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Abstract. This paper presents binary phase codes and corre-
sponding decoding filters which are optimal in the sense that
they produce no sidelobes and they maximise the signal-to-
noise ratio (SNR henceforth). The search is made by inves-
tigating all possible binary phase codes with a given length.
After selecting the code, the first step is to find a filter which
produces no sidelobes. This is possible for all codes with
no zeros in the frequency domain, and it turns out that most
codes satisfy this requirement. An example of a code which
cannot be decoded in this way is a code with a single phase,
i.e. a long pulse. The second step is to investigate the SNR
performance of the codes. Then the optimal code of a given
length is the one with the highest SNR at the filter output. All
codes with lengths of 3–25 bits were studied, which means
investigating 33 554 428 binary phase codes. It turns out
that all Barker codes except the 11-bit code are optimal in
the above sense. It is well known that the performance of
matched-filter decoding of Barker codes is better than de-
coding without sidelobes. In the case of the 7-bit Barker
code, it is shown here that the SNR given by sidelobe-free
decoding is nearly 30% worse than that of standard decod-
ing, but for the 13-bit code sidelobe-free decoding is only
about 5% worse. The deterioration of SNR should be evalu-
ated against the benefits gained in disposing of the sidelobes,
which, even for the 13-bit code, contribute by 7.1% to the
total signal power from a homogeneous target. Thus, regions
of weak scattering can be contaminated by the sidelobes from
neighbouring layers of strong scattering, causing broadening
of thin spatial structures and giving a lower spatial resolu-
tion than implied by the bit length. A practical example is
shown where sidelobes mask a weak signal when the stan-
dard matched filter is used in the analysis. An improvement
is achieved when sidelobe-free filtering is carried out.

Key words. Radio science (ionospheric physics; signal pro-
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1 Introduction

Perhaps very few radar systems, if any, use such a wide
selection of radar modulations as incoherent scatter radars
do. This is because the properties of the incoherent scatter
radar target are strongly range-dependent and also because
of the demand of measuring the full autocorrelation function
(ACF henceforth) of the target, instead of mere reflectivity
and Doppler shift. Combination of weak scattering power
and demand of range resolutions down to a few hundreds of
metres set further requirements for the performance of the
modulation.

If simple pulses are used, improving the range resolution
implies reduction of the pulse length. This leads to an un-
economical use of the radar duty cycle and a reduced mean
received power. Furthermore, short pulses do not allow the
measurement of the full length of the signal ACF. The first
solution to this problem was given by multi-pulse codes,
which improved the range resolution from tens of kilometres
to a few kilometres (e.g. Farley, 1972; Zamlutti and Farley,
1975). A further improvement was obtained by phase modu-
lation of the radar pulses. Barker codes (Barker, 1953) were
first applied to single short pulses to obtain high-resolution
power profiles (Ioannidis and Farley, 1972), and later to mul-
tipulses to obtain all lags of the ACF with the same high
resolution (Turunen et al., 1985; Huuskonen et al., 1986).
In addition, other codes like random codes (Sulzer, 1986)
and alternating codes (Lehtinen and Häggstr̈om 1987; Sulzer
1989, 1993) are capable of improving the range resolution.
A drawback of alternating codes is that the ACF of the target
should remain stationary during the transmission cycle.

Barker codes are used both in multipulses and in alternat-
ing codes for improving the range resolution. The analysis
of Barker-coded measurements involves decoding, which is
normally made by means of a matched filter. The sidelobes
produced by this sort of decoding are distractive in some oc-
casions. Key et al. (1959) showed that weighting networks
to be placed after the standard matched filter can be de-
signed which reduce the sidelobes to an arbitrary low level.
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Fig. 1. Top: Simple pulse with 3-unit duration,p(n). Middle: Im-
pulse response of a coding filter,hc(n). Bottom: Convolution result,
ε(n).

Sulzer (1989) found out that, for each modulation pattern, it
is possible to find a decoding filter which makes pulse com-
pression without sidelobes, provided the modulation function
has no zeros in the frequency domain. The impulse response
of this filter has an infinite length. Lehtinen et al. (2002)
have applied such a decoding in the analysis of experimen-
tal data. Sulzer also pointed out that a maximal SNR is not
achieved by a sidelobe-free filter. The deterioration of SNR
can be small for some codes, but very large in worst cases.
This means that the best codes must be chosen if sidelobe-
free filtering is used. Other efforts of reducing the sidelobes
have also been made. Mudukutore et al. (1998) showed that
the range-time sidelobes can be suppressed by means of a
suitable filter down to levels which are acceptable for oper-
ational and research applications. This work was based on
a simulation procedure which was used to evaluate the per-
formance of the filter. The simulation describes the signal
returns from distributed weather targets by using pulse com-
pression waveform coding. Methods of optimising the peak-
to-sidelobe ratio have also been presented by Blinchikoff and
Zverev (1987) and Rihaczek and Golden (1971).

Another method for eliminating the sidelobes is provided
by complementary codes (see e.g., Schmidt et al., 1979;
Woodman, 1980). These codes are chosen to make the side-
lobes of the set cancel out when added together. A drawback
of complementary codes is that the correlation time of the
target must be larger than the time between the two codes in
the set.

In this paper we present optimal binary phase codes with
lengths of 3–25 bits. We first find the transfer functions and
impulse responses of the sidelobe-free decoding filters for all
binary phase codes for which such filters exist. Next, we in-
vestigate the SNR at the filter output; optimal codes are those
which maximise the SNR. The results are based on investi-
gating millions of different phase codes.

A somewhat similar work has been made by Bell (1993),
who used information theory to design radar waveform and

receiver filter pairs that maximise the SNR at the filter out-
put. He calculated optimal waveforms for different receiver
filters and radar targets. In the present work, however, we
maximise the SNR subject to the constraint that the decod-
ing is sidelobe-free.

2 The principle of sidelobe-free decoding

Phase modulation is a principle which divides the radar pulse
into a set of subpulses of equal duration and the phase of
each subpulse is fixed. When two phase values with a phase
difference of 180◦ is used, the modulation is a binary code.
Barker codes and alternating codes are examples of binary
phase codes, which are widely used by incoherent scatter
radars. Decoding of Barker coded measurements are car-
ried out in amplitude domain (Ioannidis and Farley, 1972),
whereas data collected by using alternating coded pulses
are decoded in the power domain (Lehtinen and Häggstr̈om
1987). Binary codes can be described mathematically in
terms of a coding filter in a manner analogous to that pre-
sented by Sulzer (1989).

Since our data analysis is based on discrete samples, the
theory is presented in terms of discrete signals. This leads to
results which can be used in programming. We investigate
a code consisting ofnB pulses (annB -bit code). We also
assume that the pulse lengthTp is a multiple of the sampling
intervalT , i.e.Tp=nsT , wherens is an integer indicating the
number of samples per bit. This means that the possibility of
oversampling is taken into account. By choosingT as the
time unit, an elementary pulse can be written as

p(n) =

ns−1∑
j=0

δ(j − n), n = −∞, . . . , ∞, (1)

whereδ is the discrete time-impulse (unit sample; not to be
confused with the delta function)

δ(n) =

{
1 whenn = 0
0 whenn 6= 0.

(2)

Accordingly, the impulse response of a coding filter of an
nB -bit binary code can be written as

hc(n) =

nB−1∑
j=0

aj δ(n − jns), n = −∞, . . . ,∞, (3)

whereaj= ± 1 whenj=0, 1, . . . , nB − 1. The sequence of
numbersaj defines the binary code. We note thathc(n) is
zero whenn<0 or n>ns(nB−1). An example ofp(n) and
hc(n) with ns=3 andnB=5 is plotted in the top and middle
panel of Fig. 1.

The code is obtained by means of a convolution

ε(n) = hc(n) ∗ p(n)

=

∞∑
j=−∞

p(j)hc(n−j), n = −∞, . . . ,∞, (4)
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Fig. 2. The 10-based logarithm of the absolute values of the coeffi-
cients of the sidelobe-free compression filter that corresponds to the
13-bit Barker code sampled at a rate of 3 samples per bit.

where∗ denotes the convolution. We note thatε(n) is zero
whenn<0 orn>nsnB−1. The bottom panel of Fig. 1 shows
the convolution of the discrete elementary pulse and the im-
pulse response of the coding filter in the upper two panels.

For designing a sidelobe-free decoding filter we first define
the impulse response

hd(n) =

∞∑
j=−∞

bj δ(n − jns), n= −∞, . . . , ∞, (5)

where the sequence of real numbersbj will be chosen to de-
codehc in Eq. (3). In addition, we need an impulse response
q(n) for filtering the elementary pulsep(n). Thus, the com-
plete structure of the sidelobe-free decoding filter for pro-
cessing the echoes is given by

λ(n) = hd(n) ∗ q(n)

=

∞∑
j=−∞

q(j)hd(n−j), n= −∞, . . . ,∞. (6)

Here we use a matched filter forp(n), i.e.q(n)=p(−n). For
further discussions on the performance of different shapes of
q(n), see Huuskonen et al. (1996).

The discrete-time Fourier transform of the code may be
given by

ε(ω) = FD{ε(n)} =

∞∑
n=−∞

ε(n)e−inω, (7)

and the inverse Fourier transform is expressed by

ε(n) = F−1
D {FD{ε(n)}} =

1

2π

∫ 2π

ω=0
einωε(ω)dω. (8)

Fourier transforms in other cases are defined similarly.
The decoding of a binary phase coded signal can be carried

out by means of a decoding filter such that the convolution
of the decoding filterhd(n), the filter matched to the elemen-
tary pulseq(n) and the codeε(n) is a function with a desired
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Fig. 3. The 13-bit Barker code sampled at a rate of 3 samples per
bit (top). Left: The impulse response of the corresponding matched
filter (middle) and the weight function (bottom). Right: The im-
pulse response of the sidelobe-free compression filter (middle) and
the weight function (bottom).

shape. This shape defines the range resolution. Mathemati-
cally, this means that

λ(n) ∗ ε(n) = w(n). (9)

The result of the convolutionw(n) is a weight function,
which determines the range resolution and the range ambigu-
ity functions (for range ambiguity functions, see e.g. Lehti-
nen and Huuskonen, 1996). In the case of standard decoding
of Barker codes, for instance, the impulse response of the de-
coding filter is a mirror image of the decoding filter itself and
w(n) is a function with a triangular centre peak and a number
of sidelobes on either side.

Fourier transforms of convolutions are products of the
Fourier transforms of the convoluted sequences and thus the
Fourier transform of the weight functionw(n) is given by

FD{w(n)} = FD{hd(n)}FD{q(n)}FD{ε(n)}

= FD{hd(n)}FD{hc(n)}

× FD{q(n)}FD{p(n)}. (10)

If we choosehd(n) to makeFD{hd(n)}FD{hc(n)} = 1, i.e.

hd(n) = F−1
D

{
1

FD{hc(n)}

}
, (11)

the inverse Fourier transform of Eq. (10) gives

w(n) = q(n) ∗ p(n). (12)

Thus, the impulse response defined by Eq. (11) makes a side-
lobe-free decoding filter producing exactly the same weight
function to what would result from using no coding at all, just
the elementary pulsep(n) and a filterq(n) matched to it. In
particular, no sidelobes are produced. It is worth mentioning
that we calculatew(n) presented later in this paper by using
Eq. (10), not from Eq. (9).
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The sidelobe-free decoding filter in Eq. (11) can only be
found if the Fourier transformFD{hc(n)} has no zeros for
ω∈[0, 2π]. Also, the filter defined by Eq. (11) has infinitely
many coefficients. One may be concerned about these facts
and they may have prevented sidelobe-free decoding filters
from becoming more popular. However, these problems are
not serious in practice because of the following two reasons.

1) It is very improbable that the Fourier transform of an ar-
bitrary finite sequence has any zeros. This Fourier transform
is a sum of a few harmonic terms defined onω∈[0, 2π ], mak-
ing it a very smooth and infinitely many times differentiable
function. The existence of zeroes can thus easily and reliably
be checked by simple numerical approximations.

2) While the length of the sidelobe-free decoding filter is
infinite, it turns out that the coefficients go to zero faster than
the reciprocal of any polynomial ofn. This is demonstrated
in Fig. 2 by taking the base 10 logarithm of the absolute
value of the normalised coefficients of a sidelobe-free de-
coding filter, displayed on the right middle panel of Fig. 3,
and it can also be justified mathematically (e.g. Courant and
Hilbert, 1968). Thus, it is possible to truncate the infinite fil-
ter to cause no more numerical errors than that which comes
from other sources, like sampling accuracies or fidelity of the
transmission waveforms. We also want to stress here that the
effect of truncation is negligible on the SNR penalties studied
later in this paper.

Equations (9) and (12) give a possibility to investigate
whether filters can be found which givew(n) with a desired
shape and width. There is a freedom in defining the shape of
the weight function (i.e. the compressed pulse) by choosing
different shapes of filters forq(n) in Eq. (12). Limitations
are imposed by the coding filter rather than by the decoding
filter, since the Fourier transform of the coding filter is not
allowed to have zeros in the frequency domain. For example,
if we useq(n)=nBp(−n) in Eq. (12),w(n) becomes a trian-
gle with a height equal to the number of bits in the code such
that

w(n) =

nBn when 0≤ n ≤ ns

nBns(2 − n/ns) whenns < n ≤ 2ns

0 elsewhere,
(13)

we obtain decoding which is otherwise similar to standard
matched filtering of a Barker code but produces no sidelobes.

By combining Eqs. (6), (10), (12) in a proper manner, the
mathematical expression for the transfer function of the com-
plete sidelobe-free decoding filter that givesw(n) with a de-
sired shape can be easily obtained and it is given by

3(ω) = FD{λ(n)} =
Q(ω)

Hc(ω)
, (14)

where

Q(ω) =

∞∑
n=−∞

q(n)e−inω, (15)

and

Hc(ω) =

∞∑
n=−∞

hc(n)e−inω. (16)

Finally, the impulse response of the sidelobe-free decoding
filter is obtained by means of the inverse Fourier transform,
which is

λ(n) = FD−1
{3(ω)} =

1

2π

∫ 2π

w=0

Q(ω)

Hc(ω)
einωdω. (17)

One should notice that sidelobe-free decoding works for all
kinds of codes which do not have zeros in frequency domain,
including the Barker codes.

The impulse response of the standard matched filter that
corresponds to the filter described by Eq. (17) is a mirror
image of the code, i.e.

µ(n) = ε(−n) = hc(−n) ∗ p(n), n = −∞, . . . ,∞. (18)

The corresponding weight function is

wm(n) = µ(n) ∗ ε(n) = hc(−n) ∗ p(n) ∗ hc(n) ∗ p(n). (19)

Figure 3 demonstrates the sidelobe-free filtering in the
case of the 13-bit Barker code. The top panel shows the code
itself, sampled at a rate of 3 samples per bit. The middle
left panel shows the impulse response of the corresponding
matched filter, and the bottom left panel the weight function
calculated from Eq. (19). The weight function has a middle
peak with a height of 3×13=39 units and six side lobes on
both sides with heights of three units. Indexing of the sam-
ples is changed to move the main peak to zero.

The two right-hand panels of Fig. 3 demonstrate the de-
coding of the 13-bit Barker code without sidelobes. The
middle right panel shows the impulse response calculated ac-
cording to Eq. (17). Its main structure resembles the impulse
response of the matched filter, but the values are not exactly
plus or minus unity. On both sides of the main structure,
smaller values are encountered, which rapidly decrease to-
wards zero, as already seen in Fig. 2. When the number of
samples ofq andhc used in calculatingQ andHc is 1024,
the absolute normalised value of the truncated impulse re-
sponse at its ends is of the order of 10−13. If 2048 samples
are used, this value drops down to 10−16

− 10−17, which is
the computer numerical accuracy.

The corresponding weight function is shown in the bottom
right-hand panel of Fig. 3. It can be obtained numerically
either by using the calculated impulse response in the convo-
lution (9), or from samples ofhd , q andε by means of the in-
verse Fourier transform of Eq. (10). In both cases the weight
function indeed consists of a single triangular peak with a
height of 39 units and a total width of 6 units. A closer look
reveals that the side lobes behave differently, however. In the
case of Eq. (9), two nonzero sidelobes appear which decrease
with height and drift away from the main peak with increas-
ing number of samples. This is an end effect of the truncated
impulse response. When the number of samples inλ andε is
128, the height of the sidelobes is 0.87, while that of the main
peak is 39. When 1024 samples are used, the highest values
of the sidelobes are of the order of 10−7. No such sidelobes
appear when Eq. (10) is applied. When the number of points
in the Fourier transforms is 128 or higher, the values ofw



M. S. Lehtinen et al.: Optimal binary phase codes 1627

outside of the main peak are always down to the level of the
computer numerical accuracy. This demonstrates the benefit
of Eq. (10) in numerical calculations.

Figure 4 portrays similar calculations for an arbitrary 15-
bit code, which is not a Barker code. The left-hand panels
demonstrate matched filtering done by means of a mirror im-
age of the code. The result is that the weight function con-
sists of a centre peak, as well as a set of six small negative
sidelobes and one high positive sidelobe on both sides of it.
The impulse response in the middle right-hand panel has an
infinite length, but it decays rapidly on both sides of the main
structure much in the same way as in the case of the Barker
code. The weight function in the bottom right-hand panel
obtained from Eq. (10) indicates that the side lobes are com-
pletely eliminated, even in this case.

3 SNR performance of a decoding filter

There is a decrease in SNR when one applies a sidelobe-
free compression filter instead of the standard matched fil-
ter. This drawback has been pointed out earlier, for exam-
ple by Sulzer (1989). Blinchikoff and Zverev (1987) have
also discussed in detail the degradation of SNR associated
with filters which maximise the peak-to-sidelobe ratio. In
this section the SNR performance of sidelobe-free decoding
of different Barker codes is investigated by comparing it with
that of the corresponding matched filter.

If the power spectral density of white noise entering a filter
with a transfer functionH(ν) is S(ν)=Sn, the total output
noise power is

Pn = Sn

∞∫
−∞

|H(ν)]2dν = Sn

∞∫
−∞

h2(t)dt, (20)

whereν is frequency andh(t) is the impulse response of the
filter. In the case of a digital filter, this can be written as

Pn = Sn

∞∑
n=−∞

h(n)2. (21)

The power of the signal received from a point target is
proportional to the maximum of the zero-lag range ambigu-
ity function, i.e. to the square of the maximum value of the
weight functionw(n). Hence, the SNR given by the matched
filter is

SNRm =
P ŵ2

m

Sn

∞∑
n=−∞

µ(n)2
, (22)

whereŵm is the peak value of the weight functionwm(n) of
the matched filter andP is a scaling coefficient defining the
received power. In a similar manner, the SNR value at the
output of the sidelobe-free decoding filter is

SNRs =
P ŵ2

s

Sn

∞∑
n=−∞

λ(n)2
, (23)
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Fig. 4. A 15-bit phase code sampled at a rate of 3 samples per bit
(top). Left: The impulse response of the corresponding matched
filter (middle) and their ambiguity function (bottom). Right: The
impulse response of the sidelobe-free compression filter (middle)
and the weight function (bottom).

whereŵs is the peak value of the weight functionws(n) of
the sidelobe-free decoding filter.

For comparison of the noise performance of different side-
lobe-free filters we use Eq. (23) to define a parameter

r =
SnSNRs

P
=

ŵ2
s

∞∑
n=−∞

λ(n)2
=

1
∞∑

n=−∞

b2
n

. (24)

This parameter is actually a scaled signal-to-noise ratio with
a scaling factor equal toP/Sn. It is useful for comparison,
since it depends only on the properties of the filter itself, not
on the noise level or such things as the reflectivity of the tar-
get, the transmitted power and the antenna gain.

The noise performance of different sidelobe-free filters
can be compared with that of the matched filter by calcu-
lating the ratio of the two signal-to-noise ratios. Since the
sidelobe-free decoding filter is designed to giveŵs=ŵm (this
is illustrated in Figs. 3 and 4), this parameter is

R =
SNRs

SNRm

=

∞∑
n=−∞

µ(n)2

∞∑
n=−∞

λ(n)2
. (25)

The values ofµ(n) andλ(n) needed in Eq. (25) are obtained
from Eq. (18) and Eq. (17), respectively. A sufficient ac-
curacy for comparison purposes is obtained by truncatingλ

at the points where its absolute values are below 10−3 (see
Fig. 2).

Table 1 gives the values ofR for Barker codes of different
lengths. They illustrate the fact that sidelobe-free decoding
of Barker codes degrades the SNR by about 5− −30% rela-
tive to standard decoding. However, the degradation is small-
est for the 5-bit and 13-bit Barker codes which are often used
in incoherent scatter radar measurements. In the case of the
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Table 1. SNR of the sidelobe-free decoding filters relative to that of
matched filters for Barker codes of different lengths.

Length/bits R

3 0.745
4 0.679
5 0.866
7 0.705
11 0.711
13 0.952

13-bit code, the loss is only about 5%. Hence, in this respect
the 13-bit code is the optimal Barker code, as already pointed
out by Sulzer (1989).

4 Optimal binary phase codes and corresponding side-
lobe-free decoding filters

The problem of designing coding waveforms with spiky au-
tocorrelation functions has long been an important problem
in the field of radars and sonars. It is usually viewed as a
problem of optimisation (e.g. Bernasconi, 1987; De Groot
et al., 1992). In incoherent scatter radars, the coding wave-
forms usually employ binary phase codes and extensive work
on these codes has been done in order to obtain measure-
ments with a very high range resolution (e.g. Gray and Far-
ley, 1973; Lehtinen and Ḧaggstr̈om, 1987 and Turunen et al.,
2002). Here we search for pairs of binary phase codes and
corresponding receiver filters that maximise the SNR at the
output of the filter without producing unwanted sidelobes.

Our search is restricted to binary phase codes with the
number of bits within the range from 3 to 25. The number
of possible bit patterns for annB -bit code is 2nB . However,
changing the signs of all bits gives a code with the same be-
haviour. This reduces the number of codes to be investigated
to 2nB−1. Actually, a mirror image of a code and the mir-
ror image with changed signs are also essentially the same.
Therefore, the true number of different codes to be investi-
gated is even smaller but, from practical point of view, it is
more convenient to go through all 2nB−1 codes. Thus, in or-
der to find the optimal codes with lengths extending from 3
to 25 bits, we have studied 33 554 428 different bit patterns.

The choice of an optimal code is based on the noise per-
formance of the corresponding sidelobe-free decoding filter.
The optimal code gives the smallest noise power at the filter
output. Thus, we first calculate the side-lobe free impulse re-
sponseλ(n) of each code and then, following Eq. (21), com-
pute the normalised output noise power

σ 2
=

Pn

Sn

=

∞∑
n=−∞

λ(n)2. (26)

The optimal code is found by selecting the minimum output
noise power among all codes of the same length.

Choosing the optimal 5-bit code is demonstrated in Fig. 5.
In the left-hand panels, only four out of the investigated 16
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Fig. 5. The left column shows, as an example, four different 5-bit
binary phase codes and the right column portrays the impulse re-
sponses of the corresponding sidelobe-free compression filters. In
the last panel in the right column we see one of the rare cases where
Hc(ω) has a zero and its discrete numerical approximation has a
value very close to zero. This results in very highσ2 values in
the numerical calculations and filter coefficients which decay very
slowly.

different codes are shown as examples. The right-hand pan-
els portray the corresponding impulse responses. The values
of σ 2, calculated according to Eq. (26), are written on each
panel. The results indicate that+ + + − + has the best per-
formance (σ 2 is also greater for all 5-bit codes not shown in
Fig. 5). This is the bit pattern of the 5-bit Barker code. Hence
the Barker code has the best performance of all 5-bit codes,
when sidelobe-free decoding is used. The code in the bottom
panel is an example of a case whenHc(ω) has a value very
close to zero. Then the decrease in the impulse response is
very slow.

A similar study was made for all other codes and it turned
out that sidelobe-free filters could be found for most of the
bit patterns for all code lengths studied. The results of the
search are displayed in Figs. 6–10. It turns out that the opti-
mal 3-, 4-, 5-, 7- and 13-bit binary codes are Barker codes.
The 11-bit optimal binary phase code (R=0.80 andr=8.85)
is, however, different from the 11-bit Barker code (R=0.71
andr=7.82).

The values of parametersR andr for the codes are shown
in Fig. 11 as a function of the code length. The top panel indi-
cates that sidelobe-free decoding can reduce the SNR even by
40% in comparison with matched filtering, but in many cases
the reduction is less than 20%. The 13-bit code, which is also
a Barker code, is the best one in this respect. The difference
of the performances of the 11-bit optimal code and Barker
code is also seen in the figure. It is interesting to notice that,
at small code lengths,R contains a violent oscillation which
is damped with increasing code length. The bottom panel
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Fig. 6. Left column: Bit patterns of optimal 3-bit, 4-bit, 5-bit, 6-bit
and 7-bit codes. Right column: The impulse responses of the corre-
sponding sidelobe-free decoding filters.

0 20 40 60 80 100 120
-1

0
1

+-+--+++nB=8

0 100 200 300 400
-1

0
1
2 R=0.76 r=  6.05

0 20 40 60 80 100 120
-1

0
1

++--+-+++nB=9

0 100 200 300 400
-1

0
1
2 R=0.62 r=  5.57

0 20 40 60 80 100 120
-1

0
1

++--+-++++nB=10

0 100 200 300 400

-1
0
1
2 R=0.68 r=  6.77

0 20 40 60 80 100 120
-1

0
1

++++--++-+-nB=11

0 100 200 300 400

-1
0
1
2 R=0.80 r=  8.85

0 20 40 60 80 100 120
-1

0
1

+-+--++-----nB=12

Time [in units of sampling interval]
0 100 200 300 400

-1
0
1
2 R=0.85 r= 10.24

Time [in units of sampling interval]

Fig. 7. Left column: Bit patterns of optimal 8-bit, 9-bit, 10-bit,
11-bit and 12-bit codes. Right column: The impulse responses of
the corresponding sidelobe-free decoding filters.

indicates a general increasing trend inr, although in some
cases a longer code has a worse performance. One should
notice thatR andr refer to the main peak of the weight func-
tion w(n). Since most of these codes are not Barker codes,
a matched filter may produce large sidelobes (e.g. 3 times
larger in the case of the 15-bit binary code displayed in the
top panel of Fig. 4), which may greatly limit the applicability
of matched filtering in these cases.
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Fig. 8. Left column: Bit patterns of optimal 13-bit, 14-bit, 15-bit,
16-bit and 17-bit codes. Right column: The impulse responses of
the corresponding sidelobe-free decoding filters.
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Fig. 9. Left column: Bit patterns of optimal 18-bit, 19-bit, 20-bit,
21-bit and 22-bit codes. Right column: The impulse responses of
the corresponding sidelobe-free decoding filters.

5 Practical demonstration of sidelobe-free pulse com-
pression

In this section we demonstrate the advantage of a sidelobe-
free decoding technique over traditional matched filter us-
ing Barker-coded data from the EISCAT Svalbard radar (for
detailed descriptions of the radar system, see Wannberg et
al., 1997). The experiment was conducted on 16 November
1999. The data was collected by means of hardware con-
nected to the standard radar receiver. This hardware stores
the complex baseband data samples rather than the ACF
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Fig. 10. Left column: Bit patterns of optimal 23-bit, 24-bit and
25-bit codes. Right column: The impulse responses of the corre-
sponding sidelobe-free decoding filters.

estimates, which gives a great freedom in data analysis. The
data collection system and the applied radar modulation are
described in detail by Lehtinen et al. (2002).

The experiment applies two-phase codes transmitted at
different frequencies. Only one of them, consisting of a ba-
sic phase pattern of 5 bits, is used in this paper. The trans-
mission pattern is shown in Fig. 12. Each bit in the basic
modulation is submodulated by a 5-bit Barker code with a
6-µs bit length. The sampling interval is 2-µs. This experi-
ment allows us to compare the sidelobe-free decoding of the
submodulation with standard Barker decoding.

The baseband complex signal samples containing data
from both frequency channels are stored on hard disk. The
off-line data processing consists of channel separation and
clutter removal, and it produces a separate data stream for
each channel. Detailed descriptions of the signal processing
methods are presented by Lehtinen et al. (2002) and Damtie
et al. (2002). The sidelobe-free decoding is carried out using
the equation

yd = FD−1
{
FD{y}

3

}
= FD−1

{
HcFD{y}

Q

}
, (27)

wherey andyd are the measured and decoded sample pro-
files,3 is the transfer function of the decoding filter, andQ

andHc are the Fourier transforms ofq andhc. The length of
the measured data profile is 2000. Notice that the impulse re-
sponse of the decoding filter is not calculated when Eq. (27)
is applied in decoding but, instead,Q andHc are calculated
according to Eqs. (15) and (16), respectively.

The left-hand panel of Fig. 13 portrays a power profile af-
ter decoding the 5-bit Barker submodulation. Two decoding
methods have been used, the standard matched filter (blue)
and the sidelobe-free filter (red). The integration time of the
profile is 0.8 s. The corresponding standard deviation pro-
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Fig. 11.The performance of different optimal binary codes in terms
of R (top panel) andr (bottom panel). In both figures the circle
indicates the performance of Barker codes.

files are shown in the right-hand panel. Range correction of
the received power has not been carried out here.

This profile was chosen because it contains an echo from a
point target, which is either a satellite, a space debris object
or a meteor. Due to the basic 5-bit modulation, the echo is
visible after decoding as five peaks in the power profile (the
maximum power at the peaks is over 800 units). When the
submodulation is decoded by means of a sidelobe-free filter,
the power level between the peaks agrees with the power pro-
file outside the peaks. This confirms the removal of the side-
lobes. The results are different in the case of standard decod-
ing. Between the two uppermost peaks the power level is ap-
proximately the same as the background profile, but between
the four lowermost peaks it clearly exceeds the background
power. This effect is due to the range ambiguity function
of the basic modulation. Between the four lowest peaks the
sidelobes of the individual peaks are located in such a man-
ner that their sum is constant. Due to the pulse with opposite
phase in the basic modulation, the sidelobes cancel between
the two uppermost peaks, which gives no enhancement.

The high values of standard deviation at the five power
peaks result from the fact that the point target is visible within
the radar beam (or within its sidelobes) for a shorter period
than the integration time of 0.8 s. Elsewhere in the profile the
standard deviation is roughly constant and it is not greatly af-
fected by the lower performance of the sidelobe-free filtering
of the 5-bit Barker code.

6 Conclusion

In this paper we have presented the method of finding binary
phase codes which produce a maximal SNR when decoded
by means of a sidelobe-free filter. When applied to all pos-
sible phase patterns with lengths 3–25 bits, 23 optimal codes
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Fig. 12. The modulation pattern applied in the experiment. The
5-bit basic modulation is shown in the top and the Barker-coded
structure of a positive bit and the subsequent negative bit is shown
at the bottom.

were found. The first step in the search was to check that the
Fourier transform of a pattern is always nonzero. After this,
the performance of the code was studied by calculating the
maximum SNR of a signal from a point target.

It turned out that the Barker codes are optimal when the
code length is 3, 4, 5, 7 or 13 bits. In the case of 11 bits,
however, the Barker code is not optimal. In comparison with
the standard matched filtering of Barker codes, sidelobe-
free filtering reduces the performance by a variable amount
which, however, is only about 5% for the commonly used
13-bit code. The benefits of no sidelobes should be evalu-
ated against this loss.

We have also demonstrated the sidelobe-free decoding in
practice by analyzing real data. The results clearly show
the difference between the matched filter and the sidelobe-
free filter in terms of power received from regions around
peaks of highly reflective target. The same effect must be
present when sporadic-E layers are investigated by an inco-
herent scatter radar. Then a signal from the plasma around
a thin layer is necessarily corrupted by a signal emerging
through sidelobes from the layer itself. If the layer consists of
long-lived metal ions with a plasma autocorrelation function
different from that of the surrounding plasma, the plasma pa-
rameters obtained from the region of the sidelobes are also
corrupted. This problem does not exist if sidelobe-free de-
coding is applied.

The methods presented in this paper have become easily
applicable with the advent of the flexible possibilities of data
processing offered by modern and fast general-purpose com-
puters with their large and inexpensive data storage capabil-
ities. Unlike in a traditional receiver with a fixed matched
filter, it is now even possible to collect data samples for later
processing by any impulse response. As shown by Lehtinen
et al. (2002), this can be done by using a very simple hard-
ware which can be connected in parallel to the standard radar
receiver.
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Fig. 13. Left: An example of power profiles calculated by employ-
ing the traditional matched filter (blue) and sidelobe-free decoding
filter (red). Right: The corresponding standard deviation profiles
obtained by using the traditional matched filter (blue) and sidelobe-
free compression filter (red).
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