) that the fundamental frequency and Q-factor of the res-
onator on this frequency are

�=1.25πVAm/(L+1h), Q=(1+1h/L)/(πε), (22)

where1h=hm−h0. For the above values ofhm=345 km,
h0=150 km, andL=240 km used we obtain1h/L=0.81,
�=2.2VAm/L, andQ=0.6/ε. It is seen that the analytical re-
sults (Eq. 22) are not strongly different from the numerical
ones (Eq. 14) and (Eq. 16). Nevertheless, the altitude dis-
tribution (Eq. 21) apparently occurs seldom. In order to ap-
proach a realistic situation, another sense should be given to
1h in Eq. (22) – that it is the characteristic altitudinal scale of
change of the Alfv́en wave refractive index at the resonator
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bottom wall. As obtained above for thenA altitudinal dis-
tribution in the form (Eq. 10), its characteristic scale at the
resonator bottom wall is approximately equal to 0.5L, i.e.
1h/L=0.5. Substitution of this1h value into Eq. (22) gives
�=2.6VAm/L, Q=0.5/ε, which coincides with Eqs. (14) and
(16) at sinI=1.

For a simpler version when sinI=1, thenA altitude dis-
tribution is described by Eq. (21) withh≥hm, the bot-
tom boundary condition is specified at the heighth=hm,
and εωL/VAm�1; Lysak (1991) obtained that eigenfre-
quencies of the resonator are determined by the condition
J0(ωL/VAm)=0, whereJ0 is Bessel function. Recall that the
first five zeroes ofJ0 are 2.40, 5.52, 8.65, 11.79, and 14.93.
Hence, the resonator fundamental frequency� is equal to
2.4VAm/L (Lysak, 1991), and

ωn≈�[1.305n−0.305], 1ω=ω(n + 1)−ω(n)≈1.305�. (23)

One can see that the fundamental frequency� differs
weakly from Eq. (14) at sinI=1, but the interval1ω is
approximately twice the interval resulted from Eq. (19):
1ω≈0.67�. As an illustrative example, Eq. (19) is written
for n=1, 3, 5, i.e. for the first odd values ofn:

ω2n−1≈�[(2n−1)+0.5]/1.5≈�(1.33n−0.33). (24)

The odd eigenfrequencies in Eq. (19) are seen to be very
close to those obtained by Lysak (1991). It was noted above
that the scale of the resonator bottom wall is approximately
equal to 0.5L. Therefore, simultaneous account of the upper
and lower parts of the resonator results in the occurrence of
additional eigenfrequencies which correspond to even values
of n in Eq. (19).

We did not take into account Hall currents, therefore we
cannot compare our results with ground-based observations.
Nevertheless, we can present here some preliminary estima-
tions. For daytime conditions at high latitudes on the basis
of the solution of the general problem for a periodic source,
Lysak (1999) has obtained that in addition to the fundamental
frequencyF=f1=0.2 Hz there are two additional maxima:
f2=0.33 Hz andf3=0.5 Hz. Equation (19) can be rewrit-
ten asfn≈F(n+0.5)/1.5. From this equation it follows that
f2=0.33 Hz andf3=0.47 Hz, ifF=0.2 Hz. It is seen that the
frequencies obtained by Lysak coincide almost exactly with
the approximation (Eq. 19). The ground effect of these waves
has appeared essentially different: amplitudes of the waves
f1 andf3 are approximately 3 times asf2 amplitude (Lysak,
1999). Therefore, on data of observations in the region of the
resonator the interval1f will be smaller than on the ground-
based data (Lysak, 1999).

A similar conclusion can be deduced from data of
ground-based observations of the spectral resonance struc-
ture (SRS) at middle latitudes (L-shell is approximately
equal to 2.65) in winter close to midnight at solar mini-
mum. For these conditions the F2-layer critical frequency
foF2 ≈2.5 MHz; 1f =1ω/2π≈2 Hz is the typical value but
sometimes1f ≈1 Hz (Belyaev et al., 1990). This gives
VAm≈870 km/s, sinI≈0.9. For these conditionsL≈210 km,

if the estimations are based on the IRI model (Bilitza,
1997). Substitution of these values into Eqs. (14) and
(19) gives the fundamental frequencyF=�/2π≈1.5 Hz and
1f ≈F /1.5≈1 Hz. The obtained value is seen to coincide
with the minimum1f interval of observed ones and is ap-
proximately half the typical value of1f ≈2 Hz. Hence, in
accordance with Lysak’s (1999) conclusions, ground-based
observations show that the even eigenfrequencies of the IAR
for the shear-mode Alfv́en waves (f2, f4, ...) are suppressed
and distinguished less clearly than the odd eigenfrequencies.
These results show that taking into account the isotropic fast
compressional waves is important for analysis of the ground-
based data. At the same time the results of analysis by ne-
glecting of these waves presented in this paper have allowed
us to obtain explicit dependences of characteristics of the
shear-mode Alfv́en waves on the distribution of the Alfvén
wave refractive index along the geomagnetic field, and thus
have enabled us to compare illustrative data obtained by a
number of different ways and under different geophysical
conditions.

7 Conclusions

A numerical solution of the problem on the dynamics of
Alfv én waves in the IAR region at middle latitudes at night-
time is presented for a case when a source emits a single
pulse of Alfvén waves of durationτ into the resonator region.
It was obtained that a part of the pulse energy is trapped by
the resonator, i.e. damped Alfvén waves trapped by the res-
onator are formed. It was found that the amplitude of the
trapped waves depends essentially onτ and it is maximum
at τ=(3/4)T , whereT is a fundamental eigenperiod of the
resonator. The maximum amplitude of these waves does not
exceed 30% of the initial pulse even under optimum condi-
tions. Relatively low efficiency of trapping Alfv́en waves is
caused by the difference between the optimum duration of
the pulse and the resonator fundamental period. The period
of oscillations of the trapped waves is approximately equal
to T , irrespective of the pulse durationτ . The characteris-
tic time of damping of the trapped waves is proportional to
T , therefore the resonator Q-factor for such waves does not
depend onT .

The situation changes dramatically when a source emits
periodic Alfvén waves. The amplitude of the waves com-
ing from such a source can be increased in the resonator re-
gion by more than 50%. This implies that the resonator can
accumulate and retain the energy of the Alfvén waves, de-
spite energy losses due to radiation into the magnetosphere.
The amplitude of the waves in the IAR is maximum on the
resonator eigenfrequenciesωn and this effect is most pro-
nounced when the frequency of the source coincides with the
resonator fundamental frequencyω1=�=2π /T . The interval
between the first adjacent eigenfrequencies of the resonator
is 1ω≈�/1.5.

For a single pulse the effective frequencyω=π /τ=�/1.5
is optimum. For a periodic source the dependence of am-
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plitude of the retained waves on frequencyω is such that
ω=�/1.5 corresponds to a local minimum and the waves of
such a frequency do not accumulate energy in the resonator
region. This alone is the basic difference between efficien-
cies of pulse and periodic sources of the Alfvén waves.

Explicit dependences of the resonator fundamental fre-
quency�, harmonics of this frequencyωn, characteristic
time of damping Alfv́en waves trapped by the resonator, and
the resonator Q-factor for these waves on altitude distribution
of the Alfvén wave refractive index were obtained. These
dependences are analytical approximations of the numerical
solution of this problem. These dependences were compared
with the ones obtained previously by other methods.
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