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Abstract. This paper investigates the short scale structures
that are observed in the electric field during crossings of the
quasi-perpendicular bow shock using data from the Cluster
satellites. These structures exhibit large amplitudes, as high
as 70 mVm−1 and so make a significant contribution to the
overall change in potential at the shock front. It is shown that
the scale size of these short-lived electric field structures is of
the order of a fewc/ωpe. The relationships between the scale
size and the upstream Mach number andθBn are studied. It
is found that the scale size of these structures decreases with
increasing plasmaβ and asθBn → 90◦. The amplitude of
the spikes remains fairly constant with increasingMa and
appears to increase asθBn → 90◦.

Key words. Magnetospheric physics (electric fields) –
Space plasma physics (electrostatic structures: shock waves)

1 Introduction

The interaction between the electromagnetic field and parti-
cles in a collisionless shock replaces the role played by col-
lisions in a normal hydrodynamics. The spatial scales of the
electric and magnetic fields determine the type of interac-
tions (e.g. adiabatic, etc.) that take place between the incom-
ing plasma particles and the shock front. The magnetic field
structure of the terrestrial bow shock has been intensely stud-
ied since it was first observed back in the 1960s. In partic-
ular, the spatial scales of its various regions have been com-
prehensively investigated (Balikhin et al., 1995; Farris et al.,
1993). Typically, the scale sizes of the foot and overshoot
regions are of the order ofc/ωpi and 3c/ωpi , respectively.
The ramp scale has been estimated to be less than an ion in-
ertial length with reports of one or two shocks whose ramp
scale was of the order 0.1c/ωpi (Newbury and Russell, 1996;
Walker et al., 1999).
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In contrast, there have been few reports regarding the scale
lengths of features observed in the electric field at quasi-
perpendicular shocks. The scale size over which the potential
varies at the front of a quasi-perpendicular bow shock is an
issue that requires resolving in order to gain a full physical
understanding of the processes that are occurring. An ex-
ample of one such process is the energisation of pickup ions
at quasi-perpendicular planetary and cometary bow shocks
as well as the termination shock. Several different points of
view have been published on the relationship between the
scale size of the magnetic ramp and that over which the
change in potential is observed. Some studies (Eselevich
et al., 1971; Balikhin et al., 1993; Formisano and Torbert,
1982; Formisano, 1982, 1985; Balikhin et al., 2002; Kras-
nosel’skikh, 1985; Leroy et al., 1982; Liewer et al., 1991;
Scholer et al., 2003) have proposed that the spatial scale of
electrostatic potential is of the same order or smaller than that
of the magnetic ramp under some conditions. Such shocks
have been observed in numerous experimental and numeri-
cal studies of quasi-perpendicular supercritical shocks. On
the other hand, Scudder (1995) supports the view that the
potential scale length is larger than that of the magnetic scale
length.

Actual measurements of the electric field variations within
the bow shock are very sparse. The main reason for this is
due to the difficulties encountered when making electric field
measurements. Only a small number of space-based mea-
surements of the electric field measured during the passage
of a crossing have been reported. Initial results from ISEE
(Heppner et al., 1978) reported observations of a short-lived
spike in the electric field. However, being short-lived, these
features were not observed at every shock crossing. Subse-
quent investigations by Wygant et al. (1987) have shown the
existence of spike-like features in the electric field, both at
the shock ramp and in the region just upstream. From the
study of spin averaged ISEE-1 data, Formisano (1982) de-
termined that the increase in the observed E-field intensity
began just upstream of the magnetic ramp and lasted longer
than the ramp crossing itself. Whilst the E-field intensity in
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Fig. 1. Sketch of the changes observed in the magnetic field and
electrostatic potential during the crossing of a quasi-perpendicular
shock (based upon the experimental results of Eselevich et al.
(1971)).

the regions upstream and downstream of the shock could be
interpreted as due to theV×B motion of the plasma, the en-
hancement observed during the shock crossing must be due
to the processes occurring within the shock itself.

Laboratory experiments (Eselevich et al., 1971) have
shown that for viscous shocks the change in potential mea-
sured across the shock shows the greatest change within the
magnetic ramp region. Figure 1 is a sketch (based upon the
results of (Eselevich et al., 1971)) of the change in the mag-
nitude of the magnetic field and the accompanying change in
the electrostatic potential.

Using data generated from numerical simulations,
Lemb̀ege et al. (1999) analysed the scale size of both the
magnetic ramp region and the region in which the change in
potential was observed. Their results showed that the scale
lengths were of the same order, i.e.LBr≈Lφ . This view is
supported by the simulations of Scholer et al. (2003). The lat-
ter authors also show that during the shock reformation pro-
cess, the main potential drop occurs over several ion scales in
the foot region and the steepened magnetic ramp region also
contributes a significant fraction of the change in total poten-
tial over much smaller scales, typically 5–10 Debye lengths.

From Fig. 1 it can be seen that there are two different
length scales that may be associated with the change in the
electrostatic potential as the shock is crossed. The first, indi-
cated by the lightly shaded bar at the foot of the plot, shows
that overall the potential changes on scales similar to that of
the magnetic ramp region are in agreement with the results
of Lemb̀ege et al. (1999). This corresponds to an enhance-
ment of the electric field observed as the shock is crossed.
The second scale, indicated by the darkly shaded bar, corre-
sponds to a region within the shock front in which a large
increase in the potential is observed over a short time period.
Such changes in the potential result from a large amplitude
spike, such as features in the electric field.

This paper reports the results of a study of the large am-
plitude, short duration features in the electric field observed
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Fig. 2. The configuration of the Cluster tetrahedron as they en-
countered the shock on 31 March 2001 at 17:18 UT. The different
satellites are shown using the colour scheme black, red, green, and
blue for satellites 1, 2, 3, and 4, respectively. This colour scheme is
used throughout this paper when multi-satellite data are plotted.

by the Cluster satellites during a number of crossings of the
quasi-perpendicular bow shock. These features contribute
significantly to the overall change in potential observed at
a shock crossing but their short duration implies that they are
very localised. Their scale size amplitudes are determined.
These parameters are then studied in relation to the upstream
shock parameters. The structure of the rest of this paper is
as follows. Section 3 describes the electric field variations
for two crossings, one typical, one not. Section 4 investi-
gates statistically the relationship between the electric field
signatures and various upstream parameters.

2 Data

The data used in this investigation were collected by the
Cluster-II satellites as they crossed the terrestrial bow shock
during the first half of April, 2001. The electric field mea-
surements were made by the Electric Fields and Waves
(EFW) instrument (Gustafsson et al., 1997). The EFW in-
strument uses two pairs of spherical probes with a probe sep-
aration 88m to measure the two components of the electric
field that lie in the spin-plane of each of the Cluster satel-
lites. These data have then been despun to remove most ar-
tifacts due to the spin of the satellites. In the despun coordi-
nate system, the Z axis lies along the spin axis of the satellite
whilst the X axis lies in the plane containing the spin axis
and the sun vector. Since the GSE latitude of the spin vec-
tor is ≈−84◦ the despun system is almost coincident with
an inverted GSE frame. For the shocks presented here the
sampling rate of the data is 25 Hz with a 10 Hz anti-aliasing
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Cluster shock crossings 31st March 2001

Fig. 3. Overview of the shock crossing on 31 March 2001 at 17:18 UT. The top panel shows the magnitude of the magnetic field measured
by FGM. The second panel shows the magnitude of the electric field measured in the satellites spin plane. The lower two panels show the
spin plane componentsEx andEy .

filter. It should be noted that whilst the spin component has
been removed the data still contains some artifacts that are
due to the individual probes passing through the wake of the
satellite. These effects show up in the data as peaks in the
electric field occurring at a frequency corresponding to twice
the spin period. This effect is most prominent in the solar
wind. This implies that the estimate of the actual solar wind
electric field in the satellite spin plane will be overestimated.
Magnetic field data from the fluxgate magnetometer (FGM)
(Balogh et al., 1997), have been used to identify the shock
regions and therefore, put the electric field observations into
context. These data have a sampling frequency of 5Hz. The
upstream plasma density was calculated from the plasma line
observed in the WHISPER (D́ecŕeau et al., 1997) spectra.

3 Shock crossings

In this section the analysis of two example shocks is de-
scribed. A total of 54 shock crossings, occurring on 11 sepa-
rate days were investigated but not all could be analysed fully
for various reasons, such as unavailability of certain data sets,
or the accuracy of the shock normal.

3.1 Shock 1: 31 March 2001, 17:18 UT

The first shock crossing discussed occurred on 31 March
2001 at around 17:18 UT. At this time, the satellites were on
the outbound leg of their orbit, at a position (9.4, 1.4, 9.0)RE

GSE and travelling at around 2 kms−1. The satellite tetrahe-
dron configuration is shown in Fig. 2 and is fairly regular
in nature with an elongation e=0.12 and a planarity p=0.23.
It should be noted that on this day the conditions in the solar
wind were somewhat abnormal due to the passage of a CME.
Measurements in the solar wind by Cluster indicated that the
magnitude of the magnetic field was of the order of 30 nT, the
normal for this shock (based upon FGM crossing times) is
nB=(0.94, −0.17, 0.293) (in the GSE frame), and the shock
velocity was determined to be 48.92 kms−1. Other relevant
parameters areθBn≈87◦ and a densityn≈19 cm−1. The high
value of the field resulted in an unusually smallβ≈0.07. The
Alfv én Mach number for this shock(Ma≈3.6) lies close to
the First and Second Critical Mach numbers and therefore
the state of the solar wind would lead to favourable condi-
tions for the formation of quasi-electrostatic sub-shocks at
the shock front (Balikhin et al., 2002). Alfvénic Mach num-
bers are quoted rather than Magnetosonic Mach numbers, as
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Fig. 4. The FGM magnetic and EFW electric fields measured by Cluster 1 on 31 March 2001 around 17:18 UT. The magnetic field
magnitude is shown by the magenta line. The spin plane electric field magnitude , andEx andEy components are shown in red, blue and
cyan, respectively. The yellow regions highlight the periods when large amplitude short duration spikes in the electric field are observed.
The black line (Y scale of RHS) represents the change in potential within the shock.

it is felt that the Alfv́en Mach number was more trustwor-
thy. In the plasma regime being considered, the plasma beta
is usually small and so the two Mach numbers have similar
values. As a result, the Alfv́en Mach number will be a very
good approximation to the Magnetosonic Mach number, es-
pecially in the current case being considered which, as has
already been mentioned, has a very low value ofβ.

Figure 3 shows an overview of the magnetic and electric
field measurements made by FGM and EFW, respectively,
during this shock crossing. The top panel shows the mag-
nitude of the magnetic field measured by FGM. Initially, all
four Cluster spacecraft are in the solar wind just upstream
of the outward moving bow shock which subsequently
swept over the satellites in the order C4 (17:17:43.5), C2
(17:17:45.5), C1 (17:17:48.5), and finally C3 (17:17:53.5).
The magnetic field profiles show a set of clean shock cross-
ings that possess clearly discernible foot, ramp and overshoot
regions. The second panel shows the magnitude of the elec-
tric field measured by EFW in the spin plane of each satel-
lite. In the solar wind, the typical magnitude of the electric
field is around 14 mVm−1 in the satellite spin plane. It is
possible to estimate theEz component of the upstream elec-

tric field, assuming thatE·B=0. This assumption is valid for
estimating the field upstream and downstream of the shock
but not within the shock region itself. Upstream of the
shock,Ez≈5 mVm−1. This value is higher than the mea-
suredEx component (≈2.5 mVm−1) and less than theEy

component (−13 mVm−1). Comparing the top two panels
it can be seen that the disturbances measured in the electric
field begin in the foot region of the shock and continue un-
til the satellites are downstream of the overshoot/undershoot.
These general disturbances have amplitudes generally in the
range 5–30 mVm−1. During their crossings, each of the
satellites recorded a number of large amplitude, short du-
ration features in the electric field. The largest of these
spikes have maximum amplitudes of approximately 30, 40,
60, and 65 mVm−1 for satellites 1, 2, 3, and 4, respectively,
above the field measured in the solar wind just upstream of
the shock front. These values represent lower limits of the
strength of the electric field, since the component perpen-
dicular to the spin plane is not considered. They are seen
to occur within the ramp region but there is no strong fea-
ture within the FGM data with which they correlate. It is
also observed that the largest electric field peaks observed
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on each satellite appear to occur in pairs which may suggest
field rotation. The two lower panels show the components of
the electric field measured in the satellite spin planes. Both
panels show that the components of the field exhibit a twin
peaked structure, similar to that observed in the field mag-
nitude and that the direction of rotation is the same for both
peaks. Thus, the overall structure is not due to a single rota-
tion of the field. A more in-depth study of the fields is beyond
the scope of the current paper and will be dealt with in a fu-
ture publication. This report limits itself to a statistical study
of the widths of these short-lived, large amplitude features.

Using the four-point measurements it is possible to deter-
mine the occurrence time of these peaks in the electric field
and hence compute a normal. Examining theEx component,
the time differences between the observations of the first
peak in the electric field are1t12=−3.01 s, 1t13=5.03 s,
and 1t14=−5.35 s. When coupled with the respective
positions of the satellites this yields a normal direction
nE=(0.946, −0.155, 0.283) and a velocity of≈50 kms−1.
The difference between this normalnE and that determined
from the magnetic field (nB ) is less than a degree. Thus,
it appears that the electric field spikes correspond to layers
within the overall shock structure.

Figure 4 shows the results from Cluster 1 in greater detail.
The magenta line shows the magnitude of the magnetic field.
The foot region was entered around 17:17:47.3 UT whilst the
ramp was crossed between 17:17:48.3 and 17:17:48.9 UT.
Several large spikes in the electric field are observed in the
region of the foot and shock ramp. The three largest occur
around 17:17:48.2 (20 mVm−1), 17:17:48.5 (30 mVm−1),
and 17:17:48.6 (15 mVm−1). Their short duration implies
that their scale size is of the order of 3–5c/ωpe. The black
line in Fig. 4 represents an estimation of the electrostatic po-
tential measured in the normal direction. This was calculated
by removing an average of the field measured in the region
just upstream of the shock from the field measured within
the shock region and then integrating the projection of this
electric field along the normal direction. Whilst the actual
potential cannot be calculated due to the incomplete vector
measurements, it can be estimated by assuming that the field
perpendicular to the spin planeEz=0. This assumption is
valid because for this particular shock, the normal lies close
to the spin plane. This calculation can be used to show that
the largest jumps in the potential coincide with the spikes
observed in the electric field and that these occurrences con-
tribute a significant fraction of the total potential change ob-
served at the shock. During this period, the electric field en-
hancements contribute around 40% of the total change.

3.2 Shock 2: 5 April 2001, 20:25 UT

The second shock crossing presented is the one that occurred
around 20:25 UT on 5 April 2001. At this time the satellites
were moving on an outbound trajectory, situated at a position
(14.8, −7.5, −6.7)RE GSE and travelling at≈1.3 kms−1.
The configuration of the tetrahedron is shown in Fig. 5 and
has a variance ellipsoid shaped like a thick pancake (elon-
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Fig. 5. Configuration of the Cluster tetrahedron during the shock
crossing that occurred on 5 April 2001 at 20:24 UT.

gation factor 0.31, planarity of 0.65). The separation dis-
tances of the satellites were between 377 and 1150 km. For
this particular shock the normal direction, as determined
from the crossing times in the FGM data set, was (0.948,
−0.292, 0.129) in the GSE frame and the shock normal ve-
locity −49 kms−1. The upstream density, determined from
the electron plasma emissions observed by WHISPER, was
4.8 cm−3. This value was then used to compute the upstream
ion and electron inertial lengthsc/ωpi ≈103 km andc/ωpe

≈2.4 km respectively. The magnitude of the upstream mag-
netic field was determined to be 8.3 nT,θBn≈85◦, β≈0.2,
and Alfvén Mach numberMa≈6. The upstream electric field
amplitude in the spin plane is≈1 mVm−1. As in the previ-
ous example theEz component may be estimated assuming
E·B=0. This results in a valueEz≈−3.6 mVm−1 which is
substantially larger than both theEx(−0.9 mVm−1) andEy

(0.3 mVm−1).
Figure 6 shows an overview of the electric and magnetic

fields measured during this shock for all four Cluster space-
craft. The top panel shows the magnitude of the magnetic
field as measured FGM on each of the four spacecraft with
satellite 1 shown in black, 2 in red, 3 green, and 4 blue. At
the beginning of the period the quartet was in the magne-
tosheath. The magnetic ramp region of the shock was first
encountered by Cluster 3 (green) at around 20:25:08 UT, fol-
lowed by satellites 4 (blue) and 1 (black) (≈ 20:25:15), and
finally satellite 2 (red) at 20:25:17. Upstream of the ramp,
the four shock crossings show quite different foot regions.
Cluster 4 exhibits a fairly smooth foot region whose mag-
netic field is not very different from that observed further up-
stream of the shock. Cluster 1 shows a clear foot at the base
of the ramp. Satellites 2 and 3 encountered the main ramp
region at around 20:25:17 and 20:25:08.8, respectively. On
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Fig. 6. Overview of the shock crossings on 5 April 2001 at 20:24 UT. The top panel shows the magnitude of the magnetic field as measured
by FGM. The lower panels show the electric field magnitude and components measured in the spin plane of the satellite.

the upstream side of the ramps the foot region has evolved
into a large amplitude nonlinear wave.

During the period when the satellites encountered the
shock front all four satellites recorded an enhancement in the
electric field. Satellites 1 and 4 show enhanced electric field
fluctuation levels throughout the whole shock region from
the overshoot/undershoot to the foot, similar to the results
presented for the first shock discussed above. In the case
of satellite 3, the electrostatic wave activity is limited to the
downstream, ramp and nonlinear wave regions of the shock
front where as that for satellite 2 appears to continue into the
region upstream of the shock.

Within the shock region there are periods in the amplitude
where the electric field increases by typically>7 mVm−1 for
short time of≈100–300 ms. The largest of these spikes are
confined to the ramp and foot regions or the nonlinear wave
in the case of satellite 3. This corresponds to a spatial scale
for these features of 2–4c/ωpe.

The lower two panels show theEx andEy components
of the electric field measured in the satellite spin plane. The
large amplitude features observed in the field magnitude cor-
respond to pronounced fluctuations in the components. This
is most clearly observed in theEy component. If the times
corresponding to the major fluctuations inEy are determined
for the ramp regions in which the largest changes in|B| are

observed, then the resulting normal direction lies along that
determined from the FGM data to within a degree.

Figure 7 shows the magnitude, andEx and Ey compo-
nents of the electric field measured by Cluster 3 (red, blue
and cyan, respectively), together with the magnitude of the
magnetic field (magenta). In the upstream region, the mag-
nitude of the electric field is measured in the spin plane of
each satellite. The yellow regions highlight the times when
the largest electric field spikes are observed. It is clear to see
that they occur within the ramp regions. The black line rep-
resents an estimation of the shock potential along the shock
normal. Since the vector measurements are incomplete, the
true potential will be underestimated. However, since the
normal direction lies within 10◦ of the spin plane it may be
assumed that this is a reasonably true estimate of the actual
value. During this period, the electric field enhancements
contribute around 50% of the total change.

It is clear from Fig. 7 that noise generated by the probes
as they pass through the satellite wake is not the cause of the
spikes that occur in the electric field, because of their timing.
Also, the amplitude increases as the satellite passes from the
shock front into the solar wind. A second possible cause of
the large amplitudes, namely the convectionVshock×B elec-
tric field may also be ruled out since there is no evidence
for short period structures within the magnetic field and also
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Fig. 7. The magnitude (red), andEx (blue) andEy (cyan) components of the spin plane electric field measured by Cluster 3 on 5 April 2001
around 20:25 UT. The yellow regions highlight the periods when large amplitude short duration spikes in the electric field are observed. The
black line (Y scale of RHS) represents the change in potential within the shock.

the magnitude of such electric fields is smaller than the ob-
served amplitudes. Since the shock normal lies very close to
the spin plane of the satellite it is possible to make a good
estimate of the electric fields in the shock Normal Incidence
Frame. After such a transformation, the electric field spikes
are still observed, leading to the conclusion that they are a
real feature within the shock layer.

4 Results

The preceding sections have presented evidence for localised
increases in the electric field strength measured as the satel-
lite traverses a quasi-perpendicular bow shock. All shocks
analysed show evidence for an enhancement in the back-
ground electric field. In most cases, the region in which this
field enhancement occurs lasts longer than the crossing of the
magnetic ramp. The field typically increases of the order of
1–3 mVm−1 above that measured in the solar wind. How-
ever, as has been noted above, the turbulence in this region is
dominated by spike-like fluctuations lasting a few millisec-
onds and with magnitudes of typically 4–20 mVm−1 with a
maximum magnitude of the order of 70 mVm−1. This ex-
istence of large gradients in the electric field has repercus-

sions for processes involved in the heating of electrons. In
the presence of electric field gradients the electron gyration
frequency can deviate from its classically calculated value,
leading to an increase in its Larmor radius and the possibility
of a breakdown in adiabaticity (Balikhin et al., 1998).

Having shown that the spikes observed in the electric field
at the front of a quasi-perpendicular shock appear to be phys-
ical structures that form a layer within the shock front, as op-
posed to being the result of noise in the data or motion of
the shock, a statistical study of these features was performed
to investigate their relationship to the properties of the shock
front. In the rest of this section statistics collected from a
number of such spike-like features are presented.

4.1 Scale size

Figure 8 shows the distribution of the scale sizes determined
from the event duration and the shock velocity of these fea-
tures in terms of the electron inertial length. The scale size
of these events will be unaffected by the incomplete vector
measurements of the electric field. The vast majority have
scale sizes of the order of 1–5c/ωpe. The data that form tail
of the distribution at longer scale sizes typically comprise
events that have a multi-peak structure. These type of events



2298 S. N. Walker et al.: Electric fields at quasi-perpendicular shocks

Fig. 8. Histogram of the scale sizes for the spike-like enhancements
observed during a number of crossings of the quasi-perpendicular
bow shock.
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Fig. 9. Dependence of scale size on upstream Mach number.

represents an upper limit to the scale size of these short-lived
events. In comparison, the typical scale of the magnetic ramp
is characterised by the ion inertial length (Newbury and Rus-
sell, 1996), although these authors also report one particu-
lar shock as having a ramp scale as small as 0.05c/ωpi or
2c/ωpe.

Figure 9 shows the relationship between the Mach num-
ber and scale size of the spikes observed in the electric field.
From the figure, it is clear that the scale size has an upper
limit that increases as the Mach number decreases.

Figure 10 shows a scatter plot of the relationship between
θBn and the scale size of the electric field enhancements. In
general, there appears to be a broad range of scales. How-
ever, asθBn → 90◦ the scale length decreases. For the
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Fig. 10. Dependence of scale size onθBn.

Fig. 11. Scatter plot showing the relationship between the ampli-
tude of the electric field spikes as a function of Mach number. The
red crosses are used to highlight the data for the shocks that oc-
curred on 31 March 2001.

shocks analysed withθBn≈90◦ the scale lengths are of the
order of 2c/ωpe. This compares favourably with theoretical
estimates that for perpendicular shocks the scale width is es-
timated to be of the order of the electron inertial length, as
proposed by Karpman (1964).

4.2 Amplitude

The examples presented above show that the increase in the
electric field (1E=Espike−Eupstream) observed during en-
counters with these spike-like structures varies between 4
and 70 mVm−1 above the average field that is measured in
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the solar wind just upstream of the shock. In this section the
relationship between this change (1E) and the shock Mach
number, and the angleθBn is investigated.

Figure 11 shows a scatter plot of the peak amplitude ob-
served in the electric field spike event (1E) as a function
of the shock Mach numberMa . For shocks whose Mach
number Ma>5 there is a fairly constant trend in which
1E<15 mVm−1. In the Mach number range 3<Ma<5
the range of observed amplitudes varies between 5 and
60 mVm−1. It appears that in this Mach number range the
structure of the shocks may differ markedly from those with
a higher Mach number. The red crosses highlight the shocks
observed on 31 March 2001. All of these shocks fall into this
range of Mach numbers. This set of shocks have been shown
to possess Mach numbers that lie between the First and Sec-
ond Critical Mach numbers. As a result, their structure re-
sembles that of viscous electrostatic sub-shocks. Sub-shocks
are a class of shocks that occur when the Mach number of
the shock lies in the small range between the first and second
critical Mach numbers. As a result, resistive processes can-
not provide all of the necessary dissipation since the shock
Mach number is greater than the first critical Mach num-
ber and a reflection shock can not be formed since the shock
Mach number is less than the second critical Mach number.
The additional dissipation is provided by viscous processes
such as the ion sound or other plasma mode. A characteris-
tic signature of sub-shocks is the occurrence of small scale
electrostatic fluctuations, such as those observed on this par-
ticular day. The scale of the electrostatic fluctuations will
be determined by the particular plasma mode operating. Ion
sound sub-shocks have been observed in laboratory plasmas
with scales of≈100 Debye lengths. For the shocks observed
on 31 March 2001, the observed shock scale is closer to to
characteristic scale of the fast magnetosonic mode (Balikhin
et al., 2002).

The relationship between1E andθBn is shown in Fig. 12.
It clearly shows that asθBn → 90◦ the range of the observed
amplitudes of the electric field spikes increases.

5 Conclusions

In this paper we have looked at the changes observed in
the electric field during the crossing of a number of quasi-
perpendicular bow shock crossings. It has been shown that
the electric field is enhanced during the crossing of the shock
and that the scale size over which this enhancement is ob-
served is larger than that of the magnetic ramp region. Within
the shock region, short-lived electrostatic structures are ob-
served. The scale size of these structures is of the order
of a few c/ωpe and was shown to decrease asθBn → 90◦

which compares favourable with theoretical estimates. The
amplitudes of these structures is typically of the order of
5–20 mVm−1 but under special circumstances may reach as
high as 70 mVm−1. The highest amplitudes appear to be ob-
served for shocks whose Mach number is in the range 3 to
5. This may be an indication that such shocks are actually

Fig. 12. The relationship between1E andθBn.

quasi-electrostatic sub-shocks. It was also demonstrated that
these small-scale structures make a substantial contribution
to the overall change in potential observed across the shock
and that the potential change is not linear.
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gren, A., Stasiewicz, K.,̊Aéhlen, L., Mozer, F. S., Pankow, D.,
Harvey, P., Berg, P., Ulrich, R., Pedersen, A., Schmidt, R., But-
ler, A., Fransen, A. W. C., Klinge, D., Thomsen, M., Faltham-
mar, C.-G., Lindqvist, P.-A., Christenson, S., Holtet, J., Lybekk,
B., Sten, T. A., Tanskanen, P., Lappalainen, K., and Wygant, J.:
The electric field and wave experiment for the Cluster mission,
Sp. Sci. Rev., 79, 137–156, 1997.

Heppner, J. P., Maynard, N. C., and Aggson, T. L.: Early results
from ISEE-1 electric field measurements, Sp. Sci. Rev., 22, 777,
1978.

Karpman, V. I.: Structure of the shock front propagating at an angle
of the magnetic field in a low density plasma, Sov. Phys. Tech.
Phys. Engl. Trans., 8, 715, 1964.

Krasnosel’skikh, V.: Nonlinear motions of a plasma across a mag-
netic field, Sov. Phys. Jetp, 62, 282, 1985.

Lemb̀ege, B., Walker, S. N., Savoini, P., Balikhin, M. A., and Kras-
nosel’skikh, V.: The Spatial Sizes of Electric and Magnetic Field
Gradients in a Simulated Shock, Advances in Space Research,
24, 109–112, 1999.

Leroy, M. M., Winske, D., Goodrich, C. C., Wu, C. S., and Pa-
padopoulos, K.: The structure of perpendicular bow shocks, J.
Geophys. Res., 87, 5081, 1982.

Liewer, P. C., Decyk, V. K., Dawson, J. M., and Lembège,
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