Data driven density estimation in presence of unknown convolution operator - Archive ouverte HAL
Journal Articles Journal of the Royal Statistical Society: Series B Year : 2011

Data driven density estimation in presence of unknown convolution operator

Fabienne Comte
Claire Lacour

Abstract

We study the following model of deconvolution $Y=X+\varepsilon$ with i.i.d. observations $Y_1,\dots, Y_n$ and $\varepsilon_{-1},\dots,\varepsilon_{-M}$. The $(X_j)_{1\leq j\leq n}$ are i.i.d. with density $f$, independent of the $\varepsilon_j$. The aim of the paper is to estimate $f$ without knowing the density $f_{\varepsilon}$ of the $\varepsilon_j$. We first define a projection estimator, for which we provide bounds for the pointwise and the integrated $L^2$-risk. We consider ordinary smooth and supersmooth noise $\varepsilon$ with regard to ordinary smooth and supersmooth densities $f$. Then we present an adaptive estimator of the density of $f$. This estimator is obtained by penalization of the projection contrast, which provides model selection. Lastly, we present simulation experiments to illustrate the good performances of our estimator and study from the empirical point of view the importance of theoretical constraints.
Fichier principal
Vignette du fichier
RDeconvestim.pdf (285.05 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00317447 , version 1 (03-09-2008)
hal-00317447 , version 2 (14-11-2008)

Identifiers

Cite

Fabienne Comte, Claire Lacour. Data driven density estimation in presence of unknown convolution operator. Journal of the Royal Statistical Society: Series B, 2011, 73 (4), pp.601-627. ⟨10.1111/j.1467-9868.2011.00775.x⟩. ⟨hal-00317447v2⟩
430 View
362 Download

Altmetric

Share

More