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Abstract. Progress in our understanding of auroral currents Observations from rockets and satellites (Hoffman, 1993;
and auroral electron acceleration has for decades been harfvans, 1968, 1974; Mizera and Fennel, 1977) indicate
pered by an apparent incompatibility between kinetic andthat precipitating auroral electrons are freely accelerated
fluid models of the physics involved. A well established by a field-aligned potential drop at altitudes aroung gl
kinetic model predicts that steady upward field-aligned cur-Many features that are observed in the particle distribu-
rents should be linearly related to the potential drop alongtions are predictable from a one-dimensional description of
the field line, but collisionless fluid models that reproduce the kinematics of collisionless electrons in static magnetic
this linear current-voltage relation have not been found. Us-and electric fields (Whipple, 1977; Chiu and Schulz, 1978;
ing temperatures calculated from the kinetic model in theLundin and Eliasson, 1991). Kinetic models also show that
presence of an upward auroral current, we construct here aphe current is linearly related to the potential drop if an
proximants for the parallel and perpendicular temperaturesisotropic Maxwellian equatorial source distribution is as-
Although our model is rather simplified, we find that the sumed (Knight, 1973; Fridman and Lemaire, 1980). Fluid
fluid equations predict a realistic large-scale parallel electricmodels used in simulations of the upward auroral current re-
field and a linear current-voltage relation when these approxgion have not been consistent with this kinetic description.
imants are employed as nonlocal equations of state. Thi&Vhile it is well known that shear Alfén waves with short
suggests that the concepts we introduce can be applied to theerpendicular wavelength will produce a field-aligned elec-
development of accurate equations of state for fluid simula-ric field, the connection between the quasi-static structures
tions of auroral flux tubes. considered in kinetic models and the Agfv waves remains

Key words. Magnetospheric physics (auroral phenomena_unclear. In particular, it has not been possible to derive a

. ; . ‘linear current-voltage (C-V) relation from the collisionless
magnetosphere-ionosphere interactions) — Space plasn}ﬁ"d models describing Alfén waves. To obtain a linear
physics (kinetic and MHD theory) ‘

C-V characteristic within a fluid model, it has been necessary
to introduce anomalous resistivity (Lysak and Dum, 1983;
Streltsov et al., 2002), which seems incompatible with the
collisionless theory that fits particle observations.

The hierarchy of fluid equations is usually closed by as-
Numerical simulations are an important tool in studies of Suming a local relation between the density and temperature
auroral phenomena and magnetosphere-ionosphere coupling. the form of an equation of state, but for field-aligned flows
Simulations that treat the electrons as particles can describ@® & collisionless plasma far from thermal equilibrium it is
fast, small-scale phenomena, but fluid models are requiredlifficult to justify such an equation. It seems that all fluid
for slow (several seconds), large-scale (seveta) pro- models of auroral electron acceleration, in the absence of
cesses that determine the global dynamics. When simula@ Vindicable equation of state, have been based on the as-
ing the large-scale behavior of an auroral flux tube, a majorSumption that temperature variations can be neglected. This
difficulty has been the inability of fluid models to properly applies to the classical studies by Goertz and Boswell (e.g.
describe the generation of field-aligned electric fields and thel979) and Lysak and Dum (1983), as well as more recent

1 Introduction

2002). However, in this study we will show that the electron
Correspondence tal. Vedin temperature variations, caused by the auroral current, have

(jorgen.vedin@space.umu.se) profound effects on the dynamics of the auroral acceleration



1720 J. Vedin and K. Bhnmark: Auroral current-voltage relation

region. Although there is no local equation of state, from athe perpendicular temperature

kinetic model we can determine how the electron tempera- 2
tures depend on the field-aligned current. The chain of fluidy — }[ mvy fav, (6)
equations may then be closed by introducing nonlocal equa- n 2

tions of state in the form of approximants that describe theand the parallel temperature
temperature variations. We find that the temperature gradi- )
ents play a decisive role in the electron momentum equation 1 2 U
play q - /m(v S5 [ av. @)

and that the proper inclusion of these gradients is essential to° ~ » )

the derivation of a linear C-V relation from fluid theory. Introducing new independent variablesand H, whereu

is the magnetic moment

2 Theory vaZ_

w= ®)

Let z be a coordinate along the magnetic field line, vtk 2B
at the equatorial plane. The boundary of the generator reandH is the total energy
gion is atzg, the bottom of the acceleration regionzatand

2 2 2

the ionospheric boundary at. Introducing the field-aligned g — ™% | ™YL _ 4 "% _ p_ 4 9)
velocity v,=z and the perpendicular velocity , the Vlasov 2 2 2
equation can be written we can describe the phase space density by the fungtions
dof = 0, f +20.f + 0200 f + 919y, f = 0. (1)  defined by

) . . | g4(H, p,z,1), forv, >0
The Vlasov equation determines the evolution of the phasef = {g_(H, .z 1), forv. <0 (20)

space density’'=f(v;, v, z, t).
Integrating Eq. (1) over velocity space, we obtain a conti- or equivalently

nuity equation for the electrons. Introducing the charge den-

sity p=e(n; —n), wheree is the proton charge; is the ion

density andu is the electron density, in the presence of an

inhomogeneous magnetic fieRlwe can write the equation

of current continuity as

2 2uB
g+(H, p,z,1) = f(:l:\/—(H — uB + e9), \/—, zZ, 1).
m m

Since they describe the phase space density, the fungtions
must satisfy the Vlasov equation, which in these variables

.. 0B takes the form
0o+ 9:j; — Jz B =0 (2
2
if we neglect for simplicity the ion motion. In this equatign ~ drg+ = drg+ & \/;(H —uB +ep) ;81 =0 (11)

is the field-aligned electron current density. Multiplying the )

Vlasov Eg. (1) byv, before integrating over velocity space sinceg=H=0. Assuming a stationary state wishg+=0 it

we find the momentum equation, or an equation for the evofollows from Eq. (11) thakg is independent of, and that
lution of the field-aligned current density. Including an  the phase-space density will be constant along the trajecto-
electrostatic potentiap and kinetic temperatureg and7, , ries defined by Egs. (8) and (9). Hence, if we specify the
we find (Rdbnnmark, 2002) velocity distribution functionFg=Fg(v,, v ) at the genera-

tor boundary {=z¢), wherep=0 andB=Bg, this defines

@) fvi.2) = Fg (/%(H — uBg), \/2“30) (12)

m

. 2 L, J2
0 Jj; + %31(]5 —0; <e’:,,71' + i_;l)

2 .
2 Jz B _
- <ﬁ(f’lTL - I’lTZ) - a) B = 0.
) o ) ~along all trajectories that pass through this boundary with
As before we neglect the ion contributions to this equation,, 0. Similarly, we specify an ionospheric distributidf
since they are small by at least a factordfi /m;, wherem  hat definest on trajectories that pass the ionospheric bound-
is the electron mass amd is the ion mass. A more complete gy at7, with v, <0.
version of Eq. (3) was derived by Mitchell and Palmadesso The current density is calculated by determining which

(1983), who included ions and gravitation as well. particles that can reach the ionosphere. Provided the poten-
When the phase space density is known, we can calculatgy) for all 7, satisfies

fluid quantities such as the electron density B()— B
2) — Bg

$() > Ap—2— G (13)
n(z) = / fav, 4) Br — Bg
] ] ] known as the Fridman-Lemaire (F-L) condition (Fridman
the field-aligned current density and Lemaire, 1980), the current depends only on the total

' potential dropA¢ along the field lines and is independent
J2(2) = _e/ ve fav, (%) of the shape of the potential(z). In this equation we have
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introducedB;=B(z;). The F-L condition is, however, not 2
sufficient to make the density and temperatures independent
of how the potential varies along the field line. For this the 15 |
much more stringent condition (Janhunen, 1999) '
B(Z')— B
¢(Z) > ¢(Z)M, forallz <z (e 1 u=fiz, H) ]
B(z) — Bg >
must be satisfied. Here, we will determine the limits of in- T |
tegration in velocity space by a method that takes the shape
of the potential fully into account, and consequently, is inde- p:E(zG,H)
pendent of conditions (13) and (14). 0 ]
u=E(ZZVH)
3 Method 0% 0.02 0.04 0.06 0.08 01

uBG (keV)
It is convenient to consider the limits of integration for the
integrals (4)-(7) in the«-H plane (Whipple, 1977). An elec-  Fig. 1. lllustration to the first steps in the calculation of the turning
tron at the generator boundary, whéte-B; and¢=0 must  point boundary.p,. The shaded area marks the region inghé/
haveu<H /B¢ according to Eq. (9). The line=H/Bg, plane accessible to downgoing electrons.
corresponding te,=0, is the turning point line at the gener-
ator =z¢). At any altitude we introduce the turning point

line i1, defined by andH>—eg¢;. Notice that since.>0 we need only consider

Hze¢(2).
e H) — H+ep(2) 15 Numerically we determine the loss cone boundajy by
fi(z, H) = B(z) (15) starting fromiu(z;, H). Applying the method outlined above

. ) . for uph in the reverse direction we then recursively go from a
Electrons coming from the generator region will always be |gyg| 2k 10 zx_1=2¢— Az, t0 build up a table of intersections

within the regioru </ andH >0, but parts of this regionmay  petweenugn(z¢, H) and fi(ze—1, H). From this table we
be inaccessible to downgoing electrons. In order to reach §ng ., (z, H) by interpolation.

levelz, the electron must haye</i at all levels between the  Assuming an isotropic velocity distribution at the genera-
generator and. Defining the turning point boundapypn by tor and ionospheric boundaries the distribution function
can be written independent pfasg. (H) and the integrals
over u can then easily be evaluated analytically. For exam-

ple, the density integral (4) can be expressed as a sum of
we find that electrons can reachif and only if they have  components of the form

w<ppb(z, H). We determine the turning point boundary

wpb(z, H) = min (', H) (16)

216<7'<z

numerically by the method illustrated in Fig. 1. Start- Q\/?/oo 0u(H) dH /“”‘ax du

ing from wipn(zg, H)=ji(zg, H) we take a small step to m ¥V m Jy 0 vH +ep —uB
71=z¢ + Az, calculate a new turning point line and record 32 oo

the point whereupn(zg, H) and fi(z1, H) intersect. The - (E) / g1 (H)

smaller ofutpb(zg, H) andji(z1, H) definesupn(zy, H). A m Humin

typical pattern of intersections is shown in Fig. 1, where the
shading mdllcates the accesglble reglon..Contmumg this pro- [\/H+e¢—\/H+e¢—umax(z, H)B] dH, (18)
cess recursively towards the ionosphere in about one hundred
small steps, we obtain a table of intersection points that alwhere g, represent the distributions of up- or downgoing
lows us to determingupp accurately for any andH. magnetospheric or ionospheric electrons, anghx equals
Magnetospheric electrons will reach the ionosphere if theympb or uch. In these integral$imi is the H-value atu=0
haveu <uwpn(z7, H), and we assume that these electrons arefor the desired boundary. The remaining integrals dveare
lost. In the interior of the flux tube, in addition to the down- evaluated numerically.
going electrons, there will be reflected magnetospheric elec-
trons withpupp(z7, H)<p<pitpb(z, H).
Electrons originating at the ionospheric boundary (with 4 Auroral flux tube model
v,<0) must have u<(H + e¢;)/B=p(z;, H) and
H>—e¢;. Reaching the altitude<z; the ionospheric elec-
trons must have <ucp(z, H), where

. m 3/2 mvz2 + vaZ_
wieb(z, H) = min ji(z, H) @17) Felvvi) =Ng ) Pl T2, (19)

z<7'<zy

In this study we use an isotropic Maxwellian velocity distri-
bution
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Fig. 2. The area accessible to downgoing electrons is the part in théFig. 3. Solid, bold lines show the integration boundaries in the

n-H plane above the turning point boundaryy, if the shape of  velocity space. The dashed, bold line is the integration boundary

the electrostatic potential is taken fully into account. The differencecorresponding to the local valye(z, H) valid for potentials (23)

between this boundary and the local turning point line is shaded. with p<1. The thinner lines show some contours of the distribution
function corresponding to the values 1,f0and 104 when nor-
malized with the maximum value of the distribution function. The

at the generator boundary. In Eq. (18) is the density figure applies ta=z,.

andTg is the temperature in energy units. In the results we

have used the numerical valu¥g =1 cm 3 andTg=1keV. . _ .

Changing variables té7 and . the distribution (19) corre-  @ltitudes we have only an ambipolar potenifahs to en-

sponds to sure that the ionospheric electrons are confined to altitudes
below z, also whenA¢=0. The numerical values of the
m Y2 H potential parameters used in the results ggg—=9 V and
g+(H) = Ng <ZT—TG> exp[—T—G} (20) A¢p=10kV unless otherwise stated in a specific figure. The

) i ) variation of the magnetic field is far<z;=9 Rg given by
and the volume element in velocity space is expressed as B(z2)=B;(1+ (z; — 2)/Rg)~3 with B;=B(z;)=10008.
ZB |2 dudH By choosing isotropic distributions at the boundaries we
—_— (22) have also specified the electron density along the field lines
whenA¢=0. We assume that the ion density is equal to the
Similarly at the ionospheric boundary we specify an isotropicelectron density when¢=0. When the current is increased

dv=2mr v dv dv| = ;m

Maxwellian a new equilibrium between the electrons and the potential
m \32 H e will be est_abl_ished ona t_ime-scale chara_cterized by the elec-

g—(H) = N; (_> exp[——’] (22) tron transit time, which is 1-10s. The ions are too heavy
2n Ty T to move significantly during this time, and the electron den-

sity must remain roughly constant to keep the plasma quasi-

neutral. After a few minutes the ion density may be affected
be processes related to the presence of the field-aligned cur-

rent. However, a self-consistent treatment of the ions is be-

with temperaturd;=10-3T; and densityV;=10°Ng.
All the results in this study are based on an electrostati
potentialg (z) of the form

BP—B!, yond the scope of this study, and we will assume that the ion
o) = By —Bg bp (23)  density remains fixed. To maintain quasi-neutrality we must
A¢ + pambp,—p- B = Ba, then demand that the electron density is essentially indepen-

. . . dent of the magnitude ak¢.
where A¢ is the main potential drop. How the parameter

p is chosen is discussed more thoroughly in the next sec-

tion. This form of the potential is well suited to model the 5 Results

observed maximum in the field-aligned electric field at al-

titudes around Ry (Reiff et al., 1993; Hull et al., 2003). Ronnmark (2002) argued that it was necessary to abandon the
The bottom of the acceleration region is often located at al-assumption that the source distribution of electrons should

titudes around;,=0.7 Rg (McFadden et al., 1999), which be independent of the current, in order to compensate for

corresponds to a magnetic field stren@th=B(z,)=200Bg the electron density increase negrcaused by the poten-

at the lower boundary of the main potential drop. At lower tial drop. However, the results indRnmark (2002) were
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Fig. 4. Electron density profiles foA¢=10 kV and differentp in Fig. 5. Dependence of the electron density profile on the potential
the model (23), together with the ion density. The paiptmarks drop A¢ for p=2.
the bottom of the acceleration region.

obtained with a potential that violates assumption (14), usihe electron density rather insensitive to the magnitude of the
ing the classical integration boundarje&, H) derived from  total potential drop. Considering, for example, the uncer-
this assumption. The difference between the locally detertainty of the assumed source distribution and background ion
mined boundaryi (z,, H) and the true boundapyipb(za, H) density we refrain from searching for an optimal potential
is illustrated in Fig. 2. Electrons witliH, 1) within the shape that would satisfy quasi-neutrality even better, and use
shaded region are reflected at higher altitudes, although thefie model potential (23) witpp=2 for this study.

would have reached, if the potential had satisfied (14). Figure 3 also indicates why the current is much less sensi-
Figure 3 shows the corresponding region in velocity coordi-tive to the shape of the potential than the density. The current
nates. The thinner, solid lines show contours of the distribu-IS carried by electrons in the loss cone, and the shaded area
tion function and the dashed, bold line at the innermost conbetween thep=1 and p=2 contours is almost entirely out-
tour is the integration boundary correspondingit@., H). side the loss cone. This illustrates that the F-L condition (13)
Considering that the volume element increases in proportiorts essentially satisfied even wher-2. Since the F-L condi-

to v, itis clear that the shaded area corresponds to a signiftion is satisfied, the current-voltage relation is close to linear
icant fraction of velocity space. Since this volume is mainly and can be approximated by (Fridman and Lemaire, 1980)
at vy >v;,, the use ofii(z,, H) instead ofupn(z,, H) will

2

underestimate the parallel temperature and overestimate thg = __Neer (Ts + Ag (24)
- i ! 2emT, ’

perpendicular temperature and density. When the correct miG \ €

boundaries are used for the velocity space integrals it beyhere j., is the field-aligned current density at the iono-
comes possible to keep the electron density independent &fpheric boundary. Figure 6 presents the calculated current-
the field-aligned current without modifying the source distri- yoltage relation showing that the linear approximation is sat-
bution. isfactory forA¢, up to at least 20 kV.

Observations strongly indicate that most of the potential By evaluating integrals (6) and (7) we find the tempera-
drop occurs at altitudes aroundv}, but the constraint (14)  tyres7, and7.. From a distribution function that satisfies
requires a sufficient potential drop at higher altitudes. It isthe time independent Vlasov equation we have then calcu-
easy to see that Eq. (14) is marginally satisfiegli$ propor-  |ated all the fluid quantities in the momentum Eq. (3). If we
tional to B (Janhunen, 1999). Adopting the model potential then rewrite the stationary version of this equation using the

Eq. (23) we find that Eq. (14) is violated when-1. The  equation of current continuity (2), we obtain
dependence of the density on the valuepdior a potential

drop A¢=10kV is illustrated in Fig. 4. Fop=1, when con- d; mjz2

dition (14) is satisfied, we find at altitudes aroun@da "7z + (Tl —=nT) == =nd: \ep = 555 | (25)
substantial electron density enhancement that would violate

quasi-neutrality. Wherp is increased the electron density In a collision dominated medium the temperatures are locally
is reduced until forp=2 it is comparable to the ion density. related to the density by an equation of state, and Eq. (25)
Figure 5 shows the electron density fp=2 and different  then gives a local relation between the electric field and the
values ofA¢, and demonstrates that the chojee2 makes  current density. In a collisionless auroral flux tube the plasma
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Fig. 6. Current-Voltage relation computed with the described Fig. 7. Parallel temperature profiles compared with the approxima-
method compared with the linear approximation from Eq. (24).  tions7; (dashed line) for different¢.

properties at different altitudes are tightly coupled by elec-according to the derivation presented in Appendix A. In this
trons moving along the field lines, and there will be no local derivation we have also used analytical expressions for the
equation of state. However, if we globally can approximate pressure ath ®=0 to determine some of the coefficients. The
the temperatures by functions Bfand A¢, in a fluid model  remaining coefficientg; are calculated using a least-square
these approximations can replace the equation of state anfit to the pressure profiles at different®. The coefficients
provide a local current-voltage relation. are thus determined to be

We introduce normalized variables B=B/B;,
T,=T;/T¢g, T.=T,/Tg, P;=T;n/Ng, P1=T.n/Ng, q11=0.138 Bz;l
and Ad=eAp/T;. To find approximations for the tem- ¢12 = —0.0191B !
peratures we first consider the region from the generatorgz; = 0.556 B2
boundary to the bottom of the acceleration region. SBce g2, = 0.0368 B2
is @ monotonous function af we can useB instead ofz as  g3; = 0.335 B3
the independent variable, and assumingN¢ in the region

B<B,=B,/B; we rewrite Eq. (25) with the pressur€s In the regionBg[B,, B;], where B;=1, we approxi-

andP instead of the temperatures to find mate the pressure with a second degree polynomiahi.1
The polynomial is chosen to have certain valueBaB,,,

BogP, +P; — P, = (a + BAD + aAd>2> B2. (26) B=0.5>B; and B=By;, according to Appendix B. These

choices are made merely to make the approximation as good
To obtain this equation we have substitufjed= j.,B, where  as possible.

Jz; 1s expressed in terms & & using the linear approxima-  For both the parallel and the perpendicular pressures we
tion Eq. (24). We have also insertg¢drom (23) with p=2.  now have two polynomials valid as approximations of the
The coefficientst andp are pressure in two different regions
__1 — (-2 2 3
a=—=. and ﬂ_Z(Ba +a). :{co—i—clB—l—czB + 3B B < B, 8)
do+di(1—B)+dx(1-B)2B, <B <By.
Expressing? andP, as power series iB<B, <1 with co-
efficients depending on ® we obtain Here the coefficients; are chosen equal to those in the first
or second equation in Eq. (27), depending on which of the
P,=1+ [—% + g11AD + q12A¢2] B pressure components we want to approximate. The coeffi-
3 21 o2 cientsd; are presented in Appendix B for both the parallel
+ [1_6 to+qnAP+gaAP ] B and the perpendicular pressures.
+g31AP B3 (27)  Two polynomial approximations valid in two different re-

1 3 2] g2 gions may cause problems when constructing algorithms
P, =1+ [_E + (B —q21) AD + (@ — g22) AD ] ’ for solving the fluid equations. In numerical simulations
—2¢31AD B3 it is more convenient to have a uniform, continuously
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Fig. 8. Perpendicular temperature profiles compared with the ap-Fig. 9. Comparison between the model potential and the potential
proximations7; (dashed line) for differeni¢. derived from the approximants to the temperatures at different cur-
rent densities.

differentiable approximant for the pressure. To achieve this
we continue by finding a Pédapproximant

_ 0(B,AD)

P= R(B, A®)’

(29) an example we show in Fig. 9 comparisons between the po-
tentials derived from Eqg. (31) and the model potentials at the
approximating the pressure profile in the whole regionthree current densitieg, =—1.7, —5.1 and—-9.5 1A, cor-
B € [Bg,B;]. In the Paé approximant,Q(B, A®) and responding toA¢~1, 5 and 10kV. We see that the linear
R(B, A®) are polynomials with as low an order as possible C-V relation is accurately reproduced by Eqg. (31), and that
but still fulfilling P=P in a satisfactory way. For the perpen- large electric fields appear at the expected altitudes. Within a
dicular pressure we choose the polynomi@iB, A®) and  thin layer near the bottom of the acceleration region the main
R(B, A®) to be of order three, and for the parallel pressurecontribution to the parallel electric field is from the parallel
we choose fourth order polynomials. The expressions fordensity gradientZ;d,Inn. This is consistent with the ob-
the coefficients in the P&dapproximants are given in Ap- servations of McFadden et al. (1999) and Hull et al. (2003).
pendix B. At higher altitudes, where the density is rather constant, the
We now have approximations for the pressure in the en-electric field is supported mainly by the parallel temperature
tire regionBe[Bg, B;] and an approximation for the plasma gradient. In general, the second term, involving the temper-
temperature can then be calculated as ature anisotropy and magnetic field gradient, gives a smaller
P but still significant contribution to the electric field. In com-

— ) (30)  parisonto these terms, the electron inertia term is almost neg-
n(z)/Ng ligible.

In Figs. 7 and 8 we present the parallel and perpendicular
temperature profiles, respectively. The profiles obtained by Figure 9 reveals that higher order approximants are needed
numerical integration of Egs. (6) and (7) are in these figuredo obtain an accurate fit to the sharp edge of the model po-
compared with the corresponding approximants for two dif- tential atz,. However, even with a higher order model we
ferentAg. cannot expect a fully realistic description of details in the ac-
Notice that although we have written the approximants inceleration region. Observations indicate that there may be
terms of the potential drop, by using Eq. (24) we can replacestructures with strong parallel electric fields that are highly
A¢ by j.; or the local current density,=j.;B. Using the localized in altitude (McFadden et al., 1999). Even if quasi-
approximants (30) we can rewrite the momentum Eq. (25) agieutrality locally may be violated within such regions, these
strong fields must still add up to a potential that maintains

0,n7, d.B 2 uasi-neutrality on a global scale. Nonlocal equations of
& 7.) 27 + 0, ( ek ) (31) q Y g q

Oz = — =+ (TL—

20252 state should then still be able to describe large-scale tempera-

ture variations and represent a substantial improvement to the
This equation allows us to calculate a local electric field andmomentum equation in fluid simulations of electrodynamics
a total potential drop when the current density is known. Asof auroral flux tubes.
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6 Discussion an equation of state. However, there are also a humber of
important differences. Janhunen does not require that the
The electron temperatures in a current carrying auroral fluxelectron density should be independent of the potential drop,
tubes are in this study approximated by the functi@nsind  and he considers only a scalar pressure. Janhunen also as-
7. In afluid model, if we use these approximations as equasumes a local equation of state of the faPs-C>n? , which
tions of state, the electron momentum equation provides anakes it hard to obtain a good fit to the pressure even in the
local relation between the field-aligned electric field and thecaseA$=0, where he derives simple formulas for the alti-
current. When applied to the entire flux tube, this momentumtude variation ofP andn. He finds that=3 should produce
equation will yield a linear C-V relation. The mechanism be- a linear C-V relation, but also makes several reservations in
hind this linear relation is the fluid analogue of the classicalhis conclusions. Still, some of the important questions an-
kinetic result (Knight, 1973). Most of the energy gained by swered in this study were first asked by Janhunen (1999).
the electrons falling through the field-aligned potential drop  The temperature approximarifs andZ; apply to quasi-
is converted into an increased kinetic temperature. The restationary situations, when the electrons have reached an
sulting temperature gradients are large, and it is essential tequilibrium with the potential. Considering that the poten-
include them in the fluid momentum equation. Since the ap-ial variations are concentrated to the lower end of the field
proximants7, and7; only depend on parameters that are |ine and that the velocity of a 1 keV electron is abowt3's,
available within a fluid model, they can be used as nonlocakve still expect our approximations to be better than a conven-
equations of state to close the set of fluid equations. tional equation of state (e.g. isothermal) when the potential
Earlier calculations of fluid quantities (e.g. Knight, 1973; varies on time scales slower than a few seconds. The util-
Chiu and Schulz, 1978; Fridman and Lemaire, 1980; Janity of our particular formulas for the temperatures may also
hunen, 1999) have all been based on assumptions, such &g limited by the assumptions that the source distributions
Egs. 13) or (14), that allow the limits of integration ato are isotropic and that the potential variation is proportional
be determined from the local turning point lif€z, H). The  to B2. We have also neglected backscattered and secondary
new method we have devised takes the shape of the potentialectrons, as well as magnetospheric electrons that may be-
fully into account. This is important, since condition (14) is come trapped below the potential drop during its buildup
violated when the potential increases faster tBawhichis  (Eliasson et al., 1979). Such electrons may contribute sig-
needed to maintain quasi-neutrality and is also suggested bygificantly to the density and pressure in the lower part of the
observations. The density and temperatures are sensitive tacceleration region. Although specific problems may require
the shape of the potential, even if the F-L condition is satis-adjustments of the model, it seems clear from our results that
fied so that the current is independent of the potential shapenonlocal equations of state are needed in any fluid model of
Models of quasi-neutral parallel electric fields, including a active auroral flux tubes.
kinetic, self-consistent description of the ions, have been de-
veloped by Chiu and Schulz (1978), Stern (1981), and Ergun _
etal. (2000). While this approach is formally elegant, itis not 7 €onclusions

obviously superior in practice. Due to the slow motion of the Non-local equations of state are required to describe the tem-
ions, such a model can only be safely applied after the poten- q d

tial has remained stationary for several minutes. During this? erature variations in an auroral flux tube with upward cur-

time, quasi-neutrality must be maintained by the electrons,rent' Uniformly valid approximations for the temperature

and a model with a aiven. possibly slowlv time dependentoa" be derived from kinetic theory, and expressed in terms of
ion density profile is r?’nore hgeful y y P fluid variables. When supplemented with the nonlocal equa-

. ) . L tions of state the electron momentum equation will determine
In this study we have sometimes sacrificed realism in de-,

. RN . . the local parallel electric field from the current density. In-
tails to maintain simplicity and a close connection with the : . e o .
. o . tegration of this parallel electric field will yield a potential
classical kinetic model. As seen from Fig. 5, the electron

densities in our model depend to some extent on the magni(—jrop A¢ that is linearly related to the current in the flux

. ) ; tube. These equations of state will allow fluid simulations
tude of the potential drop. It would be possible to adjust the : . . )
. : ..~ of magnetosphere-ionosphere coupling that include a realis-
electron density further by allowing the boundary distribu- tic description of the parallel electric field
tion functions or the shape of the potential to depend\gn ’
While it is likely that such dependences exist, we prefer to
keep the model simple by ignoring them. The consequencepppendix A Pressure approximation
of small errors in the density are not too severe for our pres-
sure and temperature estimates. We have also made calc8tarting from
lations with the exponenp=1.5 and p=2.5 in the model
potential (23), and the calculated temperature profiles agre8dP: +PL — P~ (0‘ +BAD + O‘Aq’2> B? (A1)
to within about 15% with the results for=2. . .
There are some conceptual similarities between this stud)‘;md expressing. andP, as power series iB<B,=0.2
and the work of Janhunen (1999), who also used the den-pP, = gg + ¢1B + ¢2B2 + ... + ¢,B"

sity and pressure calculated from a kinetic model to obtainP | = o + 1B + r2B2 + ...+ r,B" (A2)



J. Vedin and K. Rnnmark: Auroral current-voltage relation 1727

we obtain conditions for the coefficiens andr; according The coefficientsl; used to calculate the Padpproximant
to are for the perpendicular pressure chosen so that the polyno-
mial do+d1(1—B)+d>(1—B)? goes through the three points

P1(B4, A®) =0.994+ 09 AdD

. . P, (0.5B;, A®) = 0.94+ 1.5 A® + 0.04 AD?
In the caseA ®=0 analytic expressions can be found for L I ) + + N T

the pressures of an isotropic Maxwellian plasma in the region PL(B7, A®) =050+ 1.5 Ad + g7,
B<B, wheren~Ng, where the values at®=0 are taken fronP? in (A4). The
other numerical values in these expression are chosen to

(A4) make the Pail approximant fit the calculated pressure pro-
files as well as possible. The Radpproximant is given by

qgo=ro, r1=0, q2+r2:(a+,3A<D+otA<D2),(A3)
(n—Lg,+r, =0 for n>2.

PO=1 [1+(1— B)3/2] _ Lg?
P‘i:%[l+(1+%> 1—3] .
(B2)

. ) o+ 01B + 252+ 3B3
In order to compare these expressions with (A2) we can a1 = 0 g g 5 9 3
. . . . Ro+ R1B + R2B4 + R3B
a good approximation expand them as a Maclaurin series of -
order two where the coefficient®; are
Qo = coRo
0 A 3 3 _1)\g2

PZN1_4B+(16 271)8 (A5) 01 = coR1+ c1Ro

PO ~1- 3B2 Q2 = coR2+ c1R1 + c2Ro
_ _ o _ 03 =coR3+ c1Ro+ c2R1+ c3Rp.
since the hlgher order te_”'ﬁs are negligible. To obtamcg The coefficientRg=1, while R1, R2, andR3 are obtained as
dependence in the coefficienjsandr; as needed to fulfill )

. : the solution of Eq. (B3).
(A1) we continue by letting

—do+cotc1ter —do+co+c1
4i = gio + gi1A® + gisAD? (A6) dy—do+co+2c1+3cr  di—2dy+2c0+ 31
ri = rio + rinA® + ripAd?. —dy+di+c1+3 —dy+2d1—dy+co+ 31
Since the values of the pressures at the generator bound- —do +co Ry do—co—c1—c2—c3
ary are only weakly dependent afd we letgo andro be dy = 3do + 3o R | =] —di—c1-2c-3c3 | . (B3)
—dy + 3dy — 3do + 3co R3 dy —c2 — 3c3

independent ofA® and putgo=ro=1 in agreement with
Eq. (A5) and the first condition in Eq. (A3). Furthermore, For the parallel pressure the Reapproximant is given by
we obtain from (A5) thatj;0=—3/4, q20=3/16—1/27 and

(A5) 10 /4, g20=3/ /21 Qo+ 01B + Q282+ Q383+ Q4B4

r20=—3/16. If we now rewrite the power series in Eq. (A2) p, = > 5 + (B4)
using the constraints in Eq. (A3) and the knowledge of the Ro+ R1B + R2B“ + R3B* + R4B
temperature expressions whamb=0 we obtain where the coefficient®; are
_ 3 2 Qo = coRo
PZ_1+[ 4+q11A<D+6112A<D]B 01 = coR1 + c1Ro
= coR2+ c1R1+ c2Ro
+ [é — = +qauAP + 6122A<I>2] B2 02 = coRo
16 2”3 A7 Q3 = coR3 + c1R2 + c2R1+ c3Ro

+g31AP B (A7) 04 = coR4+ c1R3+ c2R2 + c3R1 .
P, =1+ [—1—36 + (B —q21) AD + (¢ — g22) A@Z] B2 The coefficientRg=1, while R1, R>, R3, andR, are obtained

2451 A® BS. as the solution of Eq. (B5).
Here we have truncated the series after the third order term —dy+cgteitertes —do+coterter
in B and have only included a linear dependenceé\df in di—do+co+21+3cr+4c3  di—2dg+ 2c0 + 3c1 + 4o
the third order terms. —dy+di+c1+3c2+6c3 —dp+2d1 — do+ o+ 3e1 + 6c2

—dy+cp+4c3 =2y +d1+c1+4c;
Appendix B Padé approximant —do+co+c1 —do + co
di — 3dg + 3co + 41 di — 4do + 4co
Starting with an approximation of the pressure defined as two—d2 + 3d1 — 3dy + 3co + 6c1 —d + 4d1 — 6do + 6co
different polynomials in two different regions —3dp + 3dy — do + co + 4e1 —4Adp + 6dy — 4dp + Aco
p— { co + ¢1B + ¢2B2 + ¢3B8 B <B, (B1) 22 dod_l Coc_l 612—6202 _3;33
= - a2 | hi-a-2-

do+di(1—B)+dy(1—B)2B, <B<1 Ry by — s

we can instead find a Padpproximant (Baker and Gammel, | Rs -

1970) fitting the pressure profile in the entire region. (B5)
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The coefficientgl; used to calculate the Padpproximant  Hoffman, R. A.: From balloons to chemical releases — What do
are for the parallel pressure chosen so that the polynomial charged particles tell us about the auroral potential region?: Au-

d0+d1(1_|3)_|_d2(1_|3)2 goes through the three points roral plasma dynamics, Geophysical Monograph 80, 133-142,
AGU, Washington, D.C., 1993.
P,(By, A®) =085+ 21Ad Hull, A. J., Bonnell, J. W., Mozer, F. S., and Scudder, J. D.: A
P.(0.5B;, A®) = 0.64+ 1.5 Ad + 0.04 Ad2 statistical study of large-amplitude parallel electric fields in the
NI T upward current region of the auroral acceleration region, J. Geo-
P:(B1, AP) =034+ 15A0 + gizt phys. Res., 108(A1), 1007, doi:10.1029/2001JA007540, 2003.

] Janhunen, P.: On the current-voltage relationship in fluid theory,
Here we usedDQ from (A4) to determine the values at Ann. Geophys., 17, 11-26, 1999.

A®=0, while the other numerical values are chosen to makenight, S.: Parallel electric fields, Planet. Space Sci., 21, 741-750,

the Paé& approximant fit the calculated pressure profiles as 1973.

well as possible. Lundin, R. and Eliasson, L.: Auroral energization processes, Ann.
Geophys., 9, 202-223, 1991.
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