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DECONVOLUTION WITH ESTIMATED CHARACTERISTIC

FUNCTION OF THE ERRORS.

F. COMTE AND C. LACOUR

Abstract. We study the following model of deconvolution Y = X+ε with i.i.d. observa-

tions Y1, . . . , Yn and ε−1, . . . , ε−M . The (Xj)1≤j≤n are i.i.d. with density f , independent

of the εj . The aim of the paper is to estimate f without knowing the density fε of the

εj . We first define an estimator, for which we provide bounds for the pointwise and the

integrated L2-risk. We consider ordinary smooth and supersmooth noise ε with regard

to ordinary smooth and supersmooth densities f . Then we present an adaptive estimator

of the density of f . This estimator is obtained by penalization of a projection contrast,

and yields to model selection. Lastly, we present simulation experiments to illustrate

the good performances of our estimator and study from the empirical point of view the

importance of theoretical constraints.

1. Introduction

Let us consider the following model:

(1) Yj = Xj + εj j = 1, . . . , n

where (Xj)1≤j≤n and (εj)1≤j≤n are independent sequences of i.i.d. variables. We denote
by f the density of Xj and by fε the density of εj . The aim is to estimate f when only
Y1, . . . , Yn are observed. In the classical convolution model, fε is assumed to be known, and
this is often considered as an important drawback of this simple model. In many contexts
however, preliminary calibration measures can be obtained in the absence of any signal X.
This can be done each time a physical machine takes measures of a signal; when no signal
is in input, only the noise is measured. In that case, the knowledge of fε can be replaced
by the observations of ε−1, . . . , ε−M , a noise sample with distribution fε, independent of
(Y1, . . . , Yn). Thus, a study can be conducted, in which we do not assume that fε is known.
Note that the availability of two distinct samples makes the problem identifiable.

On the one hand, there exists a huge literature concerning the estimation of f when
fε is known: see Carroll and Hall (1988),Devroye (1989), Fan (1991), Liu and Taylor
(1989), Masry (1991), Stefanski and Carroll (1990), Zhang (1990), Hesse (1999), Cator
(2001), Delaigle and Gijbels (2004) for kernel methods, Koo (1999) for a spline method,
Pensky and Vidakovic (1999) and Fan and Koo (2002) for wavelet strategies, , Butucea
(2004) and Butucea and Tsybakov (2007) for studies of minimaxity of the rates, Comte
et al. (2006), Comte et al. (2007) for adaptive projection strategies. On the other hand,
several authors have studied the exact problem which is considered in this paper, but
only for particular type of smoothness for fε or f or other type of risks. In this regard, we
provide the first study of pointwise mean square risk (MSE). Moreover, we provide a general
study of the mean integrated squared error (MISE) which substantially generalizes existing
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results. Then, to propose a model selection strategy, we use a minimum projection contrast
expression of our collections of estimators: they depend on a bandwidth-type parameter
for which we consider the difficult problem of automatic selection of this quantity. In other
words, we explain how to select a relevant estimator in the collection: the study of an
adaptive procedure in this context is essentially new.

Let us describe what has been done on the subject.
− Diggle and Hall (1993) consider the same model and obtain result of the same type of

our first Proposition (see Proposition 2). But then, they study the case of ordinary smooth
noise and distribution function under M ≥ n.

− We may mention the work by Efromovich (1997), but his context is slightly different,
since he considers circular data. He assumes that the noise is supersmooth and the distri-
bution function ordinary smooth. In this context, he proposes a data driven choice of M
to make his estimator adaptive.

− Our work is more related to the paper of Neumann (1997), since our estimator is rather
equivalent to his and we borrow a useful Lemma from his work. He mainly considers the
case of both ordinary smooth noise and distribution function. He does not perform any
bandwidth selection, but he proves the minimax optimality of the bound he obtains in the
case he considers. We shall of course refer to this lower bound.

− Meister (2004) takes a rather different point of view, compared to our problem: he
studies what happens when the function f∗

ε used for estimation is not the true one. For
instance, he shows that it is safer to use an ordinary smooth noise characteristic function,
if it is unknown.

− Lastly, Johannes (2007) recently studied the density deconvolution with unknown
(but observed) noise and he is interested in the relation between M and n. Note that
his estimator and his approach are very interesting and rather different from ours, his
estimator depends on two bandwidth-type parameters, which, if relevantly chosen, lead to
rate that are the same as in our work. But the data-driven selection of these bandwidths
is not done.

Note that a similar question in the context of inverse problem is studied in Cavalier and
Raimondo (2009).

Here is the plan of the present paper. In Section 2,we give the notations and define the
estimator, first directly, and then as a projection-type estimator. We study in Section 3
both the pointwise and the integrated mean square risk (MSE and MISE) of one estimator,
which allows to build general tables for the rates in both cases. Then, we study the link
between M and n if one wants to preserve the rate found in the case where f∗

ε is known.
Such a complete panorama is new in this setting. Next, we define and study in Section 4 an
adaptive estimator by proposing a penalization device. A general integrated risk bound for
the resulting estimator is given. The estimator is studied through simulation experiments,
and its performances are compared with Neumann (1997)’s and Johannes (2007)’s ones.
The influence of the size M of the noise sample is studied as well as the importance of
some other theoretical constraints on the size of the collection of models. Most proofs are
gathered in Section 6.
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2. Estimation procedure

2.1. Notations. For z a complex number, z̄ denotes its conjugate and |z| its modulus.
For functions s, t : R 7→ R belonging to L

1 ∩ L
2(R), we denote by ‖t‖ the L

2 norm of t,

that is ‖t‖2 =
∫

R
|t(x)|2dx, and by 〈s, t〉 the scalar product: 〈s, t〉 =

∫
R

s(x)t(x)dx. The
Fourier transform t∗ of t is defined by

t∗(u) =

∫
e−ixut(x)dx

Note that, if t∗ also belongs to L
1 ∩ L

2(R), then the function t is the inverse Fourier
transform of t∗ and can be written t(x) = 1/(2π)

∫
eixut∗(u)du. Finally, the convolution

product is defined by (t ∗ s)(x) =
∫

t(x − y)s(y)dy.

2.2. Basic definition of the estimator. It follows easily from Model (1) and indepen-
dence assumptions that, if fY denotes the common density of the Yj ’s, then fY = f ∗ fε

and thus f∗
Y = f∗f∗

ε . Therefore, under the classical assumption:

(A1) ∀x ∈ R, f∗
ε (x) 6= 0,

the equality f∗ = f∗
Y /f∗

ε yields an estimator of f∗ by considering the following estimate of
f∗

Y :

f̂∗
Y (u) =

1

n

n∑

j=1

e−iuYj .

Indeed, if f∗
ε is known, we can use the following estimate of f∗: f̂∗

Y /f∗
ε . Then, we should

use inverse Fourier transform to get an estimate of f . As 1/f∗
ε is in general not in-

tegrable (think of a Gaussian density for instance), this inverse Fourier transform does
not exist, and a cutoff is used. The final estimator for known fε can thus be written:∫
|u|≤πm eiux ˆf∗

Y (u)/f∗
ε (u)du. This estimator is classical in the sense that it corresponds

both to a kernel estimator built with the sinc kernel (see Butucea (2004)) or to a projec-
tion type estimator as in Comte et al. (2006), as will be showed below.

Now, f∗
ε is unknown and we have to estimate it. Therefore, we use the preliminary

sample and we define

f̂∗
ε (x) =

1

M

M∑

j=1

e−ixε−j

the natural estimator of f∗
ε . Next, we introduce as in Neumann (1997) the truncated

estimator:

(2)
1

f̃∗
ε (x)

=
1{|f̂∗

ε (x)|≥M−1/2}

f̂∗
ε (x)

=





1

f̂∗
ε (x)

if |f̂∗
ε (x)| ≥ M−1/2

0 otherwise.

Then we can consider

(3) f̂m(x) =
1

2π

∫ πm

−πm
eixu f̂∗

Y (u)

f̃∗
ε (u)

du.

Note that this estimator is such that (f̂m)∗ = (f̂∗
Y /f̃∗

ε )1[−πm,πm]. This formula is the only
needed for the study of the MSE and the MISE, but it is not convenient to present the
strategy which is required to select the parameter m. Indeed, m plays a bandwidth-type
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role, and has to be relevantly selected to lead to an adequate bias variance compromise.
And the definition of this procedure must be done in terms that leads to MISE bounds on
the final estimator.

2.3. Definion of the adaptive estimator.

2.3.1. Projection spaces. Let us consider the function

ϕ(x) = sin(πx)/(πx)

and, for m in N
∗, j in Z, ϕm,j(x) =

√
mϕ(mx − j). As ϕ∗(x) = 1[−π,π](x), we have, as a

key property of the functions ϕm,j , that ϕ∗
m,j(x) = e−ixj/m

1[−πm,πm](x)/
√

m. Note that

{ϕm,j}j∈Z is an orthonormal basis of the space of integrable functions having a Fourier
transform with compact support included into [−πm, πm]. Note that m can be chosen in
other sets than N

∗, and thinner grids may be useful in practice.
In the sequel, we use the following notation:

Sm = Span{ϕm,j}j∈Z.

We know (see Comte et al. (2006)) that the orthogonal projection of a function g in
(L1 ∩ L

2)(R) on Sm, denoted by gm, is such that g∗m = g∗1[−πm,πm], i.e. with Fourier
inverse formula:

(4) gm(x) =
1

2π

∫ πm

−πm
eixug∗(u)du.

This explains why the order of bias terms is the same for the two expressions of the
estimator.

2.3.2. Estimation of f for the classical deconvolution problem. We want to estimate f , the
density of the Xj in model (1). When fε is known, we can estimate f by minimizing a
contrast built as follows. A standard contrast in density estimation is

1

n

∑

j

[‖t‖2 − 2t(Xj)].

It is not possible to use this contrast in the convolution model because we do not observe
X1, . . . ,Xn. Only the noisy data Yj are available. The solution is given by exploiting the
following lemma.

Lemma 1. For any function t, let vt be the inverse Fourier transform of t∗/f∗
ε (−.), i.e.

vt(x) =
1

2π

∫
eixu t∗(u)

f∗
ε (−u)

du.

Then, for all 1 ≤ j ≤ n,

(1) E[vt(Yj)|Xj ] = t(Xj)
(2) E[vt(Yj)] = E[t(Xj)]
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The second assertion in Lemma 1 is an obvious consequence of the first one and leads
us to consider the following contrast:

γ0
n(t) =

1

n

n∑

j=1

[‖t‖2 − 2vt(Yj)] with v∗t (u) =
t∗(u)

f∗
ε (−u)

.

Indeed, since t(Xj) and vt(Yj) have the same expectation, it is natural to replace the
unknown quantity t(Xj) in the contrast by vt(Yj). We can observe that

Eγ0
n(t) = (1/n)

n∑

j=1

[‖t‖2 − 2E[vt(Yj)]] = (1/n)

n∑

j=1

[‖t‖2 − 2E[t(Xj)]]

= ‖t‖2 − 2

∫
tf = ‖t − f‖2 − ‖f‖2.

This contrast is used in Comte et al. (2006) to define a collection of estimators on each
space Sm and then a penalty is given to select an adequate space Sm.

2.3.3. Estimation of f if the distribution of ε is unknown. Now, f∗
ε is unknown and we

replace it by the estimator (2). We shall study in the following the new contrast

(5) γn(t) =
1

n

n∑

j=1

[‖t‖2 − 2ṽt(Yj)] with ṽ∗t (u) =
t∗(u)

f̃∗
ε (−u)

.

We define our estimators by minimizing this contrast on the projection spaces Sm:

(6) f̂m = arg min
t∈Sm

γn(t)

or, equivalently,

(7) f̂m =
∑

l∈Z

âm,lϕm,l with âm,l =
1

n

n∑

j=1

ṽϕm,l
(Yj).

It is sufficient to differentiate the contrast (5) to obtain formula (7). Actually, we should

define f̂m =
∑

|l|≤Kn
âmlϕm,l because we can estimate only a finite number of coefficients.

If Kn is suitably chosen, it does not change the rate of convergence since the additional
terms can be made negligible. For the sake of simplicity, we let the sum over Z. For an
example of detailed truncation see Comte et al. (2006).

The notation f̂m is the same because the estimators coincide. Indeed, starting with (7),
we have the following equalities:

f̂m(x) =
∑

l∈Z

1

n

n∑

j=1

ṽϕm,l
(Yj)ϕm,l(x) =

1

2π

∑

l∈Z

(∫
f̂∗

Y (−u)
ϕ∗

m,l(u)

f̃ε(−u)
du

)
ϕm,l(x)

=
1

2π

∑

l∈Z

〈 f̂
∗
Y

f̃∗
ε

, ϕ∗
m,l〉ϕm,l(x) =

1

2π

∑

l∈Z

〈
(

f̂∗
Y

f̃∗
ε

)∗

(−.), ϕm,l〉ϕm,l(x).(8)

This is the expression of the orthogonal projection on Sm of (1/2π)(f̂∗
Y /f̃∗

ε )∗(−.). Using
(4) and (8) yields (3). In practice, the coincidence is not exact because the sums over Z

are truncated.
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To complete the estimation procedure, we choose the best estimator among the collection
(f̂m)m∈Mn where Mn ⊂ {1, . . . , n} is the set of all considered indexes. To do this, we select
the model which minimizes the following penalized criterion:

(9) m̂ = arg min
m∈Mn

{γn(f̂m) + pen(m)}

where pen is a penalty term to be specified later. Finally, we consider f̂m̂ as estimator of
the density.

3. Bound on the L2 risk

3.1. Notations. Let us recall first the following key lemma, proved in Neumann (1997)
for p = 1:

Lemma 2. Let p ≥ 1 be an integer and

R(x) =

(
1

f̃∗
ε (x)

− 1

f∗
ε (x)

)
.

Then there exists a positive constant Cp such that

E|[R(x)|2p] ≤ Cp

(
1

|f∗
ε (x)|2p

∧ M−p

|f∗
ε (x)|4p

)
.

The extension from p = 1 to any integer p is straightforward and therefore the proof is
omitted.
Moreover, we introduce the notations

(10) ∆(m) =
1

2π

∫ πm

−πm
|f∗

ε (u)|−2du and ∆0(m) =
1

2π

(∫ πm

−πm
|f∗

ε (u)|−1du

)2

and

(11) ∆f (m) =
1

2π

∫ πm

−πm

|f∗(u)|2
|f∗

ε (u)|2 du and ∆0
f (m) =

1

2π

(∫ πm

−πm

|f∗(u)|
|f∗

ε (u)|du

)2

.

As we shall see, these quantities are involved in the bounds on the variance of our estima-
tors.

3.2. Pointwise mean square risk. First, we study quickly the so-called MSE, the point-
wise mean square error of the estimator. Let us denote by fm the orthogonal projection of
f on Sm. Then we have the following decomposition:

E[(f̂m(x) − f(x))2] ≤ 2(fm(x) − f(x))2 + 2E[(f̂m(x) − fm(x))2]

≤ 2(fm(x) − f(x))2 + 4Var

(
1

2π

∫ πm

−πm
eixu f̂∗

Y (u)

f∗
ε (−u)

du

)

+4E

[(
1

2π

∫ πm

−πm
eixuf̂∗

Y (u)R(u)du

)2
]

(12)

The first (squared bias term) and second (variance term) terms of the right-hand-side of
(12) are the usual ones, and are also found when f∗

ε is known; they are studied in Butucea
and Comte (2007). The last one is studied by analogous methods and Lemma 2, and is
specific to the present context. We find that the following risk bound holds:
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Proposition 1. Consider model (1) under (A1), then f̂m defined by (6) satisfies:

E[(f̂m(x)− f(x))2] ≤ 2

(
1

2π

∫

|t|≥πm
|f∗(t)|dt

)2

+
C

n
inf(

∫
|f∗

Y |∆(m),∆0(m)) + C ′∆
0
f (m)

M

It follows that, as f belongs to L
2(R), if

∫
|f∗

Y | < +∞ and M ≥ n, then the risk bound
obtained in Proposition 1 is the same as the one we get when f∗

ε is known. Indeed,

∆0
f (m) ≤ ‖f‖2∆(m) and ∆0

f (m) ≤ ∆0(m).

This is summarized by the Corollary:

Corollary 1. Consider model (1) under (A1). Assume moreover that
∫
|f∗

Y | < +∞ and

M ≥ n. Then f̂m defined by (6) satisfies:

(13) E[(f̂m(x) − f(x))2] ≤ 2

(
1

2π

∫

|t|≥πm
|f∗(t)|dt

)2

+
K

n
inf(∆(m),∆0(m)),

where K is a constant depending on
∫
|f∗

Y | and ‖f‖.
3.3. Pointwise rates under regularity conditions. Assumption (A1) is generally
strengthened by a parametric description of the rate of decrease of f∗

ε written as follows:

(A2) There exist s ≥ 0, b > 0, γ ∈ R (γ > 0 if s = 0) and k0, k1 > 0 such that

k0(x
2 + 1)−γ/2 exp(−b|x|s) ≤ |f∗

ε (x)| ≤ k1(x
2 + 1)−γ/2 exp(−b|x|s)

Moreover, the distribution function f to estimate generally belongs to the following type
of smoothness spaces:

Aδ,r,a(l) = {f density on R and

∫
|f∗(x)|2(x2 + 1)δ exp(2a|x|r)dx ≤ l}(14)

with r ≥ 0, a > 0, δ ∈ R and δ > 1/2 if r = 0, l > 0.

When r > 0, the function f is known as supersmooth, and as ordinary smooth otherwise.
In the same way, the noise distribution is called ordinary smooth if s = 0 and supersmooth
otherwise. The spaces of ordinary smooth functions correspond to classic Sobolev classes,
while supersmooth functions are infinitely differentiable. It includes for example normal
(r = 2) and Cauchy (r = 1) densities. We take the convention (a, r) = (0, 0) if a = 0 or
r = 0 and (b, s) = (0, 0) if b = 0 or s = 0.

Remark. If f∗
ε satisfies (A2) and f belongs to Aδ,r,a(l) as defined in (14), then

(∫
|f∗

Y |
)2

=

(∫
|f∗

ε f∗|
)2

≤ k2
1l

∫
(x2 + 1)−(γ+δ) exp(−2b|x|s − 2a|x|r)dx.

Thus definition (14) implies that
∫
|f∗

Y | < +∞.

The optimality (minimaxity) of the rates resulting from (13) for known f∗
ε , when f∗

ε

satisfies (A2) and f belongs to Aδ,r,a(l), has been studied in Fan (1991), Butucea (2004)
and Butucea and Tsybakov (2007).
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More generally, we can see that, if f∗
ε satisfies (A2) and if f ∈ Aδ,r,a(l):

∆0
f (m) ≤ l

2πk2
0

∫ πm

−πm
(x2 + 1)γ−δ exp (2b|x|s − 2a|x|r) dx.

Now, we can combine the rates related to M with standard pointwise rates (see Table
1 in Lacour (2006) or Table 2 in Butucea and Comte (2007)) and we obtain the Table 2
here.

s = 0 s > 0

r = 0 n− 2δ−1
2δ+2γ + M−[1∧( 2δ−1

2γ
)](log M)u (log n)−

2δ−1
s + (log M)−

2δ−1
s

u = 1δ=γ+1/2

r > 0
(log n)

2γ+1
r

n
+

1

M
see the discussion below.

Table 1. Rates of convergence for the MSE if f∗
ε satisfies (A2) and f ∈ Aδ,r,a(l).

We discuss the case r > 0, s > 0 for the integrated risk only, and thus omit this part of
the study here. The principle would be the same, with slightly different orders. See also
Lacour (2006).

3.4. Bound on the MISE. We shall study in more detail the integrated mean square
risk, which is slightly simpler. Indeed now, by Pythagoras theorem, we have

(15) ‖f − f̂m‖2 = ‖f − fm‖2 + ‖fm − f̂m‖2.

Moreover, writing f̂m −fm according to (4) and (3) and applying the Parseval formula, we
obtain

‖fm − f̂m‖2 =
1

2π

∫ πm

−πm

∣∣∣∣∣
f̂∗

Y (u)

f̃∗
ε (u)

− f∗
Y (u)

f∗
ε (u)

∣∣∣∣∣

2

du.

It follows that

(16) ‖fm − f̂m‖2 ≤ 1

π

∫ πm

−πm
|f̂∗

Y (u)|2|R(u)|2du +
1

π

∫ πm

−πm

|f̂∗
Y (u) − f∗

Y (u)|2
|f∗

ε (u)|2 du.

The last term of the right-hand-side of (16) is the usual term that is found when f∗
ε is

known, and the first one is specific to the present framework.
We can prove the following result:

Proposition 2. Consider model (1) under (A1), then f̂m defined by (6) satisfies:

(17) E(‖f̂m − f‖2) ≤ ‖fm − f‖2 + C
∆(m)

n
+ C ′∆f (m)

M

with C and C ′ numerical constants.
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The first two terms in the right-hand-side of (17) are the usual terms when f∗
ε is known

(see Comte et al. (2006)) and correspond to the bias and the variance term. The last term
∆f (m)/M is due to the estimation of f∗

ε .

Remark. As |f∗(x)| ≤ 1, we have ∆f (m) ≤ ∆(m). It follows that for any M ≥ n, then

E‖f̂m−f‖2 ≤ ‖fm−f‖2+C∆(m)/n and we recover the usual risk bound for deconvolution
estimation when f∗

ε is known. Therefore, in all cases, the condition M ≥ n ensures that
the rate of the estimator is the same as when f∗

ε was known.

3.5. Discussion about the resulting rates. In this section, we assume that f∗
ε satisfies

Assumption (A2), with parameters γ, b, s and that the unknown function f belongs to
a smoothness class Aδ,r,a(l) given by (14). It is then possible to evaluate orders for the
different terms involved in the bound (17).

Since f∗
m = f∗

1[−πm,πm], the biais term can be bounded in the following way

‖f − fm‖2 =
1

2π

∫

([−πm,πm])c

|f∗(u)|2du ≤ l

2π
((πm)2 + 1)−δe−2a(πm)r

The other terms are evaluated in the following lemma proved in Section 6.

Lemma 3. If f∗
ε satisfies Assumption (A2) then

(1) ∆(m) . (πm)2γ+1−se2b(πm)s
,

(2) ∆f (m) . (πm)(1+2γ−s)∧2(γ−δ)+e2b(πm)s
1{s>r} + (πm)2(γ−δ)+e2(b−a)(πm)s

1{r=s,b≥a}
+1{r>s}∪{r=s,b<a}.

Now distinguishing the different cases, we can state the following propositions.

Proposition 3. Assume that (A2) holds and that f ∈ Aδ,r,a(l) given by (14). If s = 0
(ordinary smooth noise) and r = 0 (ordinary smooth function f), then

E‖f̂m − f‖2 ≤ C0m
−2δ + C

m2γ+1

n
+ C ′m

2(γ−δ)+

M

where C0, C and C ′ are constants which do not depend on M nor n.

It is known from Fan (1991), that the optimal minimax rate when f∗
ε is known is n

−2δ
2γ+2δ+1 .

It is preserved with unknown f∗
ε as soon as M ≥ n

2(γ∨δ)
2γ+2δ+1 . This bound is tighter than

M ≥ n.

Now, choose m0 = Int[n
1

2γ+2δ+1 ∧M
1

2(γ∨δ) ] where Int[.] denotes the integer part. We obtain

E‖f̂m0 − f‖2 = O
(
n
− 2δ

2γ+2δ+1 + M−(1∧(δ/γ))
)

.

This is the lower bound proved by Neumann (1997), and thus the rate of our estimator is
the optimal rate.

Proposition 4. Assume that (A2) holds and that f ∈ Aδ,r,a(l) given by (14). If s > 0
(supersmooth noise) and r = 0 (ordinary smooth function f), then

E‖f̂m − f‖2 ≤ C0m
−2δ + C

m2γ+1−se2b(πm)s

n
+ C ′m

(1+2γ−s)∧2(γ−δ)+e2b(πm)s

M
,

where C0, C and C ′ are constants which do not depend on M nor n.
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For known f∗
ε , Fan (1991) proves that the optimal rate is of order (log n)−

2δ
s . It is

preserved here with unknown f∗
ε as soon as M ≥ n(log n)−

s+[2(δ∧γ)+1−s]+
s .

Choose m0 = Int[(1/π)

(
1
2b log[n(log n)−

2δ+2γ+1
s ∧ M(log M)−

2δ+s+(1+2γ−s)∧2(γ−δ)+
s ]

)1/s

].

This yields

E‖f̂m0 − f‖2 = O
(
(log n)

−2δ
s + (log M)

−2δ
s

)
.

Proposition 5. Assume that (A2) holds and that f ∈ Aδ,r,a(l) given by (14). If s = 0
(ordinary smooth noise) and r > 0 (supersmooth function f), then

E‖f̂m − f‖2 ≤ C0m
−2δe−2a(πm)r

+ C
m2γ+1

n
+

C ′

M
,

where C0, C and C ′ are constants which do not depend on M nor n.

The optimal rate in this case is studied by Butucea (2004) when f∗
ε is known and is

of order (log n)
2γ+1

r /n. It is preserved even when f∗
ε is estimated, if the sample size for

estimating it, M , is such that M ≥ n(log n)−
2γ+1

r .

Let us choose now m0 = Int[(1/π)
(

1
2a log[n(log n)

r−2δ−2γ−1
r ∧ M(log M)

−2δ
r ]
)1/r

]. We

get

E‖f̂m0 − f‖2 = O

(
(log n)

2γ+1
r

n
+

1

M

)
.

This is summarized in Table 2.

s = 0 s > 0

r = 0 n− 2δ
2δ+2γ+1 + M−[1∧( δ

γ
)] (log n)−

2δ
s + (log M)

−2δ
s

r > 0
(log n)

2γ+1
r

n
+

1

M
see the discussion below.

Table 2. Rates of convergence for the MISE.

The last case, when both functions are supersmooth, is much more tedious, in particular
if one wants to evaluate the rates. These are implicitly given in Butucea and Tsybakov
(2007), who also study optimality; explicit formulae are available in Lacour (2006), see
Theorem 3.1 therein.

Proposition 6. Assume that (A2) holds and that f ∈ Aδ,r,a(l) given by (14). If s > 0
(supersmooth noise) and r > 0 (supersmooth function f), then

E‖f̂m − f‖2 ≤ C0m
−2δe−2a(πm)r

+ C
m2γ+1−se2b(πm)s

n
+ C ′∆f (m)

M
,

where C0, C and C ′ are constants which do not depend on M nor n.
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Case r = s. We define ξ = [2bδ − a(2γ + 1− s)]/[(a + b)s] and ω = [2(b− a)δ− 2a(γ − δ)+]/[bs]
if b ≥ a, ω = 0 if b < a. It follows from Theorem 3.1 in Lacour (2006) that

E‖f̂m0 − f‖2 = O
(
n− a

a+b (log n)−ξ + M− a
a∨b (log M)−ω

)
,

for πm0 = Int[
( log(n)−(α/s) log log(n)

2a+2b

)1/s∧
( log(M)−(β/s) log log(M)

2(a∨b)

)1/s
] where α = 2δ+

2γ + 1 − s and β = 2δ + 2(γ − δ)+1b≥a.
Case r < s. We define k = d(s/r − 1)−1e − 1, where d.e is the ceiling function (i.e. dxe is the

smallest integer larger than or equal to x). There exist coefficients bi recursively
defined (see Theorem 3.1 in Lacour (2006)) and a choice m0 such that

E‖f̂m0 − f‖2 = O
(
(log n)−2δ/s exp[

k∑

i=0

bi(log n)(i+1)r/s−i]

+(log M)−2δ/s exp[

k∑

i=0

bi(log M)(i+1)r/s−i]
)

Case r > s. We define k = d(r/s− 1)−1e− 1. There exist coefficients di recursively defined (see
Theorem 3.1 in Lacour (2006)) and a choice m0 such that

E‖f̂m0 − f‖2 = O
((log n)(1+2γ−s)/r

n
exp[−

k∑

i=0

di(log n)(i+1)s/r−i] +
1

M

)

3.6. Lower bounds for the additional problem of estimating fε. As mentioned
above, Neumann (1997) studied only one particular case from the lower bound point of
view. But his proofs (for the additionnal problem of estimating fε) can be checked to
be suitable in other cases. The following proposition establishes the optimality of our
estimator with respect ot both risks in the cases where f is smoother than fε and r ≤ 1.

Proposition 7. Let

Fγ,b,s = {fε density such that there exist k0, k1 > 0 such that

k0 ≤ |f∗
ε (x)|(x2 + 1)γ/2 exp(b|x|s) ≤ k1}

If r = s = 0 and γ < δ − 1/2, or if 0 ≤ s < r ≤ 1 then

inf
f̂

sup
f∈Aδ,a,r(l),fε∈Fγ,b,s

E‖f̂ − f‖2
2 ≥ CM−1

inf
f̂

sup
f∈Aδ,a,r(l),fε∈Fγ,b,s

E|f̂(x) − f(x)|2 ≥ CM−1

Proof of Proposition 7. The proof of the lower bound (for the additional problem of
estimating fε) given by Neumann (1997) can be used for the study of the pointwise risk.
Indeed it suffices to use the same hypothesis functions fX,N,1 and fX,N,2 shifted at point x
and to compute the distance |fX,N,1(0) − fX,N,2(0)|2. These functions have been adjusted
to deal with the integrated risk but in the case where the two risks have the same order,
they can suit. Thus, if r = s = 0 and γ < δ − 1/2, we obtain a lower bound CM−1 which
proves the optimality of our estimator in this case.
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In addition, this result can be generalized to a supersmooth noise distribution if s ≤ 1.
Indeed, such densities verify the property (3.1) used by Neumann (1997). In the same
way, an extension to supersmooth functions f can be done provided that r ≤ 1. Thus,
if 0 ≤ s < r ≤ 1, the rate of convergence M−1 of our estimator is optimal for both the
integrated and the pointwise risk. �

4. Adaptation

The above study shows that the choice of m is both crucial and difficult. Thus, we
provide a data driven strategy to perform automatically this choice. We assume that we
are in case M ≥ n, so that our aim is to preserve here the rate corresponding to the case
where f∗

ε is known. We consider thus the estimator f̂m̂ defined by (9) where we have to
define the penalty pen(.).
We will work under Assumption (A2) and the following one, concerning the collection of
models Mn = {1, 2, . . . ,mn}:

(A3) ∃α ∈]0, 1[, β ∈]0, 1/2[, (πmn)2γe2b(πmn)s
. M1−α and n . M . exp(n1/2−β).

The first Inequality in (A3) together with (A2) implies that ∀x ∈ [−πmn, πmn], |f∗
ε (mn)|−2 .

M1−α.
If we choose M = n, we can see that Assumption (A3) is ensured if pen(.) is bounded

over Mn in the case b = s = 0 (that is if πmn ≤ n1/(2γ+1)) and if πmn ≤ (log(n)/(2b+1))1/s

for b > 0, s > 0.
Clearly, it is difficult to choose Mn and thus mn so that (A3) is fulfilled. This is a

problem in the practical procedure which requires an explicit upper bound mn of Mn.
Diggle and Hall (1993) suggest that regression methods applied to log(|f̂∗

ε |) may deliver
some estimates of the parameter γ in the ordinary smooth case. An estimator of s is
proposed in a semi-parametric framework in a recent work of Butucea et al. (2008): if it
is known that fε is supersmooth, this strategy may be used to estimate s. Lastly, one

can think of taking mn of order (|f̂∗
ε |2)−1(

√
M), where the exponent −1 here denotes the

reciprocal function.
We can provide another set of assumptions ensuring (A3). Assume that γ ∈ [γ, γ],

s ∈ [s, s] and b ∈ [b, b] with s > 0, b > 0 whenever s > 0, b > 0. And consider also the

following assumption: M . exp(n1/4) and

Case (b, s) = (0, 0): (ordinary smooth noise):

(A4)





Mn =
{
m, (πm)2γ+1 ≤ n

}

M ≥ n
2γ+1
2γ+1

or





Mn =
{
m, (πm) ≤ √

n
}

M ≥ nγ+1/2.

Case b > 0, s > 0: (supersmooth noise)

(A4)





Mn =
{
m, (πm)2γ+1−se2b(πm)s ≤ n

}

M ≥ exp

{
2

2b

(2b)s
(log n)s/s

}
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Then (A4) may require greater values of M , but also ensures (A3).
The simulation experiments of Section 5 are very useful here, to study the influence of

the value of M and the importance of the set Mn. It illustrates that we obtain very good
results in practice, even when arbitrary limitations are set on mn or M .

We can prove the preliminary result given in Theorem 1. Note that the proof of this
theorem is not standard in the present setting for the following reason. Usually, the contrast
decomposition gives two types of terms:

• supremum of centered empirical processes (which in the independent bounded case
are controlled thanks to Talagrand’s type results): these terms impose the form of
the penalty function.

• residual terms which are of negligible orders and which are not centered.

Here, the residual terms which appear, even when controlled by using Lemma 2, are not
negligible and have a weight in the penalty function. This makes the proof quite difficult.

Theorem 1. Assume that assumptions (A2) and (A3) are fulfilled and consider the es-

timator f̂m̂ defined by (6) and (9) with

pen(m) = K0(πm)[s−(1−s)+/2]+ ∆(m)

n
.

Then there exists C > 0 such that

E‖f̂m̂ − f‖2 ≤ 4 inf
m∈Mn

{‖fm − f‖2 + pen(m)} +
C

n

where fm is the orthogonal projection of f on Sm.

The presence of |f∗
ε | and s in the penalty is not admissible as it is an unknown quantity.

That is why we state the following theorem.

Theorem 2. Assume that assumptions (A2) and (A3) are fulfilled and that s ≤ s for

some given upper value s. Consider the estimator f̃ = f̂ ˆ̂m defined by (6) and

(18) ˆ̂m = arg min
m∈Mn

{γn(f̂m) + p̃en(m)}

with

p̃en(m) = K1(πm)[s−(1−s)+/2]+

∫ πm
−πm |f̃∗

ε |−2

n
.

Then there exists C > 0 such that

E‖f̃ − f‖2 ≤ 4 inf
m∈Mn

{‖fm − f‖2 + Ep̃en(m)} +
C

n

Note that the restriction s ≤ 2 is very classical, so that s̄ = 2 is generally suitable.
Concluding Remarks. As we can prove that Ep̃en(m) . (πm)[s−(1−s)+/2]+∆(m)/n, it

follows from Theorem 2 that f̃ automatically reaches the same rate as when fε is known if
s = s or if s = 0 (and thus s = 0 and this is known). For a discussion about the optimality
of these rates (which holds in most cases), see Comte et al. (2006).

In particular, in the case of ordinary smooth errors, the procedure is data driven and
reaches the optimal rate, provided that M is taken large enough (Assumption (A4) case
1.
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5. Simulations

Let us describe the estimation procedure. As noticed in (7), for each m, the estimator

f̂m of f can be written

f̂m =
∑

|l|≤Kn

âm,lϕm,l with âm,l =
1

n

n∑

j=1

ṽϕm,l
(Yj).

To compute the coefficients âm,l, we use the Inverse Fast Fourier Transform. Indeed,

using ϕ∗
m,l(u) = e−ilu/m

1[−πm,πm]/
√

m,

âm,l =
1

2π

∫ πm

−πm

1√
m

e−ilu/m f̂∗
Y (−u)

f̃∗
ε (−u)

du =

√
m

2
(−1)l

∫ 2

0
eilπx f̂∗

Y

f̃∗
ε

(πm(x − 1))dx

Then, for l = 0, ..., N−1, denoting hm(x) = (f̂∗
Y /f̃∗

ε )(πm(x−1)), âm,l can be approximated
by

√
m(−1)l

1

N

N−1∑

k=0

eilπ 2k
N hm(

2k

N
) =

√
m(−1)l(IFFT(H))l

where H is the vector (hm(0), hm(2/N), . . . , hm(2(N − 1)/N). For l < 0, it is sufficient to

replace hm(x) by hm(−x) = hm(x), i.e. H by H. Following Comte et al. (2006), we choose
Kn = N − 1 = 28 − 1: indeed, a larger Kn does not significantly improve the results.

Thus, to compute f̃ , we use the following steps:

• For each m ∈ Mn and for each l, compute âm,l using function f̂∗
Y /f̃∗

ε and IFFT as
described above

• For each m compute γn(f̂m) + p̃en(m) = −∑l |âm,l|2 + p̃en(m).

• Select the ˆ̂m which minimizes γn(f̂m) + p̃en(m).

• Compute f̃ =
∑

|l|≤Kn
â ˆ̂m,lϕ ˆ̂m,l.

Clearly, the use of FFT makes the procedure very fast. The penalty is chosen according
to Theorem 2 with s̄ = 2. Indeed densities with s > 2 are difficult to express in a closed
form whereas usual densities all verify 0 ≤ s ≤ 2. The constant K1 is chosen equal to
1/2 after intensive simulation experiments. However other values of K1 can suit and,
empirically, the procedure seems rather robust with respect to the choice of this constant.
Thus, in all the examples below, we take:

p̃en(m) =
1

2n
(πm)2

∫ πm

−πm
|f̃∗

ε |−2.

Let us first compare our estimator to the one of Neumann (1997). He denotes by

f0(x) = e−|x|/2 and he considers two examples :
- example 1: f = f0 ∗ f0 ∗ f0 ∗ f0 and fε = f0 ∗ f0

- example 2: f = f0 ∗ f0 and fε = f0 ∗ f0 ∗ f0 ∗ f0

We set, as in Neumann (1997), n = 200 and M = 10 and the L2 risk is computed with 100
random samples. As in Comte et al. (2007), we consider that m can be fractional. More
precisely, we take here

Mn =

{
m =

k

4π
, k ∈ N

∗, k ≤ √
n

}
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for the estimation with unknown noise. Actually, the bound on m, which is crucial in
theory, turns out to be of little importance for practical purposes. The procedure chooses
the appropriate model (often very small) even if the maximal model is very large. That
is why in all our experiments we choose to keep a maximal m with order

√
n. We also

compute the estimator with known noise, replacing f̃ε by fε in the procedure. In this case,
the choice of the maximal model has more impact, so we choose Mn = {m = k/(4π), k ∈
N
∗, k ≤ n1/4}. Moreover, we take here pen(m) = 4∆(m)/n = (2/nπ)

∫ πm
−πm(1 + x2)2ddx

with d = 2 in example 1 and d = 4 in example 2. The integrated L2 risks for 100 replications
are given in Table 3 and show our improvement of the results of Neumann (1997).

ex 1 ex 2
fε known 0.00257 0.01904

fε unknown 0.00828 0.06592

ex 1 ex 2
fε known 0.00225 0.01641

fε unknown 0.00619 0.03327

Table 3. MISE for the estimators of Neumann (1997) (left) and for the
penalized estimator (right).

In these examples, the signal and the noise are ordinary smooth (r = s = 0): this induces

the rates of convergence n− 15
24 + M−1 and n− 7

24 + M− 7
16 for examples 1 and 2 respectively.

An example of estimation for supersmooth functions is given in Johannes (2007). In
his example 5.1, he considers a standard Gaussian noise and X ∼ N (5, 9). Again we use
Mn = {m = k/(4π), k ∈ N

∗, k ≤ √
n}. The penalty for a known noise is pen(m) =

(πm)3
∫ 1
0 exp{(πmx)2}dx/(2n). As Johannes (2007) presents only boxplots and for the

sake of comparison, we give the third quartile for the L2 risk in Table 4. In this case r = 2,

δ = 1/2 and s = 2,γ = 0 and the rate of convergence is n− 9
10 (log n)−1/2 + M−1. The

improvement brought by our method is striking.

n = 100 n = 250 n = 500
fε known 2.0 0.9 0.6
M = 100 2.0 1.0 0.7
M = 250 1.9 1.0 0.6
M = 500 1.9 0.9 0.6

n = 100 n = 250 n = 500
fε known 0.34 0.20 0.08
M = 100 0.29 0.15 0.09
M = 250 0.27 0.13 0.08
M = 500 0.23 0.11 0.08

Table 4. Third quartile of the MISE ×100 for the estimators of Johannes
(2007) (left) and for the penalized estimator (right).

Now we compute estimators for different signal densities and different noises. For the
sake of simplicity (and since the chosen model are here larger), we take now

Mn =

{
m =

k

2π
, k ∈ N

∗, k ≤ √
n

}

(for both known and unknown noise). Following Comte et al. (2006) we study the following
densities on the interval I:
(i) Laplace distribution: f(x) = e−

√
2|x|/

√
2, I = [−5, 5] (regularities δ = 2, r = 0)

(ii) Mixed Gamma distribution: X = W/
√

5.48 with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1),
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I = [−1.5, 26] (regularities δ = 5, r = 0)
(iii) Cauchy distribution: f(x) = (π(1 + x2))−1, I = [−10, 10] (regularities δ = 0, r = 1)
(iv) Standard Gaussian distribution, I = [−4, 4] (regularities δ = 1/2, r = 2)

n = 100 n = 250 n = 500 n = 1000
H

H
H

H
HH

f
fε Lap. Gauss. Lap. Gauss. Lap. Gauss. Lap. Gauss.

Laplace fε known 2.185 2.250 1.261 1.168 0.836 0.924 0.583 0.633
M = b√nc 4.868 4.791 2.811 2.845 1.777 1.781 1.153 1.109

M = n 5.107 5.114 2.892 2.876 1.757 1.748 1.090 1.110
Mixed fε known 1.001 0.945 0.603 0.554 0.278 0.274 0.177 0.202
Gamma M = b√nc 0.971 1.025 0.751 0.777 0.454 0.472 0.232 0.230

M = n 1.037 1.039 0.745 0.765 0.467 0.500 0.222 0.218
Cauchy fε known 1.072 0.979 0.468 0.475 0.341 0.251 0.243 0.137

M = b√nc 1.276 1.343 0.791 0.802 0.400 0.398 0.189 0.194
M = n 1.266 1.362 0.762 0.782 0.363 0.364 0.172 0.172

Gaussian fε known 0.810 0.589 0.771 0.287 0.500 0.191 0.373 0.134
M = b√nc 1.045 1.114 0.397 0.346 0.241 0.181 0.139 0.170

M = n 0.904 0.986 0.252 0.256 0.150 0.182 0.100 0.094

Table 5. MISE E(‖f − f̃‖2) × 100 averaged over 100 samples

We consider two different noises with same variance 1/10:

Laplace noise: In this case, the density of εi is given by

fε(x) =
λ

2
e−λ|x|; f∗

ε (x) =
λ2

λ2 + x2
; λ = 2

√
5.

The smoothness parameters are γ = 2 and b = s = 0. In the case when fε is
known, we use pen(m) = 4(πm + (2/(3λ2))(πm)3 + (1/(5λ4))(πm)5)/n.

Gaussian noise: In this case, the density of εi is given by

fε(x) =
1

λ
√

2π
e−

x2

2λ2 ; f∗
ε (x) = e−

λ2x2

2 ; λ =
1√
10

.

So γ = 0, b = λ2/2 and s = 2. In the case when fε is known, we use pen(m) =

0.5(πm)3
∫ 1
0 e(λπmx)2dx/n.

The results are given in Table 5 and are very comparable to those of Comte et al. (2006).
We notice that the estimation of the characteristic function of the noise does not spoil
so much the procedure. It even happens that the estimation with unknown noise works
better. We can also observe that, as expected, the risk decreases when M increases. The
cases where the risk is larger for M = n correspond to a stabilization of the decrease and
are due to the variance of the results. Figure 1 illustrates these results for two cases: a
mixed Gamma density estimated through Laplace noise and a Laplace density estimated
through Gaussian noise.
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Figure 1. True function f (bold line) and estimators for n = 500. Left:
mixed Gamma density with Laplace noise. Right : Laplace density with
Gaussian noise
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Figure 2. MISE against M for n = 100 in two cases

Figure 2 shows the decrease of the integrated risk in these two cases. These curves
confirm the theoretical result since the rate of convergence for a fixed n is M−1 in the first
case and (log M)−2 in the second case.

6. Proofs

For two sequences un,M and vn,M , we denote un,M . vn,M if there exists a positive
constant C such that un,M ≤ Cvn,M .
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6.1. Proof of Lemma 1. It is sufficient to prove the first assertion. First we write that
vt(Yj) = (1/2π)

∫
eiYjut∗(u)/f∗

ε (−u)du so that

E[vt(Yj)|Xj ] =
1

2π

∫
E[eiYju|Xj ]

t∗(u)

f∗
ε (−u)

du.

By using the independence between Xj and εj , we compute

E[eiYju|Xj ] = E[eiXjueiεju|Xj ] = eiXjuE[eiεju] = eiXjuf∗
ε (−u).

Then

E[vt(Yj)|Xj ] =
1

2π

∫
eiXjuf∗

ε (−u)
t∗(u)

f∗
ε (−u)

du =
1

2π

∫
eiXjut∗(u)du = t(Xj).

�

6.2. Proof of Proposition 1. We start from Inequality (12). It follows from Butucea
and Comte (2007) that:

(19) Var

(
1

2π

∫ πm

−πm
eixu f̂∗

Y (u)

f∗
ε (−u)

du

)
≤ 1

2πn
inf(

∫
|f∗

Y |∆(m),∆0(m)),

and (also, to see this, use (4) and (f − fm)(x) = (1/2π)(f∗ − f∗
m)∗(−x)),

(20) (fm(x) − f(x))2 ≤
(

1

2π

∫

|t|≥πm
|f∗(t)|dt

)2

.

For the remaining term in (12), we write first:

E

[(
1

2π

∫ πm

−πm
eixuf̂∗

Y (u)R(u)du

)2
]

≤ 2E

[(
1

2π

∫ πm

−πm
eixu(f̂∗

Y (u) − f∗
Y (u))R(u)du

)2
]

+2E

[(
1

2π

∫ πm

−πm
eixuf∗

Y (u)R(u)du

)2
]

:= 2T1 + 2T2.

Then we find

T1 =
1

4π2

∫∫
eix(u−v)cov(f̂∗

Y (u), f̂∗
Y (v))E(R(u)R̄(v))dudv

≤ 1

4π2n

∫∫
|f∗

Y (u − v)|
√

E(|R(u)|2)E(|R(v)|2)dudv

.
1

4π2n

∫∫
|f∗

Y (u − v)| 1

|fε(u)fε(v)|dudv

by using Lemma 2. This term is clearly bounded by ∆0(m). Moreover writing it as

∫∫ √
|f∗

Y (u − v)|
|fε(u)|

√
|f∗

Y (u − v)|
|fε(v)| dudv
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and using first the Schwarz Inequality, and second the Fubini Theorem yields the bound∫
|f∗

Y |∆(m). Therefore

(21) E

[(
1

2π

∫ πm

−πm
eixu(f̂∗

Y (u) − f∗
Y (u))R(u)du

)2
]

.
1

2πn
inf(

∫
|f∗

Y |∆(m),∆0(m)),

and thus it has the same order as the usual variance term. Lastly,

T2 ≤ 1

4π2

∫∫

|u|,|v|≤πm
|f∗

Y (u)f∗
Y (v)|

√
E(|R(u)|2)E(|R(v)|2)dudv

≤ 1

4π2

(∫ πm

−πm
|f∗

Y (u)|
√

E(|R(u)|2)du

)2

.
1

4π2M

(∫ πm

−πm
|f∗

Y (u)| 1

|f∗
ε (u)|2 du

)2

=
1

4π2M

(∫ πm

−πm

|f∗(u)|
|f∗

ε (u)|du

)2

=
∆0

f (m)

2πM
.(22)

Inserting the bounds (19) to (22) in Inequality (12), we obtain the result of Proposition 1.
�

6.3. Proof of Proposition 2. We start from (16) and take the expectation:

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
E(|f̂∗

Y (u) − f∗
Y (u)|2|R(u)|2)du

+
2

π

∫ πm

−πm
|f∗

Y (u)|2E(|R(u)|2)du +
1

π

∫ πm

−πm

n−1

|f∗
ε (u)|2 du.

Applying Lemma 2 yields:

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
E(|f̂∗

Y (u) − f∗
Y (u)|2)E(|R(u)|2)du

+
2

π

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2E|R(u)|2du + 2
∆(m)

n

.

∫ πm

−πm
n−1|f∗

ε (u)|−2du

+

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2 M−1

|f∗
ε (u)|4 du +

∆(m)

n

.
1

M

∫ πm

−πm

|f∗(u)|2
|f∗

ε (u)|2 du +
∆(m)

n
(23)

By gathering (15) and (23), we obtain the result. �

6.4. Proof of Lemma 3. The proof of the first result is omitted. It is obtained by
distinguishing the cases s > 2γ+1 and s ≤ 2γ+1 and with standard evaluations of integrals.
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For the second point, we first remark that ∆f (m) ≤ ∆(m). Next, using Assumption (A2),

∆f (m) ≤ k−2
0

2π

∫ πm

−πm
(x2 + 1)γe2b|x|s |f∗(x)|2dx

≤ k−2
0

2π
l sup
x∈[−πm,πm]

((x2 + 1)γ−δe2(b|x|s−a|x|r))

Then, if s > r,

∆f (m) ≤ k−2
0

2π
l((πm)2 + 1)(γ−δ)+e2b(πm)s

If r = s and b ≥ a,

∆f (m) ≤ k−2
0

2π
l((πm)2 + 1)(γ−δ)+e2(b−a)(πm)s

If r > s or r = s and a > b, ∆f (m) is bounded by a constant. �

6.5. Proof of Theorem 1. We observe that for all t, t′

γn(t) − γn(t′) = ‖t − f‖2 − ‖t′ − f‖2 − 2νn(t − t′)

where

νn(t) = (n)−1
∑

j

{
ṽt(Yj) −

∫
t(x)f(x)dx

}
.

Let us fix m ∈ Mn and recall that fm is the orthogonal projection of f on Sm. Since
γn(f̃) + pen(m̂) ≤ γn(fm) + pen(m), we have

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + 2νn(f̂m̂ − fm) + pen(m) − pen(m̂)

≤ ‖fm − f‖2 + 2‖f̃ − fm‖ sup
t∈B(m,m̂)

νn(t) + pen(m) − pen(m̂)

where, for all m,m′, B(m,m′) = {t ∈ Sm + Sm′ , ‖t‖ = 1}. Then, using inequality
2xy ≤ x2/4 + 4y2,

(24) ‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 +
1

4
‖f̂m̂ − fm‖2 + 4 sup

t∈B(m,m̂)
ν2

n(t) + pen(m) − pen(m̂).

But ‖f̂m̂ − fm‖2 ≤ 2‖f̂m̂ − f‖2 + 2‖f − fm‖2 so that, introducing a function p(., .)

‖f̂m̂ − f‖2 ≤ 3‖fm − f‖2 + 8[ sup
t∈B(m,m̂)

ν2
n(t) − p(m, m̂)] + 8p(m, m̂) + 2pen(m) − 2pen(m̂).

If p is such that for all m,m′,

(25) 4p(m,m′) ≤ pen(m) + pen(m′)

then

(26) E‖f̂m̂ − f‖2 ≤ 3‖fm − f‖2 + 8E[ sup
t∈B(m,m̂)

ν2
n(t) − p(m, m̂)] + 4pen(m).
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With Lemma 1 in mind, νn(t) can be split into two terms : νn(t) = νn,1(t) + Sn(t) with

(27)





νn,1(t) =
1

n

n∑

j=1

{vt(Yj) − E[vt(Yj)]}

Sn(t) =
1

n

n∑

j=1

(ṽt − vt)(Yj), ,

For νn,1, we use the following proposition, proved in Comte et al. (2006):

Proposition 8. Let p1(m,m′) = K(πm′′)[s−(1−s)+/2]+∆(m′′)/n where ∆(m) is defined in
(10) and m′′ = max(m,m′) and K is a constant. Then, under assumptions of Theorem 1,
there exists a positive constant C such that

(28) E0 := E

([
sup

t∈B(m,m̂)
ν2

n,1(t) − p1(m, m̂)

]

+

)
≤ C

n
.

Note that Theorem 1 in Comte et al. (2006) is proved under the assumption that the
penalty is bounded, but it is easy to check that it also holds under (A3) (and the assump-

tion M . exp(n1/2−β) is used here).

For Sn we need additional decompositions. We write

Sn(t) =
1

n

n∑

j=1

(ṽt − vt)(Yj) =
1

2π

∫
(
1

n

n∑

j=1

eiuYj)t∗(u)R(−u)du

=
1

2π

∫
f̂∗

Y (u)t∗(−u)R(u)du

=
1

2π

∫
(f̂∗

Y (u) − f∗
Y (u))t∗(−u)R(u)du +

1

2π

∫
f∗

Y (u)t∗(−u)R(u)du

Now, let E(x) = {|f̂∗
ε (x)| ≥ 1/

√
M} and write

R(x) =
1E(x)

f̂∗
ε (x)

− 1

f∗
ε (x)

= 1E(x)

(
1

f̂∗
ε (x)

− 1

f∗
ε (x)

)
− 1E(x)c

f∗
ε (x)

=
(f∗

ε (x) − f̂∗
ε (x))

f∗
ε (x)

1E(x)

f̂∗
ε (x)

−
1E(x)c

f∗
ε (x)

=
(f∗

ε (x) − f̂∗
ε (x))

f∗
ε (x)

R(x) +
(f∗

ε (x) − f̂∗
ε (x))

(f∗
ε (x))2

−
1E(x)c

f∗
ε (x)

.

Thus we have

Sn(t) = Rn,1(t) + Rn,2(t) − Rn,3(t) − Rn,4(t)
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where 



Rn,1(t) =
1

2π

∫
(f̂∗

Y (u) − f∗
Y (u))t∗(−u)R(u)du,

Rn,2(t) =
1

2π

∫
f∗(u)t∗(−u)(f∗

ε (u) − f̂∗
ε (u)))R(u)du,

Rn,3(t) =
1

2π

∫
f∗(u)t∗(−u)

f̂∗
ε (u) − f∗

ε (u)

f∗
ε (u)

du,

Rn,4(t) =
1

2π

∫
f∗(u)t∗(−u)1E(x)cdu.

Now, we prove in the following subsections the result:

Proposition 9. We denote here by m∗ = m∨ m̂. Under assumptions of Theorem 1, there
exists a positive constant C such that

(29) E1 := E

(
sup

t∈B(m,m̂)
|Rn,1(t)|2 − C1

∆(m∗)
n

)
≤ C

n
.

(30) E2 := E

(
sup

t∈B(m,m̂)
|Rn,2(t)|2 − C2

∆f (m∗)

M

)
≤ C

n
.

(31) E3 := E

(
sup

t∈B(m,m̂)
|Rn,3(t)|2 − p3(m, m̂)

)

+

≤ C

n
.

with p3(m,m′) = K ′(πm′′)[s−(1−s)+/2]+∆(m′′)/M , m′′ = max(m,m′).

(32) E4 := E

(
sup

t∈B(m,m̂)
|Rn,4(t)|2

)
≤ C

n
.

It follows that

E[ sup
t∈B(m,m̂)

ν2
n(t) − p(m, m̂)]+ ≤ 5(E1 + E2 + E3 + E4 + E0)(33)

as soon as

5

(
∆(m”)

n
+

∆f (m”)

n
+ p3(m,m′) + p1(m,m′)

)
≤ p(m,m′)

for all m,m′ in Mn. Therefore, the choice p(m,m′) = K”(πm′′)[s−(1−s)+/2]+∆(m′′)/n for
a numerical constant K” large enough, is suitable. The choice of pen(.) given in Theorem 1
ensures then that (25) holds true.
Now, gathering (28), (29)–(32) and (33) yields

E[ sup
t∈B(m,m̂)

ν2
n(t) − p(m, m̂)]+ ≤ C

n
,

which, together with (26), ends the proof of Theorem 1. �

6.6. Proof of Proposition 9.
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6.6.1. Study of Rn,1(t) and proof of (29). We recall that m∗ is the maximum max(m, m̂)
and we define Ω(x) the set Ω(x) = Ω1(x) ∩ Ω2(x) where

Ω1(x) = {|f̂∗
Y (x) − f∗

Y (x)| ≤ nα/8−1/2Mα/4} and Ω2(x) = {|R(x)| ≤ Mα/8−1/2/|f∗
ε (x)|2)},

for α ∈ (0, 1) as defined in (A3).
For t in Sm + Sm̂ = Sm∗ , we can bound the term |Rn,1(t)|2 in the following way

|Rn,1(t)|2 ≤ 1

4π2

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|2

so that

sup
t∈B(m,m̂)

|Rn,1(t)|2 ≤ 1

4π2

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ω +
1

4π2

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ωc

On the one hand
∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ω ≤
∫ πm∗

−πm∗

nα/4−1Mα/2Mα/4−1|f∗
ε |−4

≤ nα/4−1M3α/4−1

∫ πm∗

−πm∗

M1−α|f∗
ε (x)|−2dx

. nα/4−1M−α/4∆(m∗) .
∆(m∗)

n

( n

M

)α/4
.

∆(m∗)
n

On the other hand

E(

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ωc) ≤
∫ πmn

−πmn

E
1/2(|f̂∗

Y − f∗
Y |4)E1/2(|R|4)P1/2(Ωc)

.

∫ πmn

−πmn

n−1M−1|f∗
ε (x)|−4

P
1/2(Ω(x)c)dx

. n−1M−α∆(mn)‖P1/2(Ωc)‖∞
But, using the Markov inequality,

P(Ω(x)c) ≤ n−p(α/8−1/2)M−pα/4
E|f̂∗

Y − f∗
Y |p + M−2p(α/8−1/2)|f∗

ε (x)|4p
E|R|2p

≤ n−pα/8M−pα/4 + M−pα/4 . M−pα/4,

then

E(

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ωc) . n−1M−α∆(mn)M−pα/8)

.
mnM1−α

Mn
M1−α−pα/8 ≤ M1+1/(2γ̃)−2α−αp/8

n

where 1/(2γ̃) = 1/(2γ) if s = 0, γ > 0 and 1/(2γ̃) = 1 if γ = 0, s > 0.

We choose p large enough (p ≥ 8(1/(2γ̃) + 1 − 2α)/α) so that M1+1/(2γ̃)−2α−pα/8 = O(1).
We obtain (29). �
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6.6.2. Study of Rn,2(t) and proof of (30). The following result obviously holds E[|f∗
ε −

f̂∗
ε |p] . M−p/2. Moreover, let

Ξ(x) = {|f∗
ε (x) − f̂∗

ε (x)| ≤ M−ω and |R(x)| ≤ M−ω/|f∗
ε (x)|2},

where 0 < ω < 1/2. We can bound the term |Rn,2(t)|2 in the following way

sup
t∈Sm+Sm̂

|Rn,2(t)|2 ≤ 1

4π2

∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξ +
1

4π2

∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξc

On the one hand∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξ ≤
∫ πm∗

−πm∗

|f∗|2M−4ω|f∗
ε |−4

≤
∫ πm∗

−πm∗

|f∗|2M−4ω|f∗
ε |−2M1−α

.
∆f (m∗)

M
(M2−4ω−α) .

∆f (m∗)

M
,

as soon as ω satisfies (2− α)/4 ≤ ω < 1/2, e.g. we can take 0 < ω = (2− α)/4 < 1/2. On
the other hand

E(

∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξc) ≤
∫ πmn

−πmn

|f∗|2E
1/4(|f∗

ε − f̂∗
ε |8)E1/4(|R|8)P1/2(Ξc)

.

∫ πmn

−πmn

M−2|f∗(x)|2|f∗
ε (x)|−4

P
1/2(Ξ(x)c)dx

. ∆f (mn)M−1−α‖P1/2(Ξc)‖∞ . mnM−α‖P1/2(Ξc)‖∞

. M1/(2γ̃)−α‖P1/2(Ξc)‖∞.

Then, using the Markov inequality,

P(Ξ(x)c) ≤ M2pω
E|f∗

ε − f̂∗
ε |2p + M2ωp|f∗

ε (x)|4p
E|R|2p

. Mp(2ω−1).

Thus

E(

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ξc) .
M1/(2γ̃)−α−p(1−2ω)

n
.

1

M

for p ≥ (1/(2γ̃) − α)/(1 − 2ω) = 2(1/(2γ̃) − α)/α. This yields (30). �

6.6.3. Study of Rn,3(t) and proof of (31). We can write

Rn,3(t) =
1

M

M∑

k=1

[Ft(ε−k) − E(Ft(ε−k))]

with

Ft(u) =
1

2π

∫
f∗(x)

f∗
ε (x)

t∗(−x)e−ixudx.

Moreover,

E

[
sup

t∈B(m,m̂)
|Rn,3(t)|2 − p3(m, m̂)

]

+

≤
∑

m′∈Mn

E

[
sup

t∈B(m,m′)
|Rn,3(t)|2 − p3(m,m′)

]

+
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which replaces the supremum on a random unit ball (m̂ is random) by suprema on deter-
ministic unit balls. Then we use the following Lemma

Lemma 4. Let T1, . . . , TM be independent random variables and νM (r) = (1/M)
∑M

j=1[r(Tj)−
E(r(Tj)], for r belonging to a countable class R of measurable functions. Then, for ε > 0,

(34) E[sup
r∈R

|νM (r)|2 − (1 + 2ε)H2]+ ≤ C

(
v

M
e−K1ε MH2

v +
B2

M2C2(ε)
e−K2C(ε)

√
εMH

B

)

with K1 = 1/6, K2 = 1/(21
√

2), C(ε) =
√

1 + ε− 1 and C a universal constant and where

sup
r∈R

‖r‖∞ ≤ B, E

(
sup
r∈R

|νM (r)|
)

≤ H, sup
r∈R

1

M

M∑

j=1

Var(r(Tj) ≤ v.

Inequality (34) is a straightforward consequence of the Talagrand (1996) inequality given
Birgé and Massart (1997). Moreover, standard density arguments allow to apply it to the
unit ball of a finite dimensional linear space.

Let us determine B,H and v is our problem.
For t ∈ Sm + Sm′ = Sm′′ ,

‖Ft‖2
∞ ≤ 1

4π2

∫ πm′′

−πm′′

|f∗(x)|2
|f∗

ε (x)|2 dx

∫ πm′′

−πm′′

|t∗(−x)|2dx.

Then supt∈B(m,m′) ‖Ft‖2
∞ ≤ ∆f (m′′) and we set

B =
√

∆(m′′).

If t belongs to B(m,m′), it can be written t =
∑

l∈Z
am′′,lϕm′′,l and

|Rn,3(t)|2 ≤
∑

l∈Z

a2
m′′,l

∑

l∈Z

| 1

M

M∑

j=1

[Fϕm′′ ,l
(ε−j) − E(Fϕm′′ ,l

(ε−j))]|2

As the ε−j are i.i.d.,

E( sup
t∈B(m,m′)

|Rn,3(t)|2) ≤
∑

l∈Z

Var


 1

M

M∑

j=1

Fϕm′′ ,l
(ε−j)


 ≤ 1

M

∑

l∈Z

Var
(
Fϕm′′ ,l

(ε1)
)

Now, using the Parseval formula,

∑

l∈Z

∣∣∣∣
1

2π

∫
f∗(x)

f∗
ε (x)

ϕ∗
m′′,l(−x)e−ixudx

∣∣∣∣
2

=
1

2π

∫ πm′′

−πm′′

∣∣∣∣
f∗(x)

f∗
ε (x)

∣∣∣∣
2

dx.

Then

E( sup
t∈B(m,m′)

|Rn,3(t)|2) ≤
1

M
E

(
∑

l∈Z

|Fϕm′′ ,l
(ε1)|2

)
≤ 1

2πM

∫ πm′′

−πm′′

∣∣∣∣
f∗(x)

f∗
ε (x)

∣∣∣∣
2

dx ≤ ∆f (m′′)

M

and we set H =
√

∆(m′′)/M as ‖f‖1 = 1.

Lastly, standard methods give v = C min(∆(m′′), ‖fε‖
√

∆2(m′′)) with

∆2(m) =

∫ ∣∣∣∣
1

f∗
ε

∣∣∣∣
4
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Then we insert these quantities in the Inequality given in Lemma 4. For the first term
of the right-hand-side bound, we obtain

∑

m′∈Mn

v

M
exp(−K1ε

MH2

v
) ≤ C

M

with adequate choices of ε. The study of this term is the same as in the proof of Theorem 1
in Comte et al. (2006) and is omitted here. The second term of the right-hand-side bound
is less than (up to multiplicative constants):

∑

m′∈Mn

∆(m′′)
M2

exp(−C
√

M) ≤ M1/γ̃−1−α exp(−C
√

M) .
1

M
.

Inserting the value of ε and applying Lemma 4 leads to

∑

m′∈Mn

E

[
sup

t∈B(m,m′)
|Rn,3(t)|2 − p3(m,m′)

]

+

≤ C

M

which implies (31). �

6.6.4. Study of Rn,4(t). It is easy to see that

sup
t∈B(m,m̂)

|Rn,4(t)|2 ≤ 1

2π

∫ πm∗

−πm∗

|f∗(u)|21Ecdu,

and thus

E

(
sup

t∈B(m,m̂)
|Rn,4(t)|2

)
≤ 1

2π

∫ πmn

−πmn

|f∗(u)|2P(Ec)du.

Now, P(Ec) = P(|f̂∗
ε (x)| < 1/

√
M). We use that, as |f∗

ε (x)|−2 ≤ M1−α, it holds that

|f∗
ε (x)| ≥ 2/

√
M . Thus, proceeding as in Neumann (1997), we apply Bernstein Inequality

and we get

P(|f̂∗
ε (x)| < M−1/2) ≤ P(|f̂∗

ε (x) − f∗
ε (x)| > |f∗

ε (x)| − M−1/2)

≤ P(|f̂∗
ε (x) − f∗

ε (x)| > M−1/2)

≤ κ exp(−κM |f∗
ε (x)|2) = O(M−p|f∗

ε (x)|−2p),

for all p ≥ 1. Then

E

(
sup

t∈B(m,m̂)
|Rn,4(t)|2

)
.

∫ πmn

−πmn

|f∗(u)|2M−p|f∗
ε (u)|−2pdu

. ∆f (mn)M−pM (1−α)(p−1)

Then as ∆f (mn) ≤ ∆(mn) ≤ mnM ≤ M1+1/(2γ̃), it is sufficient to take p ≥ 2+1/(2αγ̃) > 0
to obtain

E

(
sup

t∈B(m,m̂)
|Rn,4(t)|2

)
.

1

M
.

1

n
.

Therefore, (32) holds. �
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6.7. Proof of Theorem 2. We use the following set

Λ = {∀m ∈ Mn,
1

2π

∫ πm

−πm
|R|2 ≤ ∆(m)

4
}.

Let

∆̃(m) =
1

2π

∫ πm

−πm
dx/|f̃ε(x)|2.

Since ∆(m) ≤ 2
2π

∫ πm
−πm |R|2 + 2∆̃(m), we can write on Λ, ∆(m) ≤ ∆(m)/2 + 2∆̃(m) and

then

∆(m)1Λ ≤ 4∆̃(m)1Λ

Reasoning as in the proof of Theorem 1, if p is such that for all m,m′, 4p(m,m′)1Λ ≤
p̃en(m)1Λ + p̃en(m′)1Λ then

‖f̃ − f‖2
1Λ ≤ 3‖fm − f‖2 + 8[ sup

t∈B(m, ˆ̂m)

ν2
n(t) − p(m, ˆ̂m)]1Λ + 4p̃en(m)1Λ.

It follows from the proof of Theorem 1 that

8E[ sup
t∈B(m, ˆ̂m)

ν2
n(t) − p(m, ˆ̂m)]+ ≤ C/n

with p(m,m′) = K(πm′′)[s−(1−s)+/2]+ ∆(m′′)/n.

Thus, choosing p̃en(m) = 16K(πm)[s̄−(1−s̄)+/2]+∆̃(m)/n, on Λ,

4p(m,m′) = 4K(πm′′)[s−(1−s)+/2]+∆(m′′)/n

≤ 4K(πm)[s̄−(1−s̄)+/2]+∆(m)/n + 4K(πm′)[s̄−(1−s̄)+/2]+∆(m′)/n

≤ 16K(πm)[s̄−(1−s̄)+/2]+∆̃(m)/n + 16K(πm′)[s̄−(1−s̄)+/2]+∆̃(m′)/n

≤ p̃en(m) + p̃en(m′).

Then

E(‖f̃ − f‖2
1Λ) ≤ 4 inf

m∈Mn

{‖fm − f‖2 + Ep̃en(m)} +
C

n

We still have to prove that

E(‖f̃ − f‖2
1Λc) ≤ C

n

First we compute, using formula (3) ,

‖f̃‖2 =
1

2π

∫
|f̂∗

ˆ̂m
|2 =

1

2π

∫ π ˆ̂m

−π ˆ̂m

|f̂∗
Y |2

|f̃∗
ε |2

≤ 1

2π

∫ π ˆ̂m

−π ˆ̂m
|f̃∗

ε |−2

But |f̃∗
ε (x)|−2 = |f̂∗

ε (x)|−2
1{|f̂∗

ε (x)|≥M−1/2} ≤ M . Then

‖f̃‖2 ≤ M ˆ̂m ≤ Mmn ≤ M1/(2γ̃)+1
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and thus E(‖f̃ − f‖2
1Λc) . M1/(2γ̃)+1P (Λc). Now, using Markov and Jensen inequalities,

P(Λc) ≤
∑

m∈Mn

P(
1

2π

∫ πm

−πm
|R|2 >

∆(m)

4
) ≤

∑

m∈Mn

(
4

∆(m)

)p

E

[(
1

2π

∫ πm

−πm
|R|2

)p]

≤
(

4

2π

)p ∑

m∈Mn

∆(m)−p
E

[
(2πm)p−1

∫ πm

−πm
|R|2p

]

≤ 4p

2π

∑

m∈Mn

∆(m)−pmp−1

∫ πm

−πm
E|R|2p

Since E|R|2p . M−p|f∗
ε |−4p (Lemma 2),

P(Λc) .
4p

2π
M−p

∑

m∈Mn

∆(m)−pmp−1

∫ πm

−πm
|f∗

ε |−4p

Now, using assumption (A2),
∫ πm

−πm
|f∗

ε |−4p ≤ k−4p
0

∫ πm

−πm
(x2 + 1)2γp exp(4pb|x|s)dx . (πm)4γp+1−se4pb(πm)s

so that ∫ πm

−πm
|f∗

ε |−4p . [(πm)2γe2b(πm)s
]p[(πm)2γ+1−se2b(πm)s

]pm1−s−p+sp

. M (1−α)p∆(m)pm1−s−p+sp

Hence
P(Λc) . M−ap

∑

m∈Mn

m−s+sp . M−αp(mn)1+s(p−1).

Finally E(‖f̃ − f‖2
1Λc) . M1+1/(2γ̃)P (Λc) . M−αp+1+1/(2γ̃)m

1+s(p−1)
n . If s = 0, then

γ > 0 and the bound become M−αp+1+1/γ , so that p ≥ (2 + 1/γ)/α implies E(‖f̃ −
f‖2

1Λc) . M−1. If s > 0, then under (A3), mn . (log(M))1/s, so that the previous
inequality holds if p > 2/α. �
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