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prox-regularity of spectral

functions and spectral sets

A. Daniilidis A. Lewis J. Malick H. Sendov

Dedicated to the memory of Thomas Lachand-Robert
(Cher ami, tu nous as quittés si tôt...)

Abstract. Important properties such as differentiability and convexity of
symmetric functions in R

n can be transferred to the corresponding spectral
functions and vice-versa. Continuing to built on this line of research, we
hereby prove that a spectral function F : Sn → R ∪ {+∞} is prox-regular
if and only if the underlying symmetric function f : R

n → R ∪ {+∞} is
prox-regular. Relevant properties of symmetric sets are also discussed.
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1 Introduction

By Sn, On, and Σn we denote, respectively, the space of n×n symmetric
matrices, the orthogonal group on R

n, and the group of n × n permutation
matrices. For X ∈ Sn, by λ(X) ∈ R

n we denote the vector of eigenvalues
of X in nonincreasing order:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

For any x ∈ R
n, by [x] ∈ R

n we denote the vector with the same coordinates
as x ordered nonincreasingly.

A function f : R
n → R ∪ {+∞} is called symmetric if f(x) = f(σx) for

all x ∈ dom f := {x ∈ R
n : f(x) < +∞} and all σ ∈ Σn. Necessarily, the

domain of a symmetric function is a symmetric set in R
n: x ∈ dom f if and

only if σx ∈ dom f for all σ ∈ Σn.
A function F : Sn → R ∪ {+∞} is called spectral if F (U⊤XU) = F (X)

for all X ∈ domF and all U ∈ On. Necessarily, the domain of a spectral
function is a spectral set: X ∈ domF implies that the orbit {U⊤XU : U ∈
On} is also in domF . Note that if K is a symmetric set, then

λ−1(K) := {X ∈ Sn : λ(X) ∈ K}
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is a spectral set. It is not difficult to see that the spectral functions are in
one-to-one correspondence with the symmetric functions. The relationship
is given by the formulae

F (X) = (f ◦ λ)(X) and f(x) = F (Diag x),

where Diag x denotes the n × n diagonal matrix whose diagonal elements
are the coordinates of x. Properties of a symmetric function f on R

n and
the associated spectral function F := f ◦ λ on Sn are closely related. Even
though the map X 7→ λ(X) can be very badly behaved, for example it is
not everywhere differentiable, many problems are corrected by the invariance
property of f . An illustration of this is given with the following theorem [7]
(see also [11]).

Theorem 1 (Convexity preserved). Let the set K in R
n be convex and

symmetric and suppose that the function f : K → R is symmetric. Then the
set λ−1(K) is convex and the spectral function F = f ◦ λ is convex if and
only if f is convex.

Differentiability is another property that is preserved, [12, Theorem 1.1],
as recalled by the next theorem. An analogous result also holds for twice
(continuously) differentiable spectral functions, see [14]; for C∞ spectral
functions, see [5]; and for analytic spectral functions, see [15].

Theorem 2 (Differentiability preserved). Let the set K in R
n be open

and symmetric and suppose that the function f : K → R is symmetric. Then
the spectral function F = f ◦ λ is (continuously) differentiable at (around)
the matrix X if and only if f is (continuously) differentiable at (around) the
vector λ(X).

In this paper we continue to built on this line of research. We establish
that the important variational property of prox-regularity can be added to
the list of properties for which the transfer principle is valid. The prox-
regularity, studied in [16] and [17] in particular, has proved to be a robust
notion of nonsmoothness enjoying nice “geometrical” properties, generali-
zing both convex functions and smooth functions. The prox-regularity has
also been used in algorithms, in particular in the identification of active
constraints or the conceptual construction of predictor-corrector algorithms,
see for instance [8], [6].

In order to give the precise definition of prox-regularity, we need to recall
some basic definitions, following [19]. A set C ⊂ R

n is said to be locally
closed at a point x̄ if C ∩ V is closed for some closed neighborhood V of x̄.
A function ϕ : R

n → R ∪ {+∞} is said to be locally lower semicontinuous
at x̄ if ϕ(x̄) is finite and epiϕ := {(x, t) ∈ R

n×R : ϕ(x) ≤ t} is locally closed
at (x̄, ϕ(x̄)). Given a function ϕ : R

n → R ∪ {+∞}, we say that v ∈ R
n is a

regular subgradient of ϕ at x̄, denoted by v ∈ ∂̂ϕ(x̄), if ϕ is finite at x̄ and

ϕ(x) ≥ ϕ(x̄) + v⊤(x − x̄) + o(‖x − x̄‖).
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As usual, t 7→ o(t) denotes a real-valued function defined in a neighborhood
of the origin 0 of R and satisfying o(t)/t → 0 as t → 0. If the function ϕ
is infinite at x̄ then we set ∂̂ϕ(x̄) = ∅. We say that v is a subgradient of ϕ
at x̄, written v ∈ ∂ϕ(x̄), if ϕ is finite at x̄ and there is a sequence xk → x̄
with values ϕ(xk) → ϕ(x̄) and a sequence vk ∈ ∂̂ϕ(xk) such that vk → v.
Analogously, if ϕ is infinite at x̄ then we set ∂ϕ(x̄) = ∅.

Throughout the text, B(x, r) will denote the open ball with center x ∈
R

n and radius r > 0. The definition of prox-regular function is then as
follows, see [19, Definition 13.27].

Definition 3 (Prox-regularity). A function ϕ : R
n → R∪{+∞} is called

prox-regular at x̄ for v̄ if ϕ is finite and locally lower semicontinuous at x̄,
v̄ ∈ ∂ϕ(x̄) and there exist δ > 0 and ρ ≥ 0 such that for all x, y ∈ B(x̄, δ)
and v ∈ ∂ϕ(x) with ϕ(x) ≤ ϕ(x̄) + δ and ‖v − v̄‖ ≤ δ, we have

ϕ(y) ≥ ϕ(x) + v⊤(y − x) −
ρ

2
‖y − x‖2.

The function ϕ is called prox-regular at x̄, if it is prox-regular at x̄ for all
v̄ ∈ ∂ϕ(x̄).

The main result of this paper, stating that the prox-regularity is trans-
ferred from a symmetric function to the corresponding spectral function and
vice-versa, is the content of the following theorem.

Theorem 4 (Prox-regularity preserved). Let f be a symmetric lower
semicontinuous function. Then F = f ◦ λ is prox-regular at X̄ if and only
if f is prox-regular at λ(X̄).

The proof of the above theorem will be given at the end of the paper
(Theorem 17 in Section 4). Before, in Section 2, we shall first consider two
particular cases of prox-regular spectral functions, for which a direct proof
of the transfer principle can be given. In Section 3, we shall take a close look
at the subdifferentials of spectral and symmetric functions, building tools
for our development. We finish this first section by fixing terminology and
notation.

Notation – Terminology. The canonical Euclidean norm on the space Sn

of n× n symmetric matrices, often called the Frobenius norm, is defined by
the formula:

‖X‖2 =
n

∑

i,j=1

X2
ij = tr (X2).

The associated inner product is denoted by 〈X, Y 〉 = tr (XY ). The above
formula for the norm in Sn, when restricted to diagonal matrices, corre-
sponds to the Euclidean norm in R

n (still denoted by ‖ · ‖), since ‖x‖ =
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‖Diag x‖. It is also well-known that

‖X‖2 =
n

∑

i=1

λ2
i (X) = ‖λ(X)‖2

that is
‖X‖ = (‖ · ‖ ◦ λ)(X). (1)

The above relation shows that the Frobenius norm is a spectral function
on Sn associated with the canonical Euclidean norm on R

n.
In the sequel we shall say that two matrices X, Y in Sn admit a simulta-

neous spectral decomposition if they are simultaneously diagonalizable in the
same orthonormal basis, that is, if for some orthogonal matrix U ∈ On the
matrices U⊤ X U and U⊤ Y U are diagonal. It is known that X and Y admit
simultaneous spectral decomposition if and only if XY = Y X (see [9]). A
more restrictive condition is to assume that the matrices X and Y admit
a simultaneous ordered spectral decomposition, which guarantees that the
obtained diagonal matrices are precisely Diag λ(X) and Diag λ(Y ), that is,
the entries in both diagonals are ordered in a nonincreasing way. The next
theorem due to Fan shows precisely when two matrices X and Y admit
simultaneous ordered spectral decomposition (see [3, Theorem 1.2.1]).

Theorem 5 (Fan). Any two matrices X and Y in Sn satisfy the inequality

〈X, Y 〉 = tr (XY ) ≤ λ(X)⊤λ(Y ).

Equality holds if and only if X and Y admit a simultaneous ordered spectral
decomposition.

2 Examples of prox-regular spectral functions

In this section, we consider two particular cases of Theorem 4 for which
the transfer principle can be established by direct arguments. Namely, we
discuss the case of uniform prox-regular spectral functions and of indicator
functions of prox-regular spectral sets. A common point of both cases is a
uniform character of prox-regularity.

2.1 Uniform prox-regularity

The notion of uniform prox-regularity corresponds to the standard prox-
regularity with parameters independent of the subgradients v ∈ ∂ϕ(x̄) (see
[2]).

Definition 6 (Uniform prox-regularity). A function ϕ : R
n → R∪{+∞}

is called uniformly prox-regular at x̄ if there exist δ > 0 and ρ ≥ 0 such that
for all x, y ∈ B(x̄, δ) and v ∈ ∂ϕ(x) with ϕ(x) ≤ ϕ(x̄) + δ, we have

ϕ(y) ≥ ϕ(x) + v⊤(y − x) −
ρ

2
‖y − x‖2.
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A uniformly prox-regular locally Lipschitz function is also called proxi-
mally smooth or lower-C2 ([18], [4]). Let us recall that a lower semicontin-
uous (respectively, a locally Lipschitz) function f is uniformly prox-regular
(at a point x) if and only if f admits a local representation (around x) of
the form

f = g − β‖ · ‖2,

where g is a lower semicontinuous (respectively, continuous) convex function
(see [2, Corollary 3.12] and [1, Theorem 4.1] for example). Using this rep-
resentation a straightforward proof of Theorem 4 for the case of uniformly
prox-regular functions can be given: indeed, we can write

f ◦ λ = (g − β‖ · ‖2) ◦ λ = g ◦ λ − β‖ · ‖2 ,

the second equality stemming from (1). Thus the result follows from the
convex transfer principle (cf. Theorem 1).

2.2 Indicator functions and spectral sets

Let C be a subset of R
n and x̄ ∈ C. A vector v is called a regular normal

vector to C at x̄, denoted by v ∈ N̂C(x̄), if

v⊤(x − x̄) ≤ o(‖x − x̄‖) for x ∈ C.

A vector v is called a normal vector, denoted by v ∈ NC(x̄), if there exist
sequences xk → x̄ and vk → v with vk ∈ N̂C(xk). A closed subset C of R

n

is called prox-regular at x̄ ∈ C for v̄ ∈ NC(x̄) if there exist δ > 0 and ρ > 0
such that whenever x ∈ C and v ∈ NC(x) with ‖x− x̄‖ < δ and ‖v− v̄‖ < δ,
then x is the unique nearest point of {x′ ∈ C : ‖x′− x̄‖ < δ} to x+v/ρ. The
set C is prox-regular at x̄ if this property holds for every vector v̄ ∈ NC(x̄).

As expected, C is prox-regular if and only if its indicator function is
prox-regular at x̄ and, according to [17, Proposition 1.2], C is prox-regular
at x̄ is and only if it is prox-regular at x̄ for v̄ = 0. Let us now recall from [17,
Theorem 1.3] another important characterization of prox-regularity for sets.

Theorem 7 (Prox-regular sets vs distance functions). Let C ⊂ R
n

be a closed set and x̄ ∈ C. Then C is prox-regular at x̄ if and only if the
distance function dC is continuously differentiable on O \ C for some open
neighborhood O of x̄.

In the sequel we use the above characterization to get a direct proof of
the transfer principle of prox-regularity for spectral sets, or equivalently, for
indicator functions. To this end we need to establish that the distance func-
tion dK(x) := infy∈K ‖x− y‖ to a symmetric subset K of R

n is a symmetric
function. This is one of the conclusions of the following statement.
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Proposition 8 (Symmetric distance functions). Let K be a symmetric
subset of R

n. Then the distance function dK to K is symmetric: dK(x) =
dK(σx) for all σ ∈ Σn and x ∈ R

n. Moreover, the distance function Dλ−1(K)

to the spectral set λ−1(K) satisfies:

Dλ−1(K) = dK ◦ λ.

Proof. Let x ∈ R
n and σ ∈ Σn. Since we have σK = K, making the

change of variables z = σy we deduce that

dK(σx) = inf
z∈K

‖σx − z‖ = inf
y∈K

‖σx − σy‖ = inf
y∈K

‖x − y‖ = dK(x),

which shows that dK is permutation invariant. To see that Dλ−1(K) is a

spectral function we fix X ∈ Sn and U ∈ On such that X = U⊤Diagλ(X)U ,
and we obtain

Dλ−1(K)(X) = inf
Y ∈λ−1(K)

‖X − Y ‖

= inf
Y ∈λ−1(K)

‖U⊤(Diag λ(X))U − Y ‖

= inf
Y ∈λ−1(K)

‖Diag λ(X) − Y ‖

≤ inf
y∈K

‖λ(X) − y‖

= dK(λ(X)).

For the opposite inequality, let us observe that a direct consequence of The-
orem 5 is the fact that ‖λ(X) − λ(Y )‖ ≤ ‖X − Y ‖, for any two symmetric
matrices X and Y . Using this we deduce

Dλ−1(K)(X) = inf
Y ∈λ−1(K)

‖X − Y ‖

≥ inf
Y ∈λ−1(K)

‖λ(X) − λ(Y )‖

≥ inf
y∈K

‖λ(X) − y‖

= dK(λ(X)).

The proof is complete.

The following result relates the prox-regularity of symmetric sets with
the prox-regularity of the corresponding spectral sets; in other words, it
proves Theorem 4 in the particular case of indicator functions of spectral
sets.

Theorem 9 (Prox-regular spectral sets). Let K be a symmetric subset
of R

n and let X be an element of λ−1(K). Then the set K is prox-regular
at λ(X) if and only if λ−1(K) is prox-regular at X.
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Proof. Observe first that K is closed if and only if λ−1(K) is. We deduce
successively

K is prox-regular at λ(X)
⇐⇒ dK is C1 around λ(X)
⇐⇒ dK ◦ λ is C1 around X
⇐⇒ Dλ−1(K) is C1 around X

⇐⇒ λ−1(K) is prox-regular at X

[Theorem 7]

[Theorem 2]

[Proposition 8]

[Theorem 7]

which completes the proof.

We end this subsection about spectral sets by stressing an interesting
property of the spectral prox-regular set λ−1(K). Being prox-regular, the
projection mapping is locally unique, that is, there exists a unique nearest
point locally around λ−1(K); on the other hand, being a spectral set, we
can get an explicit expression of its projection: if the point x ∈ K is the
nearest point of K to y ∈ R

n, then for any orthogonal matrix U ∈ On, the
matrix U⊤(Diag x)U ∈ λ−1(K) is a nearest matrix of the spectral set λ−1(K)
to the matrix U⊤(Diag y)U . This result has been recently established in [10,
Theorem A.1] and generalizes several projection results that are used in
projection algorithms in a nonconvex setting (see the introduction of [10]
for an overview of this question). Using the material of this paper we can
hereby give an alternative quick proof of the aforementioned result along
the following lines: Since dK is a symmetric function, we have dK(y) =
‖x − y‖ = dK([y]), thus by Proposition 8 we obtain

Dλ−1(K)(U
⊤(Diag y)U)=dK([y])=‖x−y‖ = ‖U⊤(Diag x)U−U⊤(Diag y)U‖,

which proves the desired assertion.

3 Properties of subdifferentials

In order to tackle the general (non-uniform) case, we have to grind our
tools: in this section we study properties of the subdifferentials of spectral
and symmetric functions.

Theorem 10 below gives a full description of the subdifferential of a
spectral function F = f ◦ λ in terms of the subdifferential of the underlying
symmetric function f . This result is a cornerstone for the variational the-
ory of spectral mappings and will play a fundamental role in our analysis.
Results of this kind were initially established for subdifferentials of convex
spectral functions (see [11], [3] for example). A much more general result
holds for the class of lower semicontinuous spectral functions and for the
notions of regular, limiting or Clarke subdifferential (see [13] for details).
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Theorem 10 (Subdifferential of spectral functions). If f is a lower
semicontinuous function, then

∂F (X) = {U⊤(Diag v)U : v ∈ ∂f(λ(X)) and U ∈ On
X}, (2)

where
On

X = {U ∈ On : X = U⊤(Diag λ(X))U}. (3)

We point out that given two matrices X, V ∈ Sn the relation V ∈ ∂F (X)
implies that X and V admit a simultaneous spectral decomposition. Inter-
estingly, when F is a convex function then the relation V ∈ ∂F (X) implies
that X and V admit a simultaneous ordered spectral decomposition. Indeed,
by (2) we have V = U⊤(Diag v)U for some v ∈ ∂f(λ(X)) and U ∈ On

X .
Then, by the convexity of F we obtain

F (Y ) ≥ F (X) + 〈V, Y − X〉 for all Y ∈ Sn.

Let σ ∈ Σn be such that σλ(V ) = v and take Y = U⊤(Diag σλ(X))U . Then
the above inequality yields

F (X) − λ(V )⊤λ(X) = F (Y ) − 〈V, Y 〉 ≥ F (X) − 〈V, X〉,

whence 〈V, X〉 ≥ λ(V )⊤λ(X), which in view of Theorem 5 shows that X
and V admit a simultaneous ordered spectral decomposition.

The fact that convexity of F is crucial for the conclusion that X and V
admit a simultaneous ordered spectral decomposition is illustrated by the
following example.

Example 11 (Unordered decomposition). Consider the symmetric func-
tion f(x1, x2) = x1x2. It follows easily that the spectral function f ◦ λ is
differentiable at the point X = Diag (1, 2) with gradient V = Diag (2, 1).
Obviously the matrices X and V are simultaneously diagonalizable (and
then admit simultaneous spectral decomposition), but they do not have a
simultaneous ordered spectral decomposition.

In the convex case the property that the matrices X and V admit a si-
multaneous ordered spectral decomposition simplifies significantly the vari-
ational analysis. We can indeed relate the size of the subgradients of the
functions f and F , with the estimation

‖λ(V ) − λ(V ′)‖ ≤ ‖V − V ′‖, (4)

holding with equality if and only if V and V ′ admit a simultaneous ordered
spectral decomposition (as a direct consequence from Theorem 5). On the
other hand, if f is a general lower semicontinuous spectral function, the
group of permutations over the coordinates should be taken into account:
forthcoming Theorem 15 will thus be very useful for our purposes.
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Given x ∈ R
n and v ∈ ∂f(x) the following set of permutations appears

naturally in our study:

Sx,v = {σ ∈ Σn : σv ∈ ∂f(x)} , (5)

that is, permutations that applied to v remain in the subdifferential.

Remark 12 (Permutations leaving x invariant). It is straightforward
to see that for every permutation σ ∈ Σn and any x ∈ R

n we have

∂f(σx) = σ∂f(x).

Thus, any permutation σ ∈ Σn leaving x invariant (that is, σx = x) belongs
in particular to Sx,v for any v ∈ ∂f(x). On the other hand, the exam-
ple of the constant function f(x1, x2) = 0, for all (x1, x2) ∈ R

2 or of the
(symmetric) function

g(x1, x2) = min{|x1 − x2 − 1|, |x1 − x2 + 1|}

show that, in general, the set Sx,v may contain more elements. Indeed, take
(in both cases) x = (1, 0), and let u = (0, 0) ∈ ∂f(x), v = (1,−1) ∈ ∂g(x)
and σ the non–trivial permutation of Σ2.

The following lemma is taken from [13, Proposition 3].

Lemma 13 (Simultaneous conjugacy). Given vectors x, y, u and v in
R

n, there is a matrix U ∈ On with

Diag x = U⊤(Diag u)U and Diag y = U⊤(Diag v)U

if and only if there is a permutation σ ∈ Σn with x = σu and y = σv.

Let us continue our analysis with the following technical lemma stating
that if two subgradients of the spectral function F are close to each other,
then the underlying subgradients of the corresponding symmetric function f
are also nearby up to a permutation.

Lemma 14 (Proximity of subgradients). Consider a subgradient V̄ of
the function F at the matrix X̄, and the corresponding decomposition V̄ =
Ū⊤(Diag v̄)Ū , where Ū ∈ On

X̄
, v̄ ∈ ∂f(x̄) and x̄ = λ(X̄). Then for every

ε > 0, there exists δ ∈ (0, ε) such that for any V ∈ ∂F (X) with corresponding
decomposition V = U⊤(Diag v)U for some v ∈ ∂f(λ(X)) and U ∈ On

X

satisfying
‖X − X̄‖ ≤ δ and ‖V − V̄ ‖ ≤ δ

there exists a permutation σ ∈ Sx̄,v̄ such that ‖v − σv̄‖ ≤ ε.
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Proof. Let us assume, towards a contradiction, that there exist ε > 0 and
sequences Xk → X̄, Vk → V̄ , Uk ∈ On

Xk
, and vk ∈ ∂f(λ(Xk)) satisfying

Xk = Uk
⊤(Diag λ(Xk))Uk and Vk = Uk

⊤(Diag vk)Uk (6)

such that
∀σ ∈ Sx̄,v̄ ‖vk − σv̄‖ > ε. (7)

Let {σk}k≥1 ⊂ Σn be such that vk = σkλ(Vk), for all k ≥ 1. Since On is
compact, there is no loss of generality to assume that Uk → U . Since Σn is
finite, it follows by the continuity of λ(·) that vk approaches ṽ := σ̃ λ(V̄ )
for some σ̃ ∈ Σn. Let us now observe that

V̄ = U⊤(Diag ṽ)U = Ū⊤(Diag v̄)Ū ,

yielding

Diag ṽ = (UŪ⊤)(Diag v̄)(UŪ⊤)
⊤
.

Since U, Ū ∈ On
X̄

, we also have

Diag x̄ = (UŪ⊤)(Diag x̄)(UŪ⊤)
⊤
.

Applying Lemma 13 together with Remark 12, we conclude that there is a
permutation σ̄ ∈ Sx̄,v̄ such that ṽ = σ̄v̄. This contradicts (7) and the proof
is complete.

Theorem 15 (Proximity up to a permutation). Let V̄ be a subgradient
of F at X̄ and let V̄ = Ū⊤(Diag v̄)Ū be its corresponding decomposition,
where Ū ∈ On

X̄
, v̄ ∈ ∂f(x̄) and x̄ = λ(X̄). Then there exists δ̃ > 0 such that

for all δ ∈ [0, δ̃) and all V ∈ ∂F (X) with decomposition V = U⊤(Diag v)U
for v ∈ ∂f(λ(X)) and U ∈ On

X satisfying

‖X − X̄‖ ≤ δ and ‖V − V̄ ‖ ≤ δ

there exists
σ ∈ Sx̄,v̄ such that ‖v − σv̄‖ ≤ δ.

Thus, by (5), we have dist(v, ∂f(x̄)) ≤ δ.

Proof. Let us set

∆ = min {‖σv̄ − τ v̄‖ : τ ∈ Sx̄,v̄, σ 6∈ Sx̄,v̄} > 0. (8)

Applying Lemma 14 with ε = ∆/3 we get a constant δ̃ > 0 (with ∆/3 > δ̃)
and a permutation τ ∈ Sx̄,v̄ such that ‖v− τ v̄‖ ≤ ∆/3. Let us now consider
the permutations σ, σ̄ such that v = σλ(V ) and v̄ = σ̄λ(V̄ ), so that

‖v − σσ̄−1v̄‖ = ‖σ−1v − σ̄−1v̄‖ = ‖λ(V ) − λ(V̄ )‖ ≤ ‖V − V̄ ‖.
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Thus setting ω = σσ̄−1 we have ‖v − ωv̄‖ ≤ ‖V − V̄ ‖ ≤ δ̃ ≤ ∆/3. To
conclude, it is sufficient to show that ω ∈ Sx̄,v̄. Indeed,

‖ωv̄ − τ v̄‖ ≤ ‖ωv̄ − v‖ + ‖v − τ v̄‖ ≤ ∆/3 + ∆/3 < ∆,

which in view of (8) yields that ω ∈ Sx̄,v̄. The proof is complete.

4 Prox-regularity of spectral functions

To prove our main result, we need the following characterization of prox-
regularity for the case of symmetric functions.

Lemma 16 (Prox-regularity of symmetric functions). Let f be a lower
semicontinuous symmetric function. Then f is prox-regular at x̄ for v̄ ∈
∂f(x̄) if and only if there exist ρ > 0 and δ > 0 such that for all x, y ∈ B(x̄, δ)
and v ∈ ∂f(x) with f(x) ≤ f(x̄) + δ and ‖v − v̄‖ ≤ δ we have

f(σy) ≥ f(x) + v⊤(σy − x) −
ρ

2
‖σy − x‖2 for all σ ∈ Σn. (9)

Proof. The sufficiency of the above condition is obvious (just take σ = id).
Let us prove the necessity part. The prox-regularity of f at x̄ for v̄ gives
δ̃ > 0 and ρ̃ > 0 such that for all x, z ∈ B(x̄, δ̃) and v ∈ ∂f(x) satisfying
‖v − v̄‖ ≤ δ̃ and f(x) ≤ f(x̄) + δ̃ we have

f(z) ≥ f(x) + v⊤(z − x) −
ρ̃

2
‖z − x‖2.

Let us pick any
L > ‖v̄‖ + δ̃ (10)

and let us use the lower-semicontinuity of f to obtain a positive constant

δ ≤ min {1, δ̃} (11)

such that for all y ∈ B(x̄, δ)

f(y) ≥ f(x̄) − L + δ̃. (12)

Let us finally set
ρ ≥ max

{

ρ̃, 4L/δ2
}

.

Having defined the constants δ, ρ > 0 let us take σ ∈ Σn, x, y ∈ B(x̄, δ)
and v ∈ ∂f(x) such that ‖v − v̄‖ ≤ δ and f(x) ≤ f(x̄) + δ. We aim to prove
that (9) holds. Observe that this is indeed the case whenever ‖σy − x‖ ≤ δ̃,
so we may assume ‖σy − x‖ > δ̃. Let us further set

∆1 = f(x̄) − L + δ̃ and ∆2(µ) = f(x̄) + δ̃ + Lµ −
ρ

2
µ2 (µ ∈ R) .

11



Claim. ∆1 ≥ ∆2(µ) for all µ ∈ (δ,+∞).

[Proof of the Claim. We need to show that the inequality

ρ

2
µ2 − Lµ − L > 0,

holds for all µ ∈ (δ,+∞). The discriminant of the left-hand side, as a
polynomial in µ, is strictly positive. It is easy to see that since ρ ≥ 4L/δ2

its larger root satisfies

L +
√

L(L + 2ρ)

ρ
≤ δ.

This proves the claim.]

We further infer from (12) and the invariance of f that

f(σy) = f(y) ≥ ∆1, (13)

while using (10) we deduce that

‖v‖ ≤ ‖v̄‖ + δ ≤ ‖v̄‖ + δ̃ < L .

Let us set µ := ‖σy − x‖ > δ̃ and note that in view of (11) we have µ > δ.
We thus deduce

f(x) + v⊤(σy − x) −
ρ

2
‖σy − x‖2 ≤ (f(x̄) + δ̃) + ‖v‖µ −

ρ

2
µ2 ≤ ∆2(µ) .

Since ∆1 ≥ ∆2(µ) we obtain from (13) that

f(σy) ≥ f(x) + v⊤(σy − x) −
ρ

2
‖σy − x‖2,

which completes the proof.

We are now in position to prove the main result of this work.

Theorem 17 (Main result). Let f be a symmetric lower semicontinuous
function. Then f is prox-regular at λ(X̄) if and only if F = f ◦ λ is prox-
regular at X̄.

Proof. (⇐). Suppose that F is prox-regular at X̄ for any V̄ ∈ ∂F (X̄).
Then, it is easy to see that f is prox-regular at λ(X̄) for any v̄ ∈ ∂f(λ(X̄))
by using (4) and the formula f(x) = F (U⊤(Diag x)U).

(⇒). Assume that f is prox-regular at λ(X̄). We need to prove that F is
prox-regular at X̄ for any V̄ ∈ ∂F (X̄). Set x̄ = λ(X̄), let, by Theorem 10,
v̄ ∈ ∂f(x̄) and Ū ∈ On

X̄
be such that V̄ = Ū⊤(Diag v̄)Ū . To prove the

prox-regularity of F at X̄ for V̄ , we proceed in three steps:

12



• the first step consists in fixing the values of the parameters δ, ρ > 0 ;

• in the second step we introduce the working variables in Sn and R
n ;

• in the final step, we deduce the inequality of prox-regularity of F at X̄
from the one of f at x̄.

Step 1: Choice of parameters. We first apply Theorem 15 with respect
to V̄ ∈ ∂F (X̄) (and its given decomposition V̄ = Ū⊤(Diag v̄)Ū , with Ū ∈
On

X̄
, v̄ ∈ ∂f(x̄) and x̄ = λ(X̄)) to obtain δ̃ > 0. Then, for each τ ∈ Sx̄,v̄, we

use the prox-regularity of f at x̄ for τ v̄ ∈ ∂f(x̄) to get δτ > 0 and ρτ > 0
by Lemma 16. We then set

δ = min
{

{δτ , τ ∈ Sx̄,v̄} ∪ {δ̃}
}

and ρ = max
{

ρτ , τ ∈ Sx̄,v̄

}

.

Step 2: Definition of variables. Consider X, Y, V ∈ Sn such that

‖Y −X̄‖ ≤ δ, ‖X−X̄‖ ≤ δ, V ∈ ∂F (X), F (X) ≤ F (X̄)+δ and ‖V −V̄ ‖ ≤ δ

and set
F (X, V, Y ) = F (X) + 〈V, Y − X〉 −

ρ

2
‖Y − X‖2 .

Our aim is to prove that F (X, V, Y ) ≤ F (Y ). To this end, we set
x = λ(X) and y = λ(Y ), and we introduce v ∈ ∂f(x) and U ∈ On

X such
that V = U⊤(Diag v)U . Observe that, by (4), we have x, y ∈ B(x̄, δ); by
the property of F = f ◦λ, we have f(x) ≤ f(x̄)+ δ; and by Theorem 15, we
have

‖v − τ v̄‖ ≤ δ (τ ∈ Sx̄,v̄) . (14)

Moreover, since X and V admit a simultaneous spectral decomposition,
there exists σ ∈ Σn such that

λσ(i)(V + ρX) = vi + ρxi , (15)

where x = (x1, . . . , xn) and v = (v1, . . . , vn).

Step 3: Final argument. Let us note that

F (X, V, Y ) = F (X) −
ρ

2
(‖X‖2 + ‖Y ‖2) − 〈V,X〉 + 〈V + ρX, Y 〉 , (16)

and let us observe that

F (X) −
ρ

2
(‖X‖2 + ‖Y ‖2) = f(x) −

ρ

2
(‖x‖2 + ‖y‖2). (17)

On the other hand, the term 〈V, X〉 in (16) can be rewritten as follows:

〈V, X〉 = 〈UV U⊤, UXU⊤〉 = 〈Diag v,Diag x〉 = v⊤x. (18)
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Let us now focus on the term 〈V + ρX, Y 〉. Using Theorem 5, we deduce
that

〈V + ρX, Y 〉 ≤ λ(V + ρX)⊤λ(Y ),

and after rearranging the sum by means of the permutation σ given in (15)
we obtain

〈V + ρX, Y 〉 ≤
n

∑

i=1

(vi + ρxi)
⊤yσ(i) = v⊤ (σy) + ρx⊤ (σy) . (19)

Then combining (16) with (17), (18) and (19) we deduce

F (X,V, Y ) ≤ f(x) + v⊤(σy − x) −
ρ

2
(‖x‖2 + ‖y‖2 − 2x⊤(σy)),

which, in view of ‖y‖ = ‖σy‖ yields

F (X, V, Y ) ≤ f(x) + v⊤(σy − x) −
ρ

2
‖σy − x‖2 .

We conclude applying (9): from (14), the prox-regularity of f at x̄ for τ v̄
yields

F (X,V, Y ) ≤ f(σy) = f(y) = F (Y ) .

The proof is complete.
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