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Abstract. Progress in our understanding of auroral currents
and auroral electron acceleration has for decades been ham-
pered by an apparent incompatibility between kinetic and
fluid models of the physics involved. A well established
kinetic model predicts that steady upward field-aligned cur-
rents should be linearly related to the potential drop along
the field line, but collisionless fluid models that reproduce
this linear current-voltage relation have not been found. Us-
ing temperatures calculated from the kinetic model in the
presence of an upward auroral current, we construct here ap-
proximants for the parallel and perpendicular temperatures.
Although our model is rather simplified, we find that the
fluid equations predict a realistic large-scale parallel electric
field and a linear current-voltage relation when these approx-
imants are employed as nonlocal equations of state. This
suggests that the concepts we introduce can be applied to the
development of accurate equations of state for fluid simula-
tions of auroral flux tubes.

Key words. Magnetospheric physics (auroral phenomena;
magnetosphere-ionosphere interactions) – Space plasma
physics (kinetic and MHD theory)

1 Introduction

Numerical simulations are an important tool in studies of
auroral phenomena and magnetosphere-ionosphere coupling.
Simulations that treat the electrons as particles can describe
fast, small-scale phenomena, but fluid models are required
for slow (several seconds), large-scale (severalRE) pro-
cesses that determine the global dynamics. When simulat-
ing the large-scale behavior of an auroral flux tube, a major
difficulty has been the inability of fluid models to properly
describe the generation of field-aligned electric fields and the
associated electron acceleration.

Correspondence to:J. Vedin
(jorgen.vedin@space.umu.se)

Observations from rockets and satellites (Hoffman, 1993;
Evans, 1968, 1974; Mizera and Fennel, 1977) indicate
that precipitating auroral electrons are freely accelerated
by a field-aligned potential drop at altitudes around 1RE .
Many features that are observed in the particle distribu-
tions are predictable from a one-dimensional description of
the kinematics of collisionless electrons in static magnetic
and electric fields (Whipple, 1977; Chiu and Schulz, 1978;
Lundin and Eliasson, 1991). Kinetic models also show that
the current is linearly related to the potential drop if an
isotropic Maxwellian equatorial source distribution is as-
sumed (Knight, 1973; Fridman and Lemaire, 1980). Fluid
models used in simulations of the upward auroral current re-
gion have not been consistent with this kinetic description.
While it is well known that shear Alfv́en waves with short
perpendicular wavelength will produce a field-aligned elec-
tric field, the connection between the quasi-static structures
considered in kinetic models and the Alfvén waves remains
unclear. In particular, it has not been possible to derive a
linear current-voltage (C-V) relation from the collisionless
fluid models describing Alfv́en waves. To obtain a linear
C-V characteristic within a fluid model, it has been necessary
to introduce anomalous resistivity (Lysak and Dum, 1983;
Streltsov et al., 2002), which seems incompatible with the
collisionless theory that fits particle observations.

The hierarchy of fluid equations is usually closed by as-
suming a local relation between the density and temperature
in the form of an equation of state, but for field-aligned flows
in a collisionless plasma far from thermal equilibrium it is
difficult to justify such an equation. It seems that all fluid
models of auroral electron acceleration, in the absence of
a vindicable equation of state, have been based on the as-
sumption that temperature variations can be neglected. This
applies to the classical studies by Goertz and Boswell (e.g.
1979) and Lysak and Dum (1983), as well as more recent
work (e.g. R̈onnmark and Hamrin, 2000; Streltsov et al.,
2002). However, in this study we will show that the electron
temperature variations, caused by the auroral current, have
profound effects on the dynamics of the auroral acceleration
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region. Although there is no local equation of state, from a
kinetic model we can determine how the electron tempera-
tures depend on the field-aligned current. The chain of fluid
equations may then be closed by introducing nonlocal equa-
tions of state in the form of approximants that describe the
temperature variations. We find that the temperature gradi-
ents play a decisive role in the electron momentum equation,
and that the proper inclusion of these gradients is essential to
the derivation of a linear C-V relation from fluid theory.

2 Theory

Let z be a coordinate along the magnetic field line, withz=0
at the equatorial plane. The boundary of the generator re-
gion is atzG, the bottom of the acceleration region atza and
the ionospheric boundary atzI . Introducing the field-aligned
velocityvz=ż and the perpendicular velocityv⊥, the Vlasov
equation can be written

dtf = ∂tf + ż∂zf + v̇z∂vzf + v̇⊥∂v⊥
f = 0. (1)

The Vlasov equation determines the evolution of the phase
space densityf =f (vz, v⊥, z, t).

Integrating Eq. (1) over velocity space, we obtain a conti-
nuity equation for the electrons. Introducing the charge den-
sity ρ=e(ni−n), wheree is the proton charge,ni is the ion
density andn is the electron density, in the presence of an
inhomogeneous magnetic fieldB we can write the equation
of current continuity as

∂tρ + ∂zjz − jz

∂zB

B
= 0 (2)

if we neglect for simplicity the ion motion. In this equationjz

is the field-aligned electron current density. Multiplying the
Vlasov Eq. (1) byvz before integrating over velocity space
we find the momentum equation, or an equation for the evo-
lution of the field-aligned current densityjz. Including an
electrostatic potentialφ and kinetic temperaturesTz andT⊥,
we find (R̈onnmark, 2002)

∂tjz +
e2n
m

∂zφ − ∂z

(
enTz

m
+

j2
z

en

)
−

(
e
m

(nT⊥ − nTz) −
j2
z

en

)
∂zB
B

= 0.

(3)

As before we neglect the ion contributions to this equation,
since they are small by at least a factor of

√
m/mi , wherem

is the electron mass andmi is the ion mass. A more complete
version of Eq. (3) was derived by Mitchell and Palmadesso
(1983), who included ions and gravitation as well.

When the phase space density is known, we can calculate
fluid quantities such as the electron density

n(z) =

∫
f dv, (4)

the field-aligned current density

jz(z) = −e

∫
vz f dv, (5)

the perpendicular temperature

T⊥ =
1

n

∫
mv2

⊥

2
f dv, (6)

and the parallel temperature

Tz =
1

n

∫
m(v2

z −
j2
z

e2n2
) f dv. (7)

Introducing new independent variablesµ andH , whereµ

is the magnetic moment

µ =
mv2

⊥

2B
(8)

andH is the total energy

H =
mv2

z

2
+

mv2
⊥

2
− eφ =

mv2
z

2
+ µB − eφ (9)

we can describe the phase space density by the functionsg±

defined by

f =

{
g+(H,µ, z, t), for vz > 0
g−(H,µ, z, t), for vz < 0

(10)

or equivalently

g±(H, µ, z, t) = f (±

√
2

m
(H − µB + eφ),

√
2µB

m
, z, t).

Since they describe the phase space density, the functionsg±

must satisfy the Vlasov equation, which in these variables
takes the form

dtg± = ∂tg± ±

√
2

m
(H − µB + eφ) ∂zg± = 0 (11)

sinceµ̇=Ḣ=0. Assuming a stationary state with∂tg±=0 it
follows from Eq. (11) thatg± is independent ofz, and that
the phase-space density will be constant along the trajecto-
ries defined by Eqs. (8) and (9). Hence, if we specify the
velocity distribution functionFG=FG(vz, v⊥) at the genera-
tor boundary (z=zG), whereφ=0 andB=BG, this defines

f (vz, v⊥, z) = FG

(√
2

m
(H − µBG),

√
2µBG

m

)
(12)

along all trajectories that pass through this boundary with
vz>0. Similarly, we specify an ionospheric distributionFI

that definesf on trajectories that pass the ionospheric bound-
ary atzI with vz<0.

The current density is calculated by determining which
particles that can reach the ionosphere. Provided the poten-
tial, for all z, satisfies

φ(z) ≥ 1φ
B(z) − BG

BI − BG

, (13)

known as the Fridman-Lemaire (F-L) condition (Fridman
and Lemaire, 1980), the current depends only on the total
potential drop1φ along the field lines and is independent
of the shape of the potentialφ(z). In this equation we have
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introducedBI≡B(zI ). The F-L condition is, however, not
sufficient to make the density and temperatures independent
of how the potential varies along the field line. For this the
much more stringent condition (Janhunen, 1999)

φ(z′) ≥ φ(z)
B(z′) − BG

B(z) − BG

, for all z′
≤ z (14)

must be satisfied. Here, we will determine the limits of in-
tegration in velocity space by a method that takes the shape
of the potential fully into account, and consequently, is inde-
pendent of conditions (13) and (14).

3 Method

It is convenient to consider the limits of integration for the
integrals (4)-(7) in theµ-H plane (Whipple, 1977). An elec-
tron at the generator boundary, whereB=BG andφ=0 must
haveµ≤H/BG according to Eq. (9). The lineµ=H/BG,
corresponding tovz=0, is the turning point line at the gener-
ator (z=zG). At any altitude we introduce the turning point
line µ̃, defined by

µ̃(z, H) =
H + eφ(z)

B(z)
. (15)

Electrons coming from the generator region will always be
within the regionµ≤µ̃ andH≥0, but parts of this region may
be inaccessible to downgoing electrons. In order to reach a
levelz, the electron must haveµ≤µ̃ at all levels between the
generator andz. Defining the turning point boundaryµtpb by

µtpb(z, H) = min
zG≤z′≤z

µ̃(z′, H) (16)

we find that electrons can reachz, if and only if they have
µ≤µtpb(z,H). We determine the turning point boundary
numerically by the method illustrated in Fig. 1. Start-
ing from µtpb(zG, H)=µ̃(zG, H) we take a small step to
z1=zG + 1z, calculate a new turning point line and record
the point whereµtpb(zG, H) and µ̃(z1, H) intersect. The
smaller ofµtpb(zG,H) andµ̃(z1, H) definesµtpb(z1,H). A
typical pattern of intersections is shown in Fig. 1, where the
shading indicates the accessible region. Continuing this pro-
cess recursively towards the ionosphere in about one hundred
small steps, we obtain a table of intersection points that al-
lows us to determineµtpb accurately for anyz andH .

Magnetospheric electrons will reach the ionosphere if they
haveµ<µtpb(zI , H), and we assume that these electrons are
lost. In the interior of the flux tube, in addition to the down-
going electrons, there will be reflected magnetospheric elec-
trons withµtpb(zI ,H)<µ<µtpb(z, H).

Electrons originating at the ionospheric boundary (with
vz≤0) must have µ≤(H + eφI )/BI=µ̃(zI , H) and
H≥−eφI . Reaching the altitudez≤zI the ionospheric elec-
trons must haveµ≤µlcb(z,H), where

µlcb(z,H) = min
z≤z′≤zI

µ̃(z′, H) (17)
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Fig. 1. Illustration to the first steps in the calculation of the turning
point boundaryµtpb. The shaded area marks the region in theµ-H
plane accessible to downgoing electrons.

andH≥−eφI . Notice that sinceµ≥0 we need only consider
H≥eφ(z).

Numerically we determine the loss cone boundaryµlcb by
starting fromµ̃(zI , H). Applying the method outlined above
for µtpb in the reverse direction we then recursively go from a
level zk to zk−1=zk−1z, to build up a table of intersections
betweenµlcb(zk, H) and µ̃(zk−1, H). From this table we
find µlcb(z,H) by interpolation.

Assuming an isotropic velocity distribution at the genera-
tor and ionospheric boundaries the distribution functiong±

can be written independent ofµ asg±(H) and the integrals
overµ can then easily be evaluated analytically. For exam-
ple, the density integral (4) can be expressed as a sum of
components of the form

πB

m

√
2

m

∫
∞

Hmin

g±(H) dH

∫ µmax

0

dµ
√

H + eφ − µB

= π

(
2

m

)3/2 ∫ ∞

Hmin

g±(H)

[√
H + eφ −

√
H + eφ − µmax(z, H)B

]
dH , (18)

whereg± represent the distributions of up- or downgoing
magnetospheric or ionospheric electrons, andµmax equals
µtpb or µlcb. In these integralsHmin is theH -value atµ=0
for the desired boundary. The remaining integrals overH are
evaluated numerically.

4 Auroral flux tube model

In this study we use an isotropic Maxwellian velocity distri-
bution

FG(vz, v⊥) = NG

(
m

2πTG

)3/2

exp

[
−

mv2
z + mv2

⊥

2TG

]
(19)
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Fig. 2. The area accessible to downgoing electrons is the part in the
µ-H plane above the turning point boundaryµtpb if the shape of
the electrostatic potential is taken fully into account. The difference
between this boundary and the local turning point line is shaded.

at the generator boundary. In Eq. (19)NG is the density
andTG is the temperature in energy units. In the results we
have used the numerical valuesNG=1 cm−3 andTG=1 keV.
Changing variables toH andµ the distribution (19) corre-
sponds to

g+(H) = NG

(
m

2πTG

)3/2

exp

[
−

H

TG

]
(20)

and the volume element in velocity space is expressed as

dv = 2π v⊥dv⊥ dv‖ =
πB

m

√
2

m

dµ dH
√

H + eφ − µB
. (21)

Similarly at the ionospheric boundary we specify an isotropic
Maxwellian

g−(H) = NI

(
m

2πTI

)3/2

exp

[
−

H + eφI

TI

]
(22)

with temperatureTI=10−3TG and densityNI=103NG.
All the results in this study are based on an electrostatic

potentialφ(z) of the form

φ(z) =

1φ
Bp

−B
p
G

B
p
a −B

p
G

B < Ba

1φ + φamb
B−Ba

BI −Ba
B ≥ Ba,

(23)

where1φ is the main potential drop. How the parameter
p is chosen is discussed more thoroughly in the next sec-
tion. This form of the potential is well suited to model the
observed maximum in the field-aligned electric field at al-
titudes around 1RE (Reiff et al., 1993; Hull et al., 2003).
The bottom of the acceleration region is often located at al-
titudes aroundza=0.7RE (McFadden et al., 1999), which
corresponds to a magnetic field strengthBa=B(za)=200BG

at the lower boundary of the main potential drop. At lower
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0
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4

 

v⊥/v
th

v z/v
th

Fig. 3. Solid, bold lines show the integration boundaries in the
velocity space. The dashed, bold line is the integration boundary
corresponding to the local valuẽµ(z, H) valid for potentials (23)
with p≤1. The thinner lines show some contours of the distribution
function corresponding to the values 1, 10−2 and 10−4 when nor-
malized with the maximum value of the distribution function. The
figure applies toz=za .

altitudes we have only an ambipolar potentialφamb to en-
sure that the ionospheric electrons are confined to altitudes
below za also when1φ=0. The numerical values of the
potential parameters used in the results areφamb=9 V and
1φ=10 kV unless otherwise stated in a specific figure. The
variation of the magnetic field is forz<zI=9RE given by
B(z)=BI (1 + (zI − z)/RE)−3 with BI=B(zI )=1000BG.

By choosing isotropic distributions at the boundaries we
have also specified the electron density along the field lines
when1φ=0. We assume that the ion density is equal to the
electron density when1φ=0. When the current is increased
a new equilibrium between the electrons and the potential
will be established on a time-scale characterized by the elec-
tron transit time, which is 1–10 s. The ions are too heavy
to move significantly during this time, and the electron den-
sity must remain roughly constant to keep the plasma quasi-
neutral. After a few minutes the ion density may be affected
by processes related to the presence of the field-aligned cur-
rent. However, a self-consistent treatment of the ions is be-
yond the scope of this study, and we will assume that the ion
density remains fixed. To maintain quasi-neutrality we must
then demand that the electron density is essentially indepen-
dent of the magnitude of1φ.

5 Results

Rönnmark (2002) argued that it was necessary to abandon the
assumption that the source distribution of electrons should
be independent of the current, in order to compensate for
the electron density increase nearza caused by the poten-
tial drop. However, the results in Rönnmark (2002) were
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Fig. 4. Electron density profiles for1φ=10 kV and differentp in
the model (23), together with the ion density. The pointza marks
the bottom of the acceleration region.

obtained with a potential that violates assumption (14), us-
ing the classical integration boundariesµ̃(z, H) derived from
this assumption. The difference between the locally deter-
mined boundarỹµ(za,H) and the true boundaryµtpb(za, H)

is illustrated in Fig. 2. Electrons with(H,µ) within the
shaded region are reflected at higher altitudes, although they
would have reachedza if the potential had satisfied (14).
Figure 3 shows the corresponding region in velocity coordi-
nates. The thinner, solid lines show contours of the distribu-
tion function and the dashed, bold line at the innermost con-
tour is the integration boundary corresponding toµ̃(za, H).
Considering that the volume element increases in proportion
to v⊥, it is clear that the shaded area corresponds to a signif-
icant fraction of velocity space. Since this volume is mainly
at v⊥�vz, the use ofµ̃(za, H) instead ofµtpb(za,H) will
underestimate the parallel temperature and overestimate the
perpendicular temperature and density. When the correct
boundaries are used for the velocity space integrals it be-
comes possible to keep the electron density independent of
the field-aligned current without modifying the source distri-
bution.

Observations strongly indicate that most of the potential
drop occurs at altitudes around 1RE , but the constraint (14)
requires a sufficient potential drop at higher altitudes. It is
easy to see that Eq. (14) is marginally satisfied ifφ is propor-
tional toB (Janhunen, 1999). Adopting the model potential
Eq. (23) we find that Eq. (14) is violated whenp>1. The
dependence of the density on the value ofp for a potential
drop1φ=10 kV is illustrated in Fig. 4. Forp=1, when con-
dition (14) is satisfied, we find at altitudes around 1RE a
substantial electron density enhancement that would violate
quasi-neutrality. Whenp is increased the electron density
is reduced until forp=2 it is comparable to the ion density.
Figure 5 shows the electron density forp=2 and different
values of1φ, and demonstrates that the choicep=2 makes
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Fig. 5. Dependence of the electron density profile on the potential
drop1φ for p=2.

the electron density rather insensitive to the magnitude of the
total potential drop. Considering, for example, the uncer-
tainty of the assumed source distribution and background ion
density we refrain from searching for an optimal potential
shape that would satisfy quasi-neutrality even better, and use
the model potential (23) withp=2 for this study.

Figure 3 also indicates why the current is much less sensi-
tive to the shape of the potential than the density. The current
is carried by electrons in the loss cone, and the shaded area
between thep=1 andp=2 contours is almost entirely out-
side the loss cone. This illustrates that the F-L condition (13)
is essentially satisfied even whenp=2. Since the F-L condi-
tion is satisfied, the current-voltage relation is close to linear
and can be approximated by (Fridman and Lemaire, 1980)

jzI
≈ −

NGe2

√
2πmTG

(
TG

e
+ 1φ

)
, (24)

where jzI
is the field-aligned current density at the iono-

spheric boundary. Figure 6 presents the calculated current-
voltage relation showing that the linear approximation is sat-
isfactory for1φ, up to at least 20 kV.

By evaluating integrals (6) and (7) we find the tempera-
turesT⊥ andTz. From a distribution function that satisfies
the time independent Vlasov equation we have then calcu-
lated all the fluid quantities in the momentum Eq. (3). If we
then rewrite the stationary version of this equation using the
equation of current continuity (2), we obtain

∂znTz + (nT⊥ − nTz)
∂zB

B
= n∂z

(
eφ −

mj2
z

2e2n2

)
. (25)

In a collision dominated medium the temperatures are locally
related to the density by an equation of state, and Eq. (25)
then gives a local relation between the electric field and the
current density. In a collisionless auroral flux tube the plasma
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Fig. 6. Current-Voltage relation computed with the described
method compared with the linear approximation from Eq. (24).

properties at different altitudes are tightly coupled by elec-
trons moving along the field lines, and there will be no local
equation of state. However, if we globally can approximate
the temperatures by functions ofB and1φ, in a fluid model
these approximations can replace the equation of state and
provide a local current-voltage relation.

We introduce normalized variables B=B/BI ,
Tz=Tz/TG, T⊥=T⊥/TG, Pz=Tzn/NG, P⊥=T⊥n/NG,
and 18=e1φ/TG. To find approximations for the tem-
peratures we first consider the region from the generator
boundary to the bottom of the acceleration region. SinceB
is a monotonous function ofz we can useB instead ofz as
the independent variable, and assumingn≈NG in the region
B<Ba≡Ba/BI we rewrite Eq. (25) with the pressuresPz

andP⊥ instead of the temperatures to find

B∂BPz + P⊥ − Pz ≈

(
α + β18 + α182

)
B2. (26)

To obtain this equation we have substitutedjz = jzI
B, where

jzI
is expressed in terms of18 using the linear approxima-

tion Eq. (24). We have also insertedφ from (23) withp=2.
The coefficientsα andβ are

α = −
1

2π
, and β = 2

(
B−2

a + α
)

.

ExpressingP⊥ andPz as power series inB≤Ba<1 with co-
efficients depending on18 we obtain

Pz = 1 +

[
−

3
4 + q1118 + q12182

]
B

+

[
3
16 + α + q2118 + q22182

]
B2

+q3118 B3

P⊥ = 1 +

[
−

3
16 + (β − q21) 18 + (α − q22) 182

]
B2 ,

−2q3118 B3

(27)
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Fig. 7. Parallel temperature profiles compared with the approxima-
tionsT z (dashed line) for different1φ.

according to the derivation presented in Appendix A. In this
derivation we have also used analytical expressions for the
pressure at18=0 to determine some of the coefficients. The
remaining coefficientsqi are calculated using a least-square
fit to the pressure profiles at different18. The coefficients
are thus determined to be

q11 = 0.138 B−1
a

q12 = −0.0191B−1
a

q21 = 0.556 B−2
a

q22 = 0.0368 B−2
a

q31 = 0.335 B−3
a

In the region B∈[Ba, BI ], where BI=1, we approxi-
mate the pressure with a second degree polynomial in 1−B.
The polynomial is chosen to have certain values atB=Ba ,
B=0.5>BI and B=BI , according to Appendix B. These
choices are made merely to make the approximation as good
as possible.

For both the parallel and the perpendicular pressures we
now have two polynomials valid as approximations of the
pressure in two different regions

P =

{
c0 + c1B + c2B2

+ c3B3 B ≤ Ba

d0 + d1(1 − B) + d2(1 − B)2 Ba < B ≤ BI .
(28)

Here the coefficientsci are chosen equal to those in the first
or second equation in Eq. (27), depending on which of the
pressure components we want to approximate. The coeffi-
cientsdi are presented in Appendix B for both the parallel
and the perpendicular pressures.

Two polynomial approximations valid in two different re-
gions may cause problems when constructing algorithms
for solving the fluid equations. In numerical simulations
it is more convenient to have a uniform, continuously
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Fig. 8. Perpendicular temperature profiles compared with the ap-
proximationsT⊥ (dashed line) for different1φ.

differentiable approximant for the pressure. To achieve this
we continue by finding a Padé approximant

P =
Q(B, 18)

R(B, 18)
, (29)

approximating the pressure profile in the whole region
B ∈ [BG, BI ]. In the Pad́e approximant,Q(B, 18) and
R(B, 18) are polynomials with as low an order as possible
but still fulfilling P=P in a satisfactory way. For the perpen-
dicular pressure we choose the polynomialsQ(B, 18) and
R(B, 18) to be of order three, and for the parallel pressure
we choose fourth order polynomials. The expressions for
the coefficients in the Padé approximants are given in Ap-
pendix B.

We now have approximations for the pressure in the en-
tire regionB∈[BG, BI ] and an approximation for the plasma
temperature can then be calculated as

T =
P

n(z)/NG

. (30)

In Figs. 7 and 8 we present the parallel and perpendicular
temperature profiles, respectively. The profiles obtained by
numerical integration of Eqs. (6) and (7) are in these figures
compared with the corresponding approximants for two dif-
ferent1φ.

Notice that although we have written the approximants in
terms of the potential drop, by using Eq. (24) we can replace
1φ by jzI or the local current densityjz=jzI B. Using the
approximants (30) we can rewrite the momentum Eq. (25) as

∂zeφ =
∂znTz

n
+ (T⊥− Tz)

∂zB

B
+ ∂z

(
mj2

z

2e2n2

)
. (31)

This equation allows us to calculate a local electric field and
a total potential drop when the current density is known. As
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Fig. 9. Comparison between the model potential and the potential
derived from the approximants to the temperatures at different cur-
rent densities.

an example we show in Fig. 9 comparisons between the po-
tentials derived from Eq. (31) and the model potentials at the
three current densitiesjzI

=−1.7, −5.1 and−9.5µA, cor-
responding to1φ≈1, 5 and 10 kV. We see that the linear
C-V relation is accurately reproduced by Eq. (31), and that
large electric fields appear at the expected altitudes. Within a
thin layer near the bottom of the acceleration region the main
contribution to the parallel electric field is from the parallel
density gradient,Tz∂z ln n. This is consistent with the ob-
servations of McFadden et al. (1999) and Hull et al. (2003).
At higher altitudes, where the density is rather constant, the
electric field is supported mainly by the parallel temperature
gradient. In general, the second term, involving the temper-
ature anisotropy and magnetic field gradient, gives a smaller
but still significant contribution to the electric field. In com-
parison to these terms, the electron inertia term is almost neg-
ligible.

Figure 9 reveals that higher order approximants are needed
to obtain an accurate fit to the sharp edge of the model po-
tential atza . However, even with a higher order model we
cannot expect a fully realistic description of details in the ac-
celeration region. Observations indicate that there may be
structures with strong parallel electric fields that are highly
localized in altitude (McFadden et al., 1999). Even if quasi-
neutrality locally may be violated within such regions, these
strong fields must still add up to a potential that maintains
quasi-neutrality on a global scale. Nonlocal equations of
state should then still be able to describe large-scale tempera-
ture variations and represent a substantial improvement to the
momentum equation in fluid simulations of electrodynamics
of auroral flux tubes.
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6 Discussion

The electron temperatures in a current carrying auroral flux
tubes are in this study approximated by the functionsT⊥ and
Tz. In a fluid model, if we use these approximations as equa-
tions of state, the electron momentum equation provides a
local relation between the field-aligned electric field and the
current. When applied to the entire flux tube, this momentum
equation will yield a linear C-V relation. The mechanism be-
hind this linear relation is the fluid analogue of the classical
kinetic result (Knight, 1973). Most of the energy gained by
the electrons falling through the field-aligned potential drop
is converted into an increased kinetic temperature. The re-
sulting temperature gradients are large, and it is essential to
include them in the fluid momentum equation. Since the ap-
proximantsT⊥ andTz only depend on parameters that are
available within a fluid model, they can be used as nonlocal
equations of state to close the set of fluid equations.

Earlier calculations of fluid quantities (e.g. Knight, 1973;
Chiu and Schulz, 1978; Fridman and Lemaire, 1980; Jan-
hunen, 1999) have all been based on assumptions, such as
Eqs. 13) or (14), that allow the limits of integration atz to
be determined from the local turning point lineµ̃(z, H). The
new method we have devised takes the shape of the potential
fully into account. This is important, since condition (14) is
violated when the potential increases faster thanB, which is
needed to maintain quasi-neutrality and is also suggested by
observations. The density and temperatures are sensitive to
the shape of the potential, even if the F-L condition is satis-
fied so that the current is independent of the potential shape.

Models of quasi-neutral parallel electric fields, including a
kinetic, self-consistent description of the ions, have been de-
veloped by Chiu and Schulz (1978), Stern (1981), and Ergun
et al. (2000). While this approach is formally elegant, it is not
obviously superior in practice. Due to the slow motion of the
ions, such a model can only be safely applied after the poten-
tial has remained stationary for several minutes. During this
time, quasi-neutrality must be maintained by the electrons,
and a model with a given, possibly slowly time dependent
ion density profile is more useful.

In this study we have sometimes sacrificed realism in de-
tails to maintain simplicity and a close connection with the
classical kinetic model. As seen from Fig. 5, the electron
densities in our model depend to some extent on the magni-
tude of the potential drop. It would be possible to adjust the
electron density further by allowing the boundary distribu-
tion functions or the shape of the potential to depend on1φ.
While it is likely that such dependences exist, we prefer to
keep the model simple by ignoring them. The consequences
of small errors in the density are not too severe for our pres-
sure and temperature estimates. We have also made calcu-
lations with the exponentp=1.5 andp=2.5 in the model
potential (23), and the calculated temperature profiles agree
to within about 15% with the results forp=2.

There are some conceptual similarities between this study
and the work of Janhunen (1999), who also used the den-
sity and pressure calculated from a kinetic model to obtain

an equation of state. However, there are also a number of
important differences. Janhunen does not require that the
electron density should be independent of the potential drop,
and he considers only a scalar pressure. Janhunen also as-
sumes a local equation of state of the formP=C>nγ , which
makes it hard to obtain a good fit to the pressure even in the
case1φ=0, where he derives simple formulas for the alti-
tude variation ofP andn. He finds thatγ=3 should produce
a linear C-V relation, but also makes several reservations in
his conclusions. Still, some of the important questions an-
swered in this study were first asked by Janhunen (1999).

The temperature approximantsT⊥ andTz apply to quasi-
stationary situations, when the electrons have reached an
equilibrium with the potential. Considering that the poten-
tial variations are concentrated to the lower end of the field
line and that the velocity of a 1 keV electron is about 3RE /s,
we still expect our approximations to be better than a conven-
tional equation of state (e.g. isothermal) when the potential
varies on time scales slower than a few seconds. The util-
ity of our particular formulas for the temperatures may also
be limited by the assumptions that the source distributions
are isotropic and that the potential variation is proportional
to B2. We have also neglected backscattered and secondary
electrons, as well as magnetospheric electrons that may be-
come trapped below the potential drop during its buildup
(Eliasson et al., 1979). Such electrons may contribute sig-
nificantly to the density and pressure in the lower part of the
acceleration region. Although specific problems may require
adjustments of the model, it seems clear from our results that
nonlocal equations of state are needed in any fluid model of
active auroral flux tubes.

7 Conclusions

Non-local equations of state are required to describe the tem-
perature variations in an auroral flux tube with upward cur-
rent. Uniformly valid approximations for the temperature
can be derived from kinetic theory, and expressed in terms of
fluid variables. When supplemented with the nonlocal equa-
tions of state the electron momentum equation will determine
the local parallel electric field from the current density. In-
tegration of this parallel electric field will yield a potential
drop 1φ that is linearly related to the current in the flux
tube. These equations of state will allow fluid simulations
of magnetosphere-ionosphere coupling that include a realis-
tic description of the parallel electric field.

Appendix A Pressure approximation

Starting from

B∂BPz + P⊥ − Pz ≈

(
α + β18 + α182

)
B2 (A1)

and expressingPz andP⊥ as power series inB≤Ba=0.2

Pz = q0 + q1B + q2B2
+ . . . + qnBn

P⊥ = r0 + r1B + r2B2
+ . . . + rnBn (A2)
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we obtain conditions for the coefficientsqi andri according
to

q0 = r0, r1 = 0, q2 + r2 =
(
α + β18 + α182

)
,

(n − 1)qn + rn = 0 for n > 2 .
(A3)

In the case18=0 analytic expressions can be found for
the pressures of an isotropic Maxwellian plasma in the region
B<Ba , wheren≈NG,

P0
z =

1
2

[
1 + (1 − B)3/2

]
−

1
2π

B2

P0
⊥

=
1
2

[
1 +

(
1 +

B
2

)√
1 − B

]
.

(A4)

In order to compare these expressions with (A2) we can as
a good approximation expand them as a Maclaurin series of
order two

P0
z ≈ 1 −

3
4B +

(
3
16 −

1
2π

)
B2

P0
⊥

≈ 1 −
3
16B2

(A5)

since the higher order terms are negligible. To obtain a18

dependence in the coefficientsqi andri as needed to fulfill
(A1) we continue by letting

qi = qi0 + qi118 + qi2182

ri = ri0 + ri118 + ri2182 .
(A6)

Since the values of the pressures at the generator bound-
ary are only weakly dependent of18 we let q0 and r0 be
independent of18 and putq0=r0=1 in agreement with
Eq. (A5) and the first condition in Eq. (A3). Furthermore,
we obtain from (A5) thatq10=−3/4, q20=3/16−1/2π and
r20=−3/16. If we now rewrite the power series in Eq. (A2)
using the constraints in Eq. (A3) and the knowledge of the
temperature expressions when18=0 we obtain

Pz = 1 +

[
−

3
4 + q1118 + q12182

]
B

+

[
3
16 −

1
2π

+ q2118 + q22182
]

B2

+q3118 B3

P⊥ = 1 +

[
−

3
16 + (β − q21) 18 + (α − q22) 182

]
B2

−2q3118 B3 .

(A7)

Here we have truncated the series after the third order terms
in B and have only included a linear dependence of18 in
the third order terms.

Appendix B Padé approximant

Starting with an approximation of the pressure defined as two
different polynomials in two different regions

P =

{
c0 + c1B + c2B2

+ c3B3 B ≤ Ba

d0 + d1(1 − B) + d2(1 − B)2 Ba < B ≤ 1
(B1)

we can instead find a Padé approximant (Baker and Gammel,
1970) fitting the pressure profile in the entire region.

The coefficientsdi used to calculate the Padé approximant
are for the perpendicular pressure chosen so that the polyno-
mial d0+d1(1−B)+d2(1−B)2 goes through the three points

P⊥(Ba, 18) = 0.99+ 0.9 18

P⊥(0.5BI , 18) = 0.94+ 1.5 18 + 0.04182

P⊥(BI , 18) = 0.50+ 1.5 18 +
NI TI

NGTG
,

where the values at18=0 are taken fromP0
⊥

in (A4). The
other numerical values in these expression are chosen to
make the Pad́e approximant fit the calculated pressure pro-
files as well as possible. The Padé approximant is given by

P⊥ =
Q0 + Q1B + Q2B2

+ Q3B3

R0 + R1B + R2B2 + R3B3
, (B2)

where the coefficientsQi are

Q0 = c0R0
Q1 = c0R1 + c1R0
Q2 = c0R2 + c1R1 + c2R0
Q3 = c0R3 + c1R2 + c2R1 + c3R0 .

The coefficientR0=1, whileR1, R2, andR3 are obtained as
the solution of Eq. (B3). −d0 + c0 + c1 + c2 −d0 + c0 + c1

d1 − d0 + c0 + 2c1 + 3c2 d1 − 2d0 + 2c0 + 3c1
−d2 + d1 + c1 + 3c2 −d2 + 2d1 − d0 + c0 + 3c1

−d0 + c0
d1 − 3d0 + 3c0

−d2 + 3d1 − 3d0 + 3c0

 ·

R1
R2
R3

 =

d0 − c0 − c1 − c2 − c3
−d1 − c1 − 2c2 − 3c3

d2 − c2 − 3c3

 . (B3)

For the parallel pressure the Padé approximant is given by

Pz =
Q0 + Q1B + Q2B2

+ Q3B3
+ Q4B4

R0 + R1B + R2B2 + R3B3 + R4B4
, (B4)

where the coefficientsQi are

Q0 = c0R0
Q1 = c0R1 + c1R0
Q2 = c0R2 + c1R1 + c2R0
Q3 = c0R3 + c1R2 + c2R1 + c3R0
Q4 = c0R4 + c1R3 + c2R2 + c3R1 .

The coefficientR0=1, whileR1, R2, R3, andR4 are obtained
as the solution of Eq. (B5).


−d0 + c0 + c1 + c2 + c3 −d0 + c0 + c1 + c2

d1 − d0 + c0 + 2c1 + 3c2 + 4c3 d1 − 2d0 + 2c0 + 3c1 + 4c2
−d2 + d1 + c1 + 3c2 + 6c3 −d2 + 2d1 − d0 + c0 + 3c1 + 6c2

−d2 + c2 + 4c3 −2d2 + d1 + c1 + 4c2

−d0 + c0 + c1 −d0 + c0
d1 − 3d0 + 3c0 + 4c1 d1 − 4d0 + 4c0

−d2 + 3d1 − 3d0 + 3c0 + 6c1 −d2 + 4d1 − 6d0 + 6c0
−3d2 + 3d1 − d0 + c0 + 4c1 −4d2 + 6d1 − 4d0 + 4c0

 ·


R1
R2
R3
R4

 =


d0 − c0 − c1 − c2 − c3
−d1 − c1 − 2c2 − 3c3

d2 − c2 − 3c3
−c3

 .

(B5)
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The coefficientsdi used to calculate the Padé approximant
are for the parallel pressure chosen so that the polynomial
d0+d1(1−B)+d2(1−B)2 goes through the three points

Pz(Ba,18) = 0.85+ 2.1 18

Pz(0.5BI ,18) = 0.64+ 1.5 18 + 0.04182

Pz(BI ,18) = 0.34+ 1.5 18 +
NI TI

NGTG

Here we usedP0
z from (A4) to determine the values at

18=0, while the other numerical values are chosen to make
the Pad́e approximant fit the calculated pressure profiles as
well as possible.
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