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Abstract. Magnetospheric cusps are regions which are char- Savin et al. (2002a, b) have found that fluctuations at
acterized by highly turbulent plasma. We have used Poladifferent frequencies form wave trains suggesting multi-
magnetic field data to study the structure of turbulence inscale, intermittent processes operating in the TBL. They have
the cusp region. The wavelet transform modulus maximashown that the three-wave, nonlinear interaction is responsi-
method (WTMM) has been applied to estimate the scalingble for strongest wave trains. However, magnetic turbulence
exponent of the partition function and singularity spectra.in TBL is dominated by, albeit weak, random-like fluctua-
Their features are similar to those found in the nonlinear mul-tions with smooth, continuous spectrum, which cannot be
tifractal systems. We have found that the scaling exponentdequately studied with the bi-spectral, or even tri-spectral
does not allow one to conclude which intermittency modelanalysis. In this case we have to resort to more sophisticated
fits the experiment better. However, the singularity spectramethods of data analysis, which make use of the higher order
reveal that different models can be ascribed to turbulence obstatistics.

served under various IMF conditions. For northward IMF Experiments provide ample and unguestionable evidence
conditions the turbulence is consistent with the multifractal that turbulence is not adequately and fully specified by spec-
p-model of fully developed fluid turbulence. For southward tral analysis alone (e.g. Frisch, 1995; Paladin and Vulpi-
IMF experimental data agree with the model of non-fully de- ani, 1987). The power spectrum, being related to a second
veloped Kolmogorov-like fluid turbulence. moment of the probability distribution function (PDF), fully

Key words. Magnetospheric physics (magnetopause, Cusp’olescribes fluctuations if they have a Gaussian PDF. In this

and boundary layers) — Space plasma physics (turbulenc&ase' the turbulence is scale-invariant and self-similar. In the
nonlinear phenomena) intermittent turbulent media, the PDF is increasingly non-

Gaussian at smaller scales, turbulence is no longer scale-
invariant, and higher order moments are needed to charac-
terize properties of the fluctuating field.
1 Introduction Intermittency is observed in turbulent fluid flows (e.g.
Frisch, 1995), as well as in the magnetohydrodynamic turbu-
A region just outside and/or at the near-cusp magnetopaustent media, such as a solar wind (e.g. Marsch and Tu, 1997;
that is characterized by strong and persistent magnetic turbu=lorbury et al., 1997; Sorriso-Valvo et al., 2001). Several in-
lence is known as the turbulent boundary layer (TBL) (Savintermittency models have been proposed. The multifrgetal
et al., 1998, 1999, 2002a, b; Pickett et al., 2002). Magnetignodel by Meneveau and Sreenivasan (1987, 1991) seems to
field fluctuations are observed over broad range of frequen¥reproduce fluid experiments better than other models. Car-
cies from<0.01 Hz, up to the electron cyclotron frequency, bone (1993) adopted the-model to the case of developed
typically hundreds of Hz to few kHz. The energy density of MHD turbulence. Motivated by the MHD turbulence ob-
the ultra-low frequency<1 Hz) fluctuations is comparable served in the solar wind, this model has been extended to
to the ion kinetic, thermal, and DC magnetic field densitiesthe case of still developing, evolving turbulence (e.g. Tu et
(Savin et al., 2002a). Such strong turbulence could be ven@l., 1996; Marsch and Tu, 1997). The model successfully de-
effective in the mass transport into the cusp, and may causgcribes the power spectrum evolution in high-speed streams.

acceleration and heating of plasma. Unlike in the p-model, which depends on a single intermit-
tency parameter, the so-called extended structure-function
Correspondence tdE. Yordanova model introduces a second parameter characterizing the scal-

(eya@cbk.waw.pl) ing properties of the space-averaged cascade rate.
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In this paper we analyze the scaling properties of turbu-a location of the singularity in the signal. Muzy et al. (1994)
lence in the polar cusp of the magnetosphere, as revealechll modulus maximum of the wavelet transform, “any point
by magnetic field fluctuations measured on board the Polafxg, ap) of the space-scale half-plane which corresponds to
satellite. In Sect. 2 the method of analysis is described. Wehe local maximum of the modulus af,[g](x, ap) consid-
used the wavelet transform modulus maxima method, whickered as a function af”, and the curve which connects the
was reviewed, for instance, by Muzy et al. (1994) and Ar- modulus maxima is the maxima line. The coefficients of
neodo et al. (1999). The method allows one to determine théhese maxima (which are a small fraction of the total number
scaling properties of measured fluctuations for negative moof coefficients) are enough to encode the information con-
ments. Results of analysis are discussed and compared witlained in the signal. This allows for the calculation of the
the models of energy cascade for turbulence in Sect. 3. Irsingularity exponents by a power law fit of the wavelet co-
Sect. 4 we present the physical interpretation of results anefficients along the maxima line. This approach, introduced
conclusions. by Mallat and Zhong (1992), is called a wavelet transform
modulus maxima (WTMM) method.

The main disadvantage of using the structure function
method in characterizing the singular structure of a function
is that it often diverges fog <0. In the WTMM method, in
order to avoid this effect, at a given scale, one calculates the
partition function as a sum over local maxima of the modulus
of the wavelet transform (Muzy et al., 1991). The wavelet-
based partition function is defined as:

q
2g0= ¥ (spme@).0l) . @
whereL>>>[ is the length of the signal. It should be noted that leL(a) \@'=a

the structure function exhibits exponential scaling only if the
turbulence is “locally” self-similar at a scale ndar scalea, andb; (a) is the position, atz, of the maximum be-

By Legendre transforming the scaling exponertg) of longing to the lind. Each lind={b;(a), a} is pointing (when

the structure functions one can obtain the singularity spec- : . :
. . . oes to Q) towards a poinb; (0) which corresponds to a sin-
trum D(h), defined as the fractal dimension of the set of ¢ 9 9 poink; (0) P

. . ; . L gularity of g. Because one does not sum over places where
pqmts with the tblder (_axponenh. According to Par.|S| and the wavelet modulus is zero, the partition function is also de-
Frisch (1985)D(h)=m|nq (qh—g“(q)+l). TO. quantify the fined forqg <O0. If g(x) is self-similar, then along the maxima
fractal properties of a function one should find a set of Ioc;a-Iine the partition function behaves like:
tions of the singularities and estimate the values of thkler
exponent. Z(g,a)~a™ . 4)

As has been shown by Muzy et al. (1991)(for a compre- ) _ ) _
hensive review, see Muzy et al., 1994), the wavelet trans-1N€ Singularity spectrund(h) is obtained by the Legendre

form is a very suitable tool to detect singular behavior of transform of the functior (¢):

2 Method of analysis

The multiscaling properties of fully developed turbulence
are conventionally investigated by calculating théh order
structure functions of a measured fluctuating paramgter

L
Sy () = %/ lg (x +1) — g (x)|9dx ~ I°@D, 1)
0

where L(a) is a set of all the maxima linelsexisting at a

self-similar functions. In the wavelet transform, one approxi- (h) = inf (gh — 7 (q)) . (5)
mates a functiorg as a sum of properly weighted basis func- q
tions: Thus the relation between the scaling exponent of the struc-
1 x—b i is:
Ty el (b, @) = : / ¢ ()Y ( - >dt, (2) lure functionz (¢) and the WTMM exponent (q) is:
(@) =1+1(q). (6)

wherea is the scale (or inverse frequency)is the dilation
or translation parameter. For our purpose we L$eorm The spectrum of the scaling exponent is an important statisti-
wavelet transform and a real valued transforming function cal characteristic of the turbulent field. When derived exper-
called mother wavelet. The mother wavelet is chosen to bementally it can be compared to that given by models of the
well localized in both space and frequency. Itis also requiredturbulence. In the case of local, fully developed, isotropic
thaty have a certain number of vanishing moments. For in-fluid turbulence (Kolmogorov, 1941) the structure function
stance, thev-th order derivative of the Gaussian function has scaling exponent(p) behaves likep/3. In the MHD analog
N vanishing moments, while the Haar wavelet, which is the of the turbulence (Kraichnan-lroshnikov theory)(Kraichnan,
equivalent wavelet for the structure function, has only onel965; Iroshnikov, 1963) the scaling exponentpigd. But
vanishing moment. The wavelet transform can be considerethe experiments on fluid turbulence and observations show
as a decomposition of the functigrinto space-scale contri- that the spectrum of the scaling exponent is nonlinear. This
butions. nonlinear behavior is interpreted as an intermittency phe-
Mallat and Hwang (1992) have shown that singularities innomenon and as a direct consequence of the existence of spa-
g produce a maximum in the modulus of the wavelet trans-tial fluctuations in the local regularity of the velocity field.
form coefficients and that at small scales this maximum givesThe intermittency can be simply visualized by plotting the
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Fig. 1. Total magnetic field3 (upper panel) and differenceésB(r)=B(t+At)— B(¢). Right plots show the probability distribution function
of AB normalized to its standard deviation. The dotted curve represents the equivalent Gaussian distribution. Kurtosis and skewness are als
given. The data segments used in the analysis are marked with vertical lines in the upper panel.

probability functions of fluctuations for various scales. If for were taken in the northern cusp region, at MLT from 12:17
small scales the PDF is spiky, with stretched wings, and ago 12:50, magnetic latitudes between 55.46 and 70.&8d
scale increase, it becomes closer to Gaussian, then we say wiéstance to the reference magnetopauseR-4The bottom
are dealing with the intermittency. panels show the differencesB(t)=B(t+At)— B(t) for the
time delaysAr=7, 29, 117, and 612 s and probability distri-
bution function ofA B normalized to its standard deviation.
3 Results of data analysis and comparison with models  The equivalent Gaussian distribution is plotted for compar-
ison. Time delays are chosen arbitrarily, just to show the
Magnetic field data from NASA Polar satellite (Russell et gifferences in the behavior of the PDF for different delays. It
al., 1995) are used in this study. The Magnetic Field Ex-js seen that the larger the time delay, the closer to the Gaus-
periment provides three components of the magnetic fielcsjan the PDFs are. At small delays, distributions are spiky
sampled with the frequency 8.333Hz. The total magneticand have extended wings. The degree to which PDFs de-

field B for 9 October 1996 is plotted as a function of uni- part from the Gaussian can be quantified with kurtosis and
versal time in the top panel of Fig. 1. The measurements
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tice being aware, however, of the problem.

Fig. 2. Segment of data shown in Fig. 1 (top panel), its spectrogram The top panel of Fig. 2 shows a segment no. 5 of magnetic

(middle panel), and the map showing locations of the modulus maxfield fluctuations. In the middle panel of Fig. 2 the spec-
ima (lower panel). trogram (modulus of the wavelet transform) is given. The

mother wavelet used here is the 4th order derivative of the

Gaussian function. This wavelet makes possible the accurate
skewness. One can see that for small delays the kurtosis i@etermination of the location of singularities (Muzy et al.,
considerably different from zero, meaning that higher order1994). Long “fingers” extending from low to high frequen-
statistics is needed for a full characterization of the PDFs ofcies are signatures of singularities. The bottom panel shows
fluctuations and that the cusp turbulence structure appears irihe lines of modulus maxima of the wavelet transform.
termittent, singular. Note, however, that the skewness differs Figure 3 compares the Fourier (solid line) and wavelet
from zero only slightly. (dashed line) power spectra. Both spectra agree quite well.

To find the singularity spectrum we used the WTMM Note that the spectrum is feature-less and continuous. We

method described in the previous section. The data set haghould mention, however, that segments nos. 1 and 4 exhibit
been divided into seven segments, each 8192 samples long.small but distinct maximum around 0.3 Hz. The spectrum
By using the short data segments we tried to avoid the efseems to follow a power law dependente® on the fre-
fect of non-stationarity. At this point we wish to note that we quency witha=2.36+0.04 over the frequency range 0.06—
made use of the ergodic and Taylor hypotheses. The first on8.78 Hz. The spectral indicesfor other segments fall into
is necessary to replace the ensemble averages by spatial ae range from 1.87 to 2.62, with the mean 2.27. Smallest
erages. Taylor's “frozen turbulence” hypothesis allows onew« index is observed for a segment no. 3, and largest one for
to replace the spatial statistics with temporal statistics. Ac-a segment no. 1. Recently, Savin et al. (2002a, b) reported
cording to this hypothesis, the entire spatial pattern of turbu-w~2.3 at 0.1-0.5Hz and~1.1 at 0.004-0.05 Hz for Polar
lence is transported past the probes with a constant speeih the core TBL.
To verify experimentally the validity of Taylor hypothesis  Figure 4 shows the behavior ofg) exponents (dots) de-
one should have access to the spatiotemporal data, for whictived from WTMM for powerq in the range-4 to +4. Given
spaced-probe measurements are necessary. For the case arrelatively small number of samples in our data segments,
der consideration, the mean drift spe®gl calculated from  we did not attempt to perform calculations for largerWe
the electric and magnetic field Polar data, is of the order ofnote that the partition function (3) was calculated only for
100 km/s. We assume that turbulent eddies of all sizes conthose lines of modulus maxima that extended in frequency
sidered here have an intrinsic speed much smaller than over more than 2.5 octaves. To avoid the effect of noise,
and are convected with this high speed past the probe mowve considered only frequencies lower than one-fifth of the
ing with the velocity~2 km/s. We should note that coherent Nyquist frequency, i.ex0.8 Hz. The rms error of is small,
structures present in the turbulent flow and associated wittof the order of 102, and error bars are not discernible on
the velocity bursts might invalidate both ergodicity and Tay- the t(q) plot. However, the test computer runs show that the
lor hypotheses. In spite of that, most experimental resultserror increases if shorter lines are included in the partition
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Y Kraichnan —_ Sincea=1(2)+2, the maximum spectral index=2 allowed
-1 P,=0.84 a=2.22 | by the model is achieved faP;=1. However, as pointed out
§°'="8°7‘Ig"°&’= 217 by Tu et al. (1996), the spectral index directly calculated from
|—m<;del the power spectrum does not need to be the same as that de-
B|=o,95 rived from the structure function. We wish to add that the
-2 . . . same is true for (2). This is due to the fact that two meth-
0 1 2 3 4 ods give different weighting across time scales. For instance,
q in our exampler (2)=—0.02+0.02, thereforex=1.98+0.02,

which differs from the power spectrum index 2:36.04.
Fig. 4. Comparison between the experimentg}) (dots) and best-  The dashed line in Fig. 4 represents the best¢fjt for the
fit model scaling exponent. The bottom plot shows the results of p-model. We can see that themodel departs from obser-
fitting for z(¢) limited to ¢>0 and, for comparison, the scaling ex- vation for the positive poweg. As a quantitative measure
ponent of the structure function (squares). The error bars give thgor the goodness-of-fit we used the chi-square test (Press et
standard deviations of the least-squares fits. In spite of different Pay|., 1986). Table 1 shows the valuesRifwith their rms er-
rameters, curves for Kraichnan-like and Kolmogorov-like models . anq the probability) that the computed fit would have a
are practically indistinguishable on this plot. value x 2 (the sum of squared differences between the fit and
data) or greater. ID is small, then the differences between
] ] ) observations and model are unlikely to be random fluctua-
function calculations and the range @fis increased. The  jons and the model can be rejected. Except for the data set
points in Fig. 4 appear to form a curved line rather than a3 ihe theoreticap-model cannot be fitted satisfactorily to
straight line, which means that the turbulence is indeed interyne gbservational results.
mittent. Tu et al. (1996)(see also Marsch and Tu, 1997) introduced
We attempted to compare experimental results with sevan intermittency model that applies to the turbulence not fully

eral intermittency models. The simplest multifractal cascadedeveloped. They derived the following scaling functions for
model is thep-model (Meneveau and Sreenivasan, 1987,the Kolmogorov-like cascade:

1991), in which the energy cascade flux transfers from the 5 3 /3 s
larger eddy to two smaller eddies with the same scale sizef (¢) = (—z + 30') £ —log, [Pl + 1 - P/ ]

bl_Jt with differe_n_t.flux portions defined by.rando.mly dis- , — o + % — log, P12/3+ 1— Pl)2/3] (8)
tributed probabilitiesP; and P,=1—P;. The intermittency

parametet”; describes the spatial inhomogeneity of the cas-and for the Kraichnan-like cascade:

cade rate. For the case without intermitteri®gy0.5, while (L nNg q/4 _ 4/4]

for fully intermittent turbulenceP;=1. For thep-model the 7(q) = (-3+2) 7 -~ log, [Pl +d=Py 9)
partition function scaling exponent is given by: o =o' + 3 —log, [Pll/z +@1- Pl)l/z] .

/3 5 These extended intermittency models depend on two pa-
7 (q) = —log, [Pf + @1 - P/ ] (7)  rameters, the intrinsic spectral index and intermittency
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— models, Kraichnan- or Kolmogorov-like, better describes the
P anOde_I (P!_O'_BO) measurements. Tu et al. (1996) reached the same conclu-
1.0} i sion when investigating the structure function of the solar
° . . wind velocity fluctuations. We also see that the intermittency
e parameters”1 obtained from the Kraichnan-like model are
.-' °* systematically higher than that from the Kolmogorov-like
J . model, again confirming the Tu et al. result.
¢ % - The bottom plot of Fig. 4 shows theg¢) dependence re-
stricted tog>0. Except for thep-model, for which the chi-
0.4 square probabilityp=0, the fit to the theoretical curves is
very good (=1). In Table 1, for the segment no. 5, entries
0.2 ) ) ) ) in italics are the model parameters derived from the trun-
catedr(¢g). One can see that for the extended models they
00 02 04 06 08 1.0 are very close, albeit systematically smaller, to those calcu-
h lated when both positive and negative powers are taken into
P model (P1 =0.80) account. However, when attempting to calculate the singu

o
o0

larity spectra one should include in the partition function (3)

i the negative values af. If one uses only positivgs then
1.0 oure, the analysis is restricted to the strongest singularities char-
o’ acterized by the Blder exponent: smaller than the most
0.8 “frequent” one.
L In Fig. 4 we also show, for comparison, the results de-
" - rived from the structure function (squares). Thg) has
+ been computed by linear least-squares fit to the double-
0.4 logarithmic plot logS,-log At shown in Fig. 5. The lower
- limit of the time delay Ar~1s is chosen to correspond
0.2 . . . . roughly to the highest frequency used in the WTMM. The
’ upper limit of At~31 s assured a reasonable fit. At this point
00 0.2 04 06 08 10 we note that since the fractal functions may have, at any
h scale, increments close to zero, the structure function will di-
verge forg <0. Thus, the structure function method does not
Fig. 6. Singularity spectra of thp-model calculated directly from  provide a reliable generalization of the multifractal formal-

the wavelet transform modulus maxima (upper) and by the Legenigm, 1 fractal functions (Muzy et al., 1994). In addition, the
dre transform (lower). Errors were calculated and are shown only, L o) . T
for the Legendre transform method. Dashed curves represent thstructure function is very sensitive to any outliers present in

theoretical singularity spectrum. the Qa}ta. Jaffard (1994) p.roved mathematically thataslightly
modified WTMM method is superior to the structure function

method in giving the correct singularity spectrum forall

_ ) _ From t(g), through the Legendre transformation (5), we

parameterP;. For the case without intermittend§1=0.5,  have derived the singularity spectrubih), which is a mea-

a=a" and (q)= — 1+(a—1)q/2, for both kinds of cas- gyre of the local scale-invariance. Local scale invariance

cade. ForP1=1, we havew=o'+1/3 anda=a'+1/2, for the  means that for each there is a fractal set with the dimen-

Kolmogorov- and Kraichnan-like cascade, respectively. Thegjon p (1) near which scaling with the exponentolds.

scaling exponent is(g)=(—1+a/2)q in both cases. The relation (5) can be rewritten as:

The least-squares fitting of experimentdly) to (8) and

(9) gives P=0.80,a'=2.18, andP;=0.87,a'=2.23, respec- " =d7/dq

tively. The rms errors of parameters are of the order 610 D(h) =qh—1(q).

To calculatex” we used the experimentally derive@), in-  The Hlder exponent has been calculated by numerical dif-

stead of the power spectral index. Both models fit data veryterentiation of the function (¢) and used to derive the sin-

well, except at positivey. In spite of different parameters, gularity spectrumD (k) from the second Eq. (10). An alter-

curves for Kraichnan-like and Kolmogorov-like models are native method in whick and D(h) are calculated directly

practically indistinguishable on this plot. Best-fit results for from the wavelet transform modulus maxima (Arneodo et

all analyzed Polar data segments are given in Table 1. Iy 1992), without explicitly Legendre transforming, has also

general, we may say that a good agreement between daigeen used. Both approaches have been tested on artificially

and intermittency models is aChieVed, which indicates thatgenerated data sets representjﬂg’]odeL In F|g 6 the de_

the basic concept of the multifractal energy cascade appliegved singularity spectra are compared with the theoretical

to the turbulence in the cusp region. However, using justspectrum for the intermittency paramefa=0.8.
the scaling function we cannot distinguish which of the two

L]
Qe Py
-
Re
®e.
[ ]

D(h)

0.6

L}
-

(10)
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Fig. 7. Comparison ofD(h) singularity spectra obtained by Leg- e -2 el N
endre transforming experimentalg) shown in Fig. 4 (dots with P :‘é . A 7

error bars) and intermittency models: Kraichnan-like (continuous

line), Kolmogorov-like (dotted line), and-model (dashed line). UT 15:30:00 16:00:00 16:30:00 17:00:00 17:30:00

Xosu [Re] 1048 10,72 10,96 11,20 11,44
Yesu [Re)-25.39 -25.43 -2545 -2545 -25.42

Errors were calculated and are shown only for the Leg- Zosu [Re) 9.33 8.68 8.03 7.57 6.73

endre transform method. To quantify the disparity be- _ _ o o

tween the theoretical and numerical singularity spectra we19- 8. The Geotail solar wind magnetic field. Time intervals cor-

have used the mean squared deviatjx% of the theoreti- responding to the analyzed Polar data segments are marked with

cal and numerical scaling exponent We have found that vertical lines.

for the singularity spectrum computed directly the disparity

Qei%u(;%hwvg.%?, V\;]hnebforhthe I;]e%end_re transform (,10) 1996). When varying; from —4 to 4, the widest range of
hNI e h Ilehsleebt at both metho fs glr\]/e Eu'te %onsusten;] is observed for the segments nos. 2 and 3. If one uses as

results with slightly better agreement for the Legendre transs, o ierion of the agreement between experiment and model

form._ Therefore, in our estlmatlo_n Of the expenr_nental SI"” the values, then several types of intermittency can be distin-

gularity spectra we used (_10), which is more stralghtforwardguished within the analyzed data set.

and Ie§s computatlgnally mvolved.. Data segments nos. 2, 3, and 4 seem to conform to
In Fig. 7 we depicted the functiod (k) for our sample e ,.model, and segments nos. 5, 6, and 7 resemble the

segment. The experimental singularity spectrum has a chai g|mogorov-like model. For the data segment no. 1 it is not

acteristic parabolic shape, typical of other nonlinear systemspossible to judge which of the two extended models of inter-

and its support extends from 0.40 to 0.89 over the range&yitency fit the experimental singularity spectrum better.
of gs from —4 to 4 with a maximum atimx0.62 and

D (hmax~1.00.
In Flg 7, we also plOttEd th@(h) Singularity spectra for 4 Discussion and conclusions
three models considered here with parameters derived from
thet(¢) dependence (see Table 1). Itis clear that, in spite ofwe have investigated the scaling properties of magnetic field
a goodz (g) fit, the experimental singularity spectrum con- fluctuations as measured in the turbulent boundary layer. The
siderably departs from the models. One may observe, howwavelet transform modulus maxima (WTMM) method has
ever, that the disagreement depends on the model. This fagieen used to estimate the scaling behavior of the partition
was used to discriminate between extended models, whickunction and the multifractal spectrum of turbulence. We
was not achievable from the best fit#gg). In the case of have found that their features are similar to those found in
our sample data segment no. 5 the disparity measyres  the nonlinear multifractal systems. The experimental scal-
smallest for the Kolmogorov-like model (cf. Table 2). In- ing exponentr(¢) and singularity spectr® (k) have been
deed, Fig. 7 shows that the Kolmogorov-like spectrum hascompared with models of the intermittent turbulence;pa)
hmax and support closest to those found in the experiment. model, which was introduced to describe the intermittency in
Singularity spectra parameters for all data sets are giverthe fully developed neutral fluid turbulence (Meneveau and
in Table 2. Thehimax varies between 0.47 and 0.62. Itis in- Sreenivasan, 1987), b) extended model, which takes into ac-
teresting to note that its mean vale®.55 is not very much  count the average energy cascade rate changes with scale and
different from that found for the solar wind (Marsch et al., simulates non-fully developed turbulence. Two versions of



E. Yordanova et al.: Multifractal structure of turbulence in the magnetospheric cusp 2439

the extended model have been considered: Kolmogorov-likdReferences

cascade in the neutral fluid turbulence, and Kraichnan-like

cascade in the MHD turbulence (Tu et al., 1996). We haveArneodo, A., Argoul, F., Muzy, J. F., Pouligny, B., and Freysz,

found that the scaling exponent does not allow one to con- E.: The optical wavelet transform, in Wavelets and Their Ap-

clude which of the two extended models fits the experiment Plication, edited by Ruskai, M. B., Beylkin, G., Coifman, R.,

better. However, comparison of the experimental and model g:ﬁﬁfgfé{iéﬂxsllggsst(.)'nM;ﬁr’z\g’gaggggaphaEI’ L., Jones and

e e et 2 e, . ey, €, an . F: e temocynacs
. . ’ . fractals revisited with wavelets, in Wavelets in Physics, edited

spectra better dlffergntlate petween models is apparently due by van den Berg, J. C., Cambridge University Press, Cambridge,

to the fact that the singularity spectra, effectively dependent 339_390 1999.

on the derivative (gradient) of the scaling function, are morecarbone, V.: Cascade model for intermittency in fully developed

sensitive to the model and its parameters. magneto-hydrodynamic turbulence, Phys. Rev. Lett., 71, 1546—

The physical situation, which corresponds to different 1548, 1993.

types of turbulence, is difficult to describe in detail. Fig- Frisch, U.. Turbulence, Cambridge University Press, Cambridge,

ure 8, in which the solar wind Geotail magnetic field vector ~ 1995.

is plotted, will help further the discussion. One can see thatiorbury, T. S., Balogh, A, Forsyth, R. J., and Smith, E. J.: Ulysses

the time interval corresponding to the first four data segments observations of intermittent heliospheric turbulence, Adv. Space

Is characterized by variableandz components of interplan- Iro?f?r?illéci\?’g‘g'_?ri%jﬁeiz.e of conducting fluids in a strong mag-

etary magnetic field (IMF). Yet for set no. B, is definitely e

o . . netic field, Sov. Astron., 7, 566-571, 1963.
positive (northward). For this set we have found that the SIn'Jaf'fard, S.: Some mathematical results about the multifractal for-

gularity spectrum extends over a wide range from 0.05 t0  majism for functions, in Wavelets: Theory, Algorithms and Ap-

0.68 and agrees with themodel spectrum describing afully  piications, edited by Chui, C. K., Montefusco, L., and Puccio, L.,
developed turbulence. The corresponding intermittency pa- Academic Press, San Diego, 325-361, 1994,

rameterP1=0.81 is relatively high. Taylor and Cargill (2002) Kolmogorov, A. N.: The local structure of turbulence in incom-

discussed recently plasma flows when the magnetosheath pressible viscous fluid for very large Reynolds number, Dokl.
interacts with the magnetopause indentation at cusp under Akad. Nauk SSSR, 31, 301-305, 1941.

northward IMF conditions. They have shown that when theKraichnan, R. H.: Inertial-range spectrum in hydrodynamic turbu-
plasma velocity is in excess of the fast mode magnetosoni¢ ;ﬁgfeg’, P;r?/;.HF\z/\?;ﬁge\t/t\; 3' 1;?:%;}:3&/ jegtﬁei-tion and processing
\f/(\;?r\:]es 3\%22 ’e?]tzIrgrllﬁletzlrjbslijl?:(tj,eiltz(;gr:hln’ boundary layer with wavelets, IEEE Trans, Inform. Theory, 38, 617—643, 1992.

. L ith the | h h Mallat, S. and Zhong, S.: Characterization of signals from multi-
At times coinciding with the last three segments, the IMF scale edges, IEEE Trans. On Pattern Analysis and Machine In-

is stable with large positiv8, and negativeB,, which sug- telligence, 14, 710732, 1992.

gests that Polar spacecraft senses plasma on open field linggarsch, E. and Tu, C.-Y.: Intermittency, non-Gaussian statistics and

flowing toward the magnetotail. For such configuration of  fractal scaling of MHD fluctuations in the solar wind, Nonlinear

IMF the reconnection in the vicinity of the sub-solar point  Processes in Geophysics, 4, 101-124, 1997.

affects the cusp structure. In this case the scaling behavioMarsch, E., Tu, C.-Y., and Rosenbauer, H.: Multifractal scaling of

of the partition function and the singularity spectra reveal the kinetic energy flux in solar wind turbulence, Ann. Geophys.,

that the magnetic field has a multifractal structure compatible 14, 259-269, 1996. _ _

with the non-fully developed Kolmogorov-like (fluid) turbu- Meneveau, C. and Sreenivasan, K. R.: Simple multifractal cascade

lent cascade. This leads to the conclusion that the turbulence Tf;f'{gg:"y developed turbulence, Phys. Rev. Lett., 59, 1424~

is dominated b.y flow eddies. . . Meneveau, C. and Sreenivasan, K. R.: The multifractal nature of
The conclusions drawn here on the basis of limited data turbulent energy dissipation, J. Fluid Mech., 224, 429-484, 1991.

need to be confronted with results of a more complete StUdYMuzy, J. F., Bacry, E., and Arneodo, A.: Wavelets and multifractal

. formalism for singular signals: Application to turbulence data,
AcknowledgementsThe authors thank the referees for critical Phys. Rev. Lett., 67, 3515-3518, 1991.

comments and valuable suggestions. This work was partially supy; .,y 5 F. Bacry, E., and Arneodo, A.: The multifractal formalism
ported by the European Community, Human Potential Programme | o\isited with wavelets, Int, J. Bifurcation and Chaos, 4, 245—
through contract No. HPRN-CT-2001-00314 for carrying out the 302, 1994.
task of Fhe research training network entitled “Turbulent Boundary Paladin, G. and Vulpiani, A.: Anomalous scaling laws in multifrac-
Layers in Geospace Plasmas’. tal objects, Physics Reports, 156, 147—225, 1987.
TOF_"Cal E(_jltor T Pu_lkklne_n thanks Z. Voros and another referee Parisi, G. and Frisch, U.: On the singularity structure of fully devel-
for their help in evaluating this paper. oped turbulence, in Turbulence and Predictability in Geophysical
Fluid Dynamics, edited by Ghil, M., Benzi, R., and Parisi, G.,
North-Holland, Amsterdam, 84-87, 1985.
Pickett, J. S., Menietti, J. D., Hospodarsky, G. B., Gurnett, D. A.,
and Stasiewicz, K.: Analysis of the turbulence observed in the
outer cusp turbulent boundary layer, Adv. Space Res., 30, 2809—
2814, 2002.



2440 E. Yordanova et al.: Multifractal structure of turbulence in the magnetospheric cusp

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Savin, S., Zelenyi, L., Rauch, J. L., Romanoy, S., et al.: On the
Numerical Recipes, Cambridge Univ. Press, Cambridge, 1986.  properties of turbulent boundary layer over polar cusps, Nonlin-
Russell, C. T, Snare, R. C., Means, J. D., Pierce, D., Dearborn, D., ear Processes in Geophysics, 9, 443-451, 2002a.
Larson, M., Barr, G., and Le, G.: The GGS/Polar magnetic field Savin, S., Zelenyi, L. M., Maynard, N. C., Sandahl, I., et al.: Multi-
investigations, Space Sci. Rev., 71, 563-582, 1995. spacecraft tracing of turbulent boundary layer, Adv. Space Res.,
Savin, S., Borodkova, N. L., Budnik, E. Yu., et al.: Interball 30, 2821-2830, 2002b.
tail probe measurements in outer cusp and boundary layers, iiBorriso-Valvo, L., Carbone, V., Giuliani, P., Veltri, P., Bruno, R.,
Geospace Mass and Energy Flow: Results from the International Antoni, V., and Martines, E.: Intermittency in plasma turbulence,
Solar-Terrestrial Physics Program, edited by Horwitz, J. L., Gal-  Planet. Space Sci., 49, 1193-1200, 2001.
lagher, D. L., and Peterson, W. K., Geophysical Monograph 104,Taylor, M. G. G. T. and Cargill, P. J.: A magnetohydrodynamic
American Geophysical Union, Washington D.C., 25-44, 1998. model of plasma flow in the high-latitude cusp, J. Geophys. Res.,
Savin, S., Budnik, E., Nozdracheva, M., et al.: On the plasma tur- 107 (A6), doi:10.1029/2001JA900159, 2002.
bulence and transport at the polar cusp outer border, Czech. Ju, C.-Y., Marsch, E., and Rosenbauer, H.: An extended structure
Phys., 49, 679-693, 1999. function model and its application to the analysis of solar wind
measurements, Ann. Geophys., 14, 270-285, 1996.



