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Abstract. The standard analysis of Barker-coded incoherent
scatter experiments is based on a matched filter with an im-
pulse response which is a mirror image of the code itself. The
method produces small sidelobes which cause contamination
from regions outside the nominal range gate. A correspond-
ing effect is also encountered in the lag direction, where indi-
vidual lag estimates are biased by the variation of the plasma
autocorrelation function around the nominal lag value. The
present paper introduces a new method of analysing Barker-
coded experiments by means of stochastic inversion. Since
it does not apply a decoding filter, it does not suffer from
drawbacks caused by the sidelobes of the range ambiguity
function. The method combines the profile of each full lag
and a number of surrounding fractional lags into a single in-
version problem. Error analysis also indicates that the statis-
tical accuracy given by inversion is better than that obtained
by means of standard decoding. Furthermore, the inversion
method gives a possibility to reduce the bias due to the vari-
ation of the autocorrelation around the nominal lag. In this
paper the method is described and applied to data obtained
by means of the EISCAT Svalbard radar. In addition, it is
shown that mathematical inversion can be used instead of the
the conventional height integration.

Key words. Radio science (ionospheric physics; signal pro-
cessing; instruments and techniques)

1 Introduction

The task of the incoherent scatter radar is to measure the
range profile of the plasma autocorrelation function (ACF
henceforth) in the ionosphere. Physical parameters of the
ionosphere, such as electron density, electron and ion tem-
peratures, composition, collision frequency and line of sight
plasma velocity, are obtained by fitting the theoretical ACF
to the measured one (for the incoherent scatter theory, see,
e.g. Dougherty and Farley, 1960; Hagfors, 1961).
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Important parameters in measuring the ACF are its range
and lag resolution. The range resolution determines the di-
mensions of the smallest details which can be resolved in
the ionosphere. Due to the varying scale height of the iono-
sphere, the required range resolution is different at different
heights. For example, the range resolution in the E-region
should be a couple of kilometres or better, while a resolution
of 10−20 km is sufficient in the F-region. The lag resolution
is determined by the need to sample the ACF densely enough
so that the plasma parameters can be obtained from its shape.
The ACF is shorter in the F-region than in E-region, so that
a more dense sampling is needed in the F-region. In addition
to the sampling interval, a sufficient number of lags must also
be determined.

Different types of transmitter modulations are used in in-
coherent scatter experiments in order to meet these require-
ments. Typical modulations are single pulses, multipulses
(Farley, 1969, 1972), random codes (Sulzer, 1986) and alter-
nating codes (Lehtinen and Häggstr̈om, 1987; Sulzer, 1989,
1993). A standard way of obtaining range resolutions of a
few hundreds of metres is Barker coding (Barker, 1953). This
has been applied to single pulses to obtain power profiles of
high range resolution (Ioannidis and Farley, 1972), to multi-
pulses to obtain all lags of the ACF with the same high reso-
lution (Turunen et al., 1985; Huuskonen et al., 1986; Turunen
et al., 1988) and later to alternating codes (Wannberg, 1993).

The standard way of analysing Barker-coded incoherent
scatter measurements is decoding the data in the amplitude
domain. This is made by means of a decoding filter which is
usually called a matched filter. The impulse response of the
matched filter is simply the mirror image of the transmitted
Barker code. As a result of decoding, the range resolution is
improved so that it will be determined by the bit length rather
than by the pulse length. This is best understood in terms
of the range ambiguity functions. A complete presentation
of incoherent scatter ambiguity functions is given, for exam-
ple, by Lehtinen (1986) and Lehtinen and Huuskonen (1996).
The range ambiguity function of a Barker code contains a
narrow centre peak and a set of sidelobes. Contribution from
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the sidelobes is not necessarily small, if the applied Barker
code is short. For the 5-bit Barker code, for instance, the to-
tal area of the sidelobes is 16% of that of the main lobe. This
means that the measurement can be contaminated by a signal
from the sidelobes. Although the corresponding fraction for
the 13-bit code is only 7.1%, it is still possible that a signal
from an intense sporadic-E lying within a sidelobe distorts
the ACF measurement. In lag direction the sampling of the
ACF is determined by the lag ambiguity function. In the case
of a Barker code it has sidelobes as well, but they are less se-
rious, since the plasma ACF is a smoothly behaving function
of lag.

Techniques for suppressing the range sidelobes of Barker
codes have been described by several authors (e.g. Key et al.,
1959; Rihaczek and Golden, 1971; Mudukutore et al., 1998;
see also the textbook by Blinchikoff and Zverev, 1987). De-
coding Barker coded incoherent scatter measurements with-
out sidelobes can be made using an infinitely long filter.
This was suggested by Sulzer (1989), who also pointed out
that this process decreases the signal-to-noise ratio (SNR). A
practical formulation of the method in terms of Fourier trans-
forms was presented by Lehtinen et al. (2002).

This paper presents a different analysis method for Barker-
coded incoherent scatter experiments which applies no de-
coding filter. The idea is to formulate the incoherent scatter
radar measurement as an inversion problem. The solution is
then obtained by applying Bayesian stochastic inversion.

2 Incoherent scatter measurement as an inversion prob-
lem

We limit ourselves to the monostatic case. Rewriting Eq. (16)
by Lehtinen and Huuskonen (1996), the ACF of the baseband
scattering signalz(t) is

〈z(t)z∗(t ′)〉 = R

∞∫
−∞

drP0(r) ×

∞∫
−∞

dτW
(2)

tt ′
[τ, S(r)]σe(τ, r). (1)

Here,t andt ′ are two times of observation,R is the receiver
input impedance,r is a radius vector with its origin at the
transmitter,P0 is scattering power from a single electron (il-
luminated by a continuous monochromatic transmission),σe

is the plasma ACF,W (2)

tt ′
is the two-dimensional ambiguity

function,τ is the lag variable, andS(r) = 2r/c is the signal
flight time from the transmitter to the scattering point atr and
back.

The two-dimensional ambiguity function is non-zero
within some region around the lag valuet ′ − t . The weighted
mean value of the plasma ACF within this region is

σ e(t
′
− t, r) =

1

Wt t ′ [S(r)]

∞∫
−∞

dτW
(2)

tt ′
[τ, S(r)]σe(τ, r), (2)

where

Wt t ′ [S(r)] =

∞∫
−∞

W
(2)

t t ′
[τ, S(r)]dτ (3)

is the range ambiguity function for a lagt ′ − t . The range
ambiguity function depends on the receiver impulse response
p and the modulation envelopeε according to the formula

Wt t ′(S) = (p ∗ ε)(t − S) · (p ∗ ε)(t ′ − S), (4)

where convolution is indicated by the asterisk. Here, we have
assumed that bothp andε are real-valued functions of time.

By means of Eq. (2), Eq. (1) can be written as

〈z(t)z∗(t ′)〉 = R

∞∫
−∞

P0(r)Wt t ′ [S(r)]σ e(t
′
− t, r)dr . (5)

In this presentationP0 contains the range dependence of the
signal power, as well as the directional dependence of the an-
tenna gain. If the plasma ACF is constant within each cross
section of the radar beam, Eq. (5) can be integrated in spheri-
cal coordinates over the angle variables. SinceP0(r) ∝ 1/r2,
the result is

〈z(t)z∗(t ′)〉 = RC0

∞∫
−∞

Wt t ′(r)σ e(t
′
− t, r)

dr

r2
, (6)

whereC0 is a constant. Here, the range ambiguity function
is presented as a function of range rather than of flight time.

Even in principle, the use of Eq. (6) only allows for the
determination of the averageσ e(t

′
−t, r), instead of the value

of the plasma ACF at the nominal lagt ′ − t . We define the
bias as

b(t ′ − t, r) = σe(t
′
− t, r) − σ e(t

′
− t, r). (7)

The bias appears due to the use of the range ambiguity func-
tion, instead of the full two-dimensional ambiguity function.

The baseband radar signals(t) consists of the scattering
signalz(t) and the filtered noise signalzn(t), i.e.

s(t) = z(t) + zn(t). (8)

Since the scattering signal and the noise do not correlate,

〈s(t)s∗(t ′)〉 = 〈z(t)z∗(t ′)〉 + 〈zn(t)z
∗
n(t

′)〉. (9)

This means that an ACF estimate is needed for the noise sig-
nal in order to obtain an ACF estimate for the scattering sig-
nal. However, the non-zero extent of the noise ACF is much
shorter than that of the scattering signal, and therefore, the
noise term in Eq. (9) is zero for lags which are long enough.
In standard experiments the first recorded lag is longer than
the noise ACF. Then it is sufficient to measure the noise
power and subtract it from the zero lag profile. One should
not confuse this and the effect of noise on measurement er-
rors; although no noise term is subtracted from the other lags,
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noise still affects their statistical accuracy. Using the defini-
tion

SNR(t) =
〈z(t)z∗(t)〉

〈zn(t)z∗
n(t)〉

, (10)

Eq. (9) gives

〈s(t)s∗(t)〉 = 〈z(t)z∗(t)〉

{
1 +

1

SNR(t)

}
. (11)

After each transmission starting att = 0, signal samples
si = s(ti), i = 1, 2, . . . will be taken at equal intervals1t =

ti+1 − ti . Thekth lag is then defined ast ′ − t = k1t and the
profile of thekth lag is given by〈sis∗

i+k〉, i = 1, 2, . . . . An
estimate of〈sis∗

i+k〉 is obtained as a mean value ofsis
∗

i+k after
a great number of repeated transmissions. The successive
elements in each lag profile are separated by1r = c1t/2 in
range.

We choosem range gates in steps of1r in such a manner
that scattering from ranges belowr1 and aboverm is negligi-
ble. Furthermore, the first sampling timet1 is chosen to make
the front end of the zero lag ambiguity functionWt1t1(r) lie
at r1 + 1r/2. Then〈s1s

∗

1+k〉 contains information from the
first gate only. Similarly, at the upper end of the lag profiles,
those parts of range ambiguity functions which reach beyond
rm, do not make a contribution to the measured signal ACF.

We denote the estimate of〈sis
∗

i+k〉 by

ρ
(k)
i =

1

N

N∑
n=1

s
(n)
i s

(n)∗
i+k , (12)

wheres
(n)
i refers to theith signal sample taken after thenth

transmission, andN is the number of transmissions used in
calculating the estimate. For lags longer than the length of
the noise ACF, this is also an estimate of〈ziz

∗

i+k〉. Then,
according to Eq. (6), the lag profile of thekth lag is given by

ρ
(k)
i =

m∑
j=1

W
(k)
ij σ

(k)
j + ε

(k)
i , (13)

where i = 1, 2, . . . , m and ε
(k)
i is the measurement error.

Here, we use the simplified notations

W
(k)
ij = Wti ,ti+k1t (rj ) (14)

and

σ
(k)
j = RC0σ e(k1t, rj )

1r

r2
j

. (15)

In matrix form, Eq. (13) can be written as

ρ(k)
= W(k)

· σ (k)
+ ε(k), (16)

whereρ(k) is an m dimensional column vector containing
the measured lag profile,σ (k) is anm dimensional column
vector containing the lag profile of the (scaled) plasma ACF
at them range gates,W(k) is anm × m matrix containing
values of the range ambiguity functions at the range gates

andε(k) is anm dimensional column vector containing the
measurement errors.

The upper end of the range ambiguity function moves up-
wards step by step with increasingi, and therefore,W (k)

ij = 0
whenj > i. The range ambiguity function has also a finite
length. Thus, starting from some valuei = ik, W

(k)
ij = 0

whenj < i − ik. This makesW(k) into a band matrix with
a non-zero main diagonal andik − 1 side diagonals below it.
Since the shape ofW (k)

ij is the same for all values ofi, all

elements on a given diagonal ofW(k) are identical.
Equation (16) containsm equations andm unknowns, so

that it could, in principle, be directly solved for the lag profile
σ (k). However, the solution is probably unstable. For obtain-
ing stable solutions, the method must be developed further.

If 1t is not too great, the range profile of the plasma ACF
changes only little from lag to lag. Then it is possible to
assumeσ (k) to remain constant within a few neighbouring
lags aroundk. According to Eq. (16), this leads to

ρ̃(k)
= W̃(k)

· σ (k)
+ ε̃(k), (17)

where

ρ̃(k)
=



ρ(k−n)

...

ρ(k−1)

ρ(k)

ρ(k+1)

...

ρ(k+n)


, (18)

W̃(k)
=



W(k−n)

...

W(k−1)

W(k)

W(k+1)

...

W(k+n)


(19)

and

ε̃(k)
=



ε(k−n)

...

ε(k−1)

ε(k)

ε(k+1)

...

ε(k+n)


. (20)

This is the direct theory of the inversion problem.
The theory of calculating covariances for the errors of the

signal ACF estimates is presented by Lehtinen (1986) and
Lehtinen and Huuskonen (1996). By means of Eqs. (61)–
(65) by Lehtinen and Huuskonen (1996), one can write a pri-
ori covariance

〈ε
(k)
i ε

(l)∗
j 〉 =

1

N
〈sis

∗

j+l〉〈sj s
∗

i+k〉. (21)
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The variance is then given by

〈ε
(k)
i ε

(k)∗
i 〉 =

1

N
〈sis

∗

i+k〉〈sis
∗

i+k〉. (22)

It is possible to expanded Eq. (22) to obtain

〈ε
(k)
i ε

(k)∗
i 〉 =

1

N

[
〈sis

∗

i 〉〈si+ks
∗

i+k〉 + 〈sis
∗

i+k〉
2
]

(23)

Substituting Eq. (11) in Eq. (23), one readily obtains

〈ε
(k)
i ε

(k)∗
i 〉 =

1

N
〈ziz

∗

i 〉

[
1 +

1

SNR(i)

]
〈zi+kz

∗

i+k〉

×

[
1 +

1

SNR(i + k)

]
+

1

N
〈sis

∗

i+k〉
2. (24)

The error covariances can be collected into a matrix

6ε = 〈ε̃(k)
· ε̃(k)T

〉, (25)

whereT indicates the transpose.
Obviously, W̃(k) is a (2n + 1) · m × m matrix, so that

we havem unknowns and(2n + 1) · m measurements in
Eq. (17). The best values of the unknowns can then be de-
termined by means of stochastic inversion, as explained by
Damtie et al. (2002). The result is

σ (k)
=(W̃(k)T

· 6−1
ε · W̃(k))−1

·W̃(k)T
· 6−1

ε · ρ̃(k), (26)

and the a posteriori covariance matrix of the resulting range
profile of the plasma ACF estimate is given by

6p = (W̃(k)T
· 6−1

ε · W̃(k))−1. (27)

Although the above formulation is applicable to a gen-
eral modulation envelope, we shall apply it in this paper to
Barker-coded modulations. If the time separation of the front
ends of two Barker-coded pulses in the transmission enve-
lope isk1t , wherek is an integer,kth lag is a full lag; other-
wise, it is a fractional lag (Huuskonen et al., 1996). All full
lags have range ambiguity functions of similar shapes, but
the shapes of the ambiguity functions of fractional lags are
different.

3 Bias and variance of a lag estimate

According to Eq. (7), a bias is created when range ambiguity
functions are used instead of the two-dimensional ambiguity
functions. An analogous bias appears, if several lag profiles
are combined to a single nominal lag, as indicated in Eq.
(17).

The a posteriori variances are affected by the SNR and by
the temporal resolution, which determinesN to be used in
Eqs. (12) and (21). Combining measurements in the manner
shown in Eq. (17) reduces the variances but, obviously, it
also increases the bias. One can then ask whether the bias is
greater or smaller than the a posteriori error when the time
resolution and the SNR are fixed. It seems clear that there is
no benefit in reducing the a posteriori error to a value smaller
than the bias. In this context one should notice that the bias

is a systematic error, which always has a fixed sign in a given
case, while the a posteriori standard deviation is a measure
of a stochastic error, which can be either positive or negative.

In this section an example is given in order to demonstrate
how this problem can be investigated. We use a simple ap-
proach which assumes a thin ionospheric layer covering a
single range gate only and zero electron density at the other
gates. In this manner the effect due to the plasma at a sin-
gle height can be studied without contributions from other
altitudes. This model is not so unrealistic as one might first
think. The electron density of a thin sporadic-E layer can be
nearly ten times that of the surrounding plasma and the layer
itself may cover only a few range gates. Hence, the model
can be considered as an idealisation of a sporadic E.

The plasma ACF is fixed within the thin layer. We carry
out the study by applying five different plasma ACFs, which
are plotted in the top panel of Fig. 1. The continuous line
is the real part of a plasma ACF representative of the iono-
sphere at a height of 150 km (Alcaydé et al., 1994). The other
lines are obtained by changing the ion temperature in such a
manner that the time axis will be approximately scaled by
factors 0.25, 0.5, 2 and 4. Hence, these functions cover a
wide range of correlation times. In all cases the functions
are scaled to unity at zero lag so that, in addition to different
ion temperatures, they also correspond to different electron
densities.

Next, a modulation envelope is chosen, consisting of two
pulses. The separation of their front ends is 90µs, which
defines the full lag. Each pulse is further phase coded by
a 13-bit Barker code with a sign sequence+ + + + + −

−++−+−+. The bit length and the sampling interval are
both 1µs. The receiver impulse response is a boxcar with the
same length (this is a reasonable assumption in a digital re-
ceiver, see Sect. 4.2). The range ambiguity functions are then
obtained from Eq. (4) using the modulation and the impulse
response. When the range ambiguity functions are known,
simulated lag profiles for the full lag and several surrounding
fractional lags are calculated from Eq. (13). The time reso-
lution is fixed by choosingN = 1000. For instance, if the
transmissions were repeated at 10-ms intervals, this choice
of N would mean a 10-s time resolution. No random errors
are added to the lag profiles. This corresponds to an unlikely
case that, in spite of noise in the signal, the measurements
are accidentally correct. The purpose is to determine the best
possible values ofσ (k)

j , in order to calculate estimates of the
bias according to Eq. (7). As indicated by Eq. (26), the in-
version result is affected by6ε, and therefore, the bias deter-
mined in this manner will also depend on SNR.

In order to investigate the bias and the a posteriori error,
the full lag profile at 90µs and a varying number of frac-
tional lag profiles around it are first combined into a sin-
gle nominal lag according to Eq. (17). Then several val-
ues of SNR are chosen and a priori variances for each SNR
are calculated according to Eq. (24). Next, an estimate of
the plasma ACF within the thin layer is determined using
Eq. (26). Because the true value of the ACF at the nomi-
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Fig. 1. Top panel: Plasma autocorrela-
tion functions used in studying the bias
and the a posteriori error in measuring
a thin layer. A continuous line is a typ-
ical plasma ACF at 150-km height with
a 500-MHz radar frequency and a 1-
µs lag resolution (Alcayd́e et al., 1994).
The other functions are obtained from
this by varying the ion temperature. All
functions are scaled to unity at zero lag.
Bottom panel: The calculated bias for
different number of lags merged into
the 90-µs lag in the analysis, assum-
ing SNR = 0.5. The line types refer
to those in the top panel.
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Fig. 2. The a posteriori standard devi-
ation and the absolute value of the bias
for different values of SNR as functions
of the number of lags merged into the
90-µs nominal lag in the analysis. The
calculations are made for the plasma
ACF shown by the continuous line in
the top panel of Fig. 1. (The bias for
SNR = 0.1 is negative; absolute values
are plotted in order to allow for the use
of logarithmic scale.)

nal lag is known, an estimate of the bias can be calculated
according to Eq. (7). Finally, the a posteriori variances are
calculated from Eq. (27) for different values of SNR. One
should notice that the variances do not depend on the inver-
sion result, and therefore, the assumption of an “acciden-
tally” correct measurement does not affect the a posteriori
variances. In this manner the magnitudes of the bias and the
a posteriori error can be separately determined.

The bottom panel of Fig. 1 shows the bias as a function of
the number of lag profiles included in the analysis. Since the
modulation is a 13-bit Barker code, 25 lag profiles are avail-
able for this purpose. The nominal lag value in this figure is
90µs and SNR = 0.5. As expected, the bias increases with
increasing number of lag profiles. The bias, of course, also
depends on the shape of the plasma ACF around the nomi-
nal lag. The closer to linear the ACF is, the smaller the bias,
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0 12 24 6036 48

0 120 240 360 480 600 720

TIME / µs

Fig. 3. The modulation pattern applied in the experiment. The 22-
bit basic modulation is shown in the top and the Barker-coded struc-
ture of a positive bit and the subsequent negative bit is shown at the
bottom.

since the biases tend to cancel eachother out, due to frac-
tional lags on opposite sides of the full lag. On the other
hand, when the nominal lag is close to a minimum of the
plasma ACF, the biases on the opposite sides have the same
signs and they enhance the total bias.

Figure 2 shows the absolute values of the bias and the a
posteriori errors for different values of SNR. All these results
are calculated for the plasma ACF plotted by the continuous
curve in Fig. 1. The a posteriori error first decreases steeply
with increasing number of lags, but at about 9 it levels out.
This means that no essential improvement can be achieved
by including more lags in the analysis. The a posteriori error
also decreases with increasing SNR in the expected manner.
Since the error depends on time resolution, the error curves
could be shifted by varying the value ofN .

The bias is also affected by SNR. For large values of SNR
the bias is first positive, decreasing with SNR and turns to
negative values at about SNR = 0.3. When SNR approaches
zero, the bias remains negative, converging towards a curve
which is essentially that indicated by SNR = 0.1 in Fig. 2
(notice that the absolute value is plotted in the figure).

When SNR = 0.1, the absolute value of the bias is always
smaller than the a posteriori error. For large SNR values the
error and bias curves cross, so that the crossing points give
advice on the practical number of lag profiles which should
be combined in the analysis. An interesting observation is
that, in this case, the statistical accuracy achieved by increas-
ing SNR to 2 is partly destroyed by the growing bias.

In evaluating this method, the a posteriori errors and bi-
ases should actually be compared with those produced by
standard Barker decoding. However, this is not done here,
because standard Barker decoding is not well suited for mea-
suring profiles with steep gradients. The reason is that signals
from the sidelobes may be significant when electron density
within the main lobe is much smaller than the density within
some of the sidelobes. The present method does not suffer
from such drawbacks. The comparison of statistical accu-
racies of the two methods is made in the following section,
which is based on true measurements of the ionosphere.

4 Experimental demonstration

In this section we demonstrate the inversion method using
Barker-coded data from the EISCAT Svalbard radar (for the
radar system, see Wannberg et al., 1997). The experiment
was conducted on 16 November 1999. The data were col-
lected using an additional hardware connected to the standard
radar receiver. This hardware stores the complex baseband
data samples rather than the ACF estimates, which gives a
greater freedom in data analysis. The data collection system
and the applied radar modulation are described by Lehtinen
et al. (2002).

4.1 Inversion method

The experiment applies two phase codes transmitted at dif-
ferent frequencies. Only one of them, consisting of a phase
pattern of 22 bits, is used in this paper. Each bit is further
modulated by a 5-bit Barker code with a 6-µs bit length.
This transmission pattern is shown in Fig. 3. The baseband
complex signal samples containing data from both frequency
channels are stored on hard disk. The sampling interval is
1µs. The off-line data processing consists of channel sep-
aration and clutter removal, and it produces a separate data
stream for each channel. The details of signal processing are
explained by Lehtinen et al. (2002) and Damtie et al. (2002).

We decimate the data to 2-µs time resolution and choose
a 5-min data sequence for the analysis. The average lag pro-
files for this time interval and their experimental variances
are then calculated from the data. Since the sampling inter-
val is 2µs after decimation, the lag increment is also 2µs.
Full lags are obtained at 30-µs lag increments, all the others
are fractional lags.

The three top panels of Fig. 4 show the real part of the
observed mean profile of the first full lag at 30µs and those
of the neighbouring fractional lags at 28µs and 32µs. The
bottom panels show the corresponding profiles of measured
standard deviation. The three profiles look quite similar. The
structure at the bottom of the profiles is due to a thin sporadic
E and that above 400-km altitude is probably due to a satel-
lite, space debris or a meteor. The regions of strong echoes
above 400 km are characterised by a high level of experimen-
tal variance.

Figure 5 portrays the corresponding range ambiguity func-
tions, calculated according to Eq. (4), using the modulation
in Fig. 3. The figure presents a situation with the top of the
range ambiguity function at 400-km altitude. The ambigu-
ity functions at other time instances are obtained from these
by shifts along the range axis. It is worth noticing that the
range ambiguity functions of the fractional lags are much
more structured than that of the full lag.

All lag profiles, their standard deviations and the corre-
sponding range ambiguity functions can now be calculated
in a similar manner. Then one can merge a varying number
of lag profiles into a single full lag, as explained in Sect. 2,
and solve the inversion problem. The result gives a profile
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Fig. 4. Top: Three measured average lag profiles for a same 5-
min period of observation (real part). The 30-µs lag is a full lag
and the other two are neighbouring fractional lags. Bottom: The
corresponding profiles of experimental standard deviation.

of the plasma ACF estimate at the full lag, together with its
covariance matrix.

If only the three profiles in Fig. 4 are used in the inver-
sion, the accuracy of the result is very poor. The left panel in
Fig. 6 shows the 30-µs ACF profile estimate obtained from
all measured lag profiles from 2 to 58µs. The quantity plot-
ted is σ

(k)
j , which means that a range correction byr2 is

needed to put the values at different ranges into the same
scale. The choice from 2–58µs is made, because the stan-
dard 5-bit Barker decoding with a 6-µs bit length makes use
of the same lag extent. The result shows that the sporadic E
and the satellite echo, which are visible within wide ranges
in Fig. 4, are compressed into thin layers. The lag profile due
to the background electron density is mainly positive with a
minimum near 200-km range.

The right-hand panel of Fig. 6 displays the profile of the
a posteriori standard deviation of the inversion result. In ad-
dition, two error curves are also shown, which are obtained
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Fig. 5. Range ambiguity functions of the 28-µs lag (left), 30-µs lag
(middle) and 32-µs lag (right) for the modulation in Fig. 3.

by taking a smaller number of measured lag profiles in the
analysis. This set of curves indicates the improvement of sta-
tistical accuracy with increasing number of lag profiles. The
error first decreases with height but then increases, reaching a
maximum close to the satellite echo. This maximum is prob-
ably due to the large a priori variance of the satellite echo,
which is spread to a wider region in the inversion.

4.2 Comparison with standard decoding

The new method can now be compared with standard Barker
decoding. The conventional way of decoding a Barker-coded
signal is to filter it by means of an impulse response which
is a mirror image of the code itself. In our case of a 5-bit
code and oversampling at a rate of three samples per bit, the
impulse response is+ + + − − − + + + + + + + + +.
This filtering is done after channel separation and decima-
tion of the signal. Then clutter suppression is carried out in
the manner described by Lehtinen et al. (2002), and each lag
profile is calculated in the conventional way. The lag ambi-
guity function of each full lag is non-zero on both sides of
the nominal lag within a lag range equal to the length of the
decoding filter. Hence, the 30-µs lag obtained by standard
decoding contains information from the lag range 2–58µs.

Due to the basic modulation pattern (top panel in Fig. 3),
lag profiles calculated after standard decoding contain range
ambiguities. Therefore, the next step would be inversion of
the profiles in the manner described by Damtie et al. (2002).
However, in order to keep the effects of standard decoding
separate from the effects of inversion, instead we transform
the inversion results to correspond to the results of standard
decoding. We calculate the weighted sum

σ̂
(k)
i =

∑
j

W
(k)
ij σ

(k)
j , (28)
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Fig. 6. Left: An estimate of the profile of the 30-µs lagσ
(k)
j

, ob-
tained by inversion of lag profiles 2–58µs. Right: A posteriori
standard deviations of inversion results for different sets of mea-
sured lag profiles, which are included in the inversion.

where σ
(k)
j is the profile of lagk given by the inversion

method andW (k)
ij is the range ambiguity function of the

Barker-coded modulation and the matched filter. By anal-
ogy with Eq. (13), the resulting lag profile elements have the
same relative contributions from all heights as the lag profile
elements after standard decoding. In calculating the range
ambiguity functions (and, later, the a priori covariance matrix
of the lag estimates), a boxcar impulse response is assumed.
The assumption is valid, since our final digital samples are
obtained as sums of consecutive and disjointed sequences of
more dense samples obtained from the digital receiver (see
Lehtinen et al., 2002). This means that a boxcar function is a
very good approximation of the true filter impulse response
in the time domain. This is also the reason why a boxcar
impulse response was used in calculating the bias and the a
priori errors in Sect. 3.

The left-hand panel of Fig. 7 shows the 30-µs range am-
biguity function of the modulation in Fig. 3, assuming the
standard Barker decoding filter. Due to the 5-bit Barker code,
the ambiguity function contains narrow positive and negative
peaks with sidelobes, and the height of the peaks is 225 units.
Since the length of the basic modulation is 22 bits and this
is the first full lag, the number of peaks in the ambiguity
function is 21. Instead of this ambiguity function, we use
the function in the right-hand panel of Fig. 7. This is oth-
erwise similar to the range ambiguity function, but the side-
lobes have been removed. Hence, the effect of the sidelobes
will not be present in the resulting lag profile.

The left-hand panel of Fig. 8 shows the height profile of
the 30-µs lag obtained by standard decoding, together with
corresponding profiles given by the inversion method with
lag ranges 2–58 and 18–42µs after filtering the inversion
output using Eq. (30) in order to simulate the effects of stan-
dard decoding. In order to avoid overlapping, the latter two

210

230

250

270

290

R
an

ge
 [k

m
]

-225 0 225 -225 0 225

Fig. 7. Left: The range ambiguity function of the 30-µs lag for
the modulation in Fig. 3 with standard decoding filter. Right: The
weight function used in comparing the inversion method and stan-
dard Barker decoding. The functions are otherwise similar but, in
the right-hand panel, the sidelobes have been removed.

profiles are shifted by 20 units to the right and left, respec-
tively. The curves indicate that both the sporadic E and the
satellite echo generate a spiky pattern, which is due to the
22-bit basic modulation. The same pattern appears in the
profiles obtained from the inversion results.

The right-hand panel of Fig. 8 shows the differences of
the profile obtained by standard decoding and those given by
the inversion results. The differences are greatest at ranges
where the spiky structures are present. This is probably due
to the sidelobes, which are present only in standard decoding.
Elsewhere, the 2–58-µs profile lies very close to that given
by standard decoding, but the 18–42-µs profile is clearly
smaller. This must be a bias effect; standard decoding and
2–58-µs inversion make use of the same lag range, whereas
the lag range of the 18–42-µs inversion is smaller.

The essential point in estimating the value of the inversion
method is to compare its accuracy with that of the standard
method. An estimate of the variance profile given by stan-
dard decoding can be calculated directly from the data. The a
posteriori covariance matrix6σ of the inversion resultsσ (k)

j

in Eq. (28) is obtained from Eq. (27). The task is to calcu-
late the covariance matrix6σ̂ of the inversion results filtered
according to Eq. (28). We rewrite Eq. (28) in matrix form

σ̂
(k)

= W(k)
· σ (k), (29)

whereσ (k) is a column vector containing the inversion re-
sults of nominal lagk, the rows of matrixW(k) contain the
range ambiguity functions of the Barker-coded modulation,
and σ̂

(k) is a column vector containing the filtering results.
Then a straightforward calculation shows that

6σ̂ = W(k)
· 6σ · W(k)T , (30)

whereT indicates transpose.
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Range profiles of the standard deviation of the lag profiles
in Fig. 8 are plotted in the left-hand panel of Fig. 9. Due to
the effect of sidelobes, the error of the standard method has
high values and oscillates violently close to the sporadic-E
and satellite echo. The error curves of the inversion results
behave much more smoothly. When a lag range of 18–42µs
is used in inversion, the error in the middle part of the profile
is approximately similar to that given by the standard method
while the wide lag range of 2–58µs gives clearly smaller er-
rors. The ratio of the errors due to standard decoding and the
inversion method with a 2–58-µs lag range is shown in the
right-hand panel. It is observed that, in the non-oscillating
part of the profile, the error of standard decoding is always
greater, maximally about 1.5 times that given by the inver-
sion method.

5 Height integration by means of mathematical inver-
sion

The 2-µs sampling interval in the data means that the lag
profile in Fig. 6 has a 300-m range resolution. Such a high
resolution is not needed in most of the profile, of course, and
therefore, it is reasonable to carry out height integration. A
conventional way of height integration is averaging over a
certain number of range gates and putting the centre point
of the integration interval as the nominal range. A more ad-
vanced method would be to apply mathematical inversion to
this problem as well. This means that the direct theory con-
necting the high-resolution lag profile to a lower-resolution
profile should be defined, and the resulting inversion prob-
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Fig. 9. Left: The standard deviations of the 30-µs lag profiles in the
left-hand panel of Fig. 8. Right: The ratio of the standard deviations
obtained by standard decoding and inversion with a lag range of 2–
58µs.

lem should be solved using the covariance matrix of the high-
resolution profile.

Since the solution given by Eq. (26) gives the best values
of σ

(k)
j , a range correction

σ e(k1t, rj ) = C1σ
(k)
j

r2
j

r2
0

(31)

must first be carried out, in order to put the ACF lag esti-
mates at different ranges into the same scale. Here,r0 is
an arbitrary reference height andC1 is a constant, which is
determined by means of the noise calibration of the measure-
ment. A corresponding correction must also be made to the
a posteriori covariance matrix.

Next, a set of rangesRm, m = 1, 2, 3, . . ., is defined which
give a desired resolution at each altitude. Normally, these
ranges are a chosen set from the original high-resolution
ranges. Then a direct theory is defined which connects the
values of the signal ACF estimates at these ranges to the
range-corrected values in Eq. (26), i.e.

σ r = AR · σR + εr , (32)

whereσ r is a column vector with elementsσ e(k1t, rj ), σR

is a column vector with elementsσ e(k1t, Rm), andεr is
the error vector ofσ r . The theory matrixAR defines how
each component ofσR depends on the components ofσ r . In
analogy with Eq. (26), the best values ofσR are then given
by

σR =(AT
R · 6−1

r · AR)−1
·AT

R · 6−1
r · σ r (33)

and their errors are given by the covariance matrix

6R = (AT
R · 6−1

r · AR)−1. (34)
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Here,6r is the covariance matrix ofεr .
A direct theory which is closest to the conventional height

integration is obtained by a theory matrix with the number
one in the appropriate parts of the matrix’s columns and zeros
elsewhere. For instance, a theory matrix

AR =



1 0 0 . . .

1 0 0 . . .

1 0 0 . . .

0 1 0 . . .

0 1 0 . . .

0 1 0 . . .
...

...
...

. . .


(35)

corresponds to conventional height integration over three
range gates. The solution given by Eq. (33) is not a sim-
ple average, however, but it takes into account the variances
and covariances of the components ofσ r .

Strictly, a theory matrix like that in Eq. (35) assumes that
the plasma ACF does not change in those gatesrj which are
included in the same gateRm. It is possible to construct
more complicated theory matrices which take into account
the variation of the plasma ACF from gate to gate.

Figure 10 shows a comparison of the results obtained by
means of conventional height integration and inversion. The
height resolution is varied with altitude so that it is first 900 m
(integration over 3 gates), then 10.5 km (integration over 35
gates) and finally 30.5 km (integration over 101 gates). The
theory matrix is of the type in Eq. (35), with an appropri-
ate number of ones in the proper places of its columns. The
results of conventional height integration are shown in the
same picture, with error limits calculated in the same manner
as those in Eq. (30).

With the present long-time integration, the results are
nearly similar, except at the peak of the sporadic-E layer

and at those heights where the satellite echo affects the re-
sults. However, the error limits given by inversion are always
somewhat smaller than those in the conventional height inte-
gration. Although the difference between inversion and con-
ventional height integration is not great in this case, it still
demonstrates the fact that the proper method in height inte-
gration is mathematical inversion.

6 Discussion

For thirty years, Barker codes have provided a means for im-
proving the range resolution of incoherent scatter measure-
ments. This phase coding method has become a standard
submodulation when range resolutions of the order of a few
hundreds of metres have been needed. However, the exis-
tence of sidelobes in the range ambiguity functions of Barker
codes poses a problem, which is greatest when the plasma
density within the sidelobes is much higher than in the main
lobe. Such a case is often encountered in the E-region, where
thin sporadic-E layers may be present.

The disadvantages of Barker codes can be reduced by
means of various methods designed for suppressing the side-
lobes (e.g. Blinchikoff and Zverev, 1987, and references
therein). The sidelobes can be completely removed by means
of a decoding filter with an impulse response of an infinite
length (Sulzer, 1989). In practice, a limited length is suf-
ficient to suppress the sidelobes to a negligible size. Other
binary phase codes can also be decoded in a similar manner.
As stated by Sulzer, a drawback is that removing the side-
lobes reduces the SNR. The deterioration can be very small
for some codes and very large for others. Another possi-
bility of removing the sidelobes is to use Fourier transform
in the manner described by Lehtinen et al. (2002). In this
method the Fourier transform of the signal is first divided by
the Fourier transform of the Barker code. Then the decoded
signal is obtained by calculating the inverse Fourier trans-
form of the quotient. Although not investigated properly, it
is possible that this method also reduces the SNR.

In this paper we present a completely different approach
to the analysis of Barker-coded data. In brief, a sequence of
data samples is first used to calculate the range profiles of
the full and fractional lags, and then a nominal full lag pro-
file is obtained by solving a mathematical inversion problem,
which makes use of a full lag and a number of neighbouring
fractional lags. The inversion takes into account the mea-
surement errors and it gives the most probable value of the
lag profile under the assumption that the value of the plasma
ACF remains the same within the lag range covered by the
full lag and fractional lags included in the analysis. The ap-
plied stochastic inversion also gives the standard deviations
of the inversion results. When the statistical error of the new
method is compared with that of standard decoding, it turns
out that the new method actually gives more accurate results.
Hence, stochastic inversion both removes the sidelobe effects
and improves the statistical accuracy.
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The two-dimensional ambiguity function of a Barker code
covers a lag range twice the length of the code itself. Al-
though most of the contribution to a lag measurement comes
from the centre of the ambiguity function, the contribution
from the edges may affect the result if the plasma ACF varies
considerably within this lag range. The bias thus created
is expected to be strongest if the nominal lag lies close to
a maximum or a minimum of the plasma ACF. The bias is
also greater for short Barker codes since their sidelobes are
higher. Standard decoding has no means of correcting this
bias. Figure 8 demonstrates that the inversion method gives
a possibility to investigate the bias and also to reduce it by
decreasing the number of lags included in a single lag pro-
file. Information is lost if some lag profiles are rejected, and
therefore, reducing the bias in this manner also reduces the
statistical accuracy. Rejection of fractional lags is not neces-
sary, however. There is no obvious reason why all fractional
lags should be combined to some full lag. One can choose a
set of neighbouring fractional lags and combine them into a
single nominal lag by means of the same inversion method.
In this manner all fractional lags can be used and a larger
number of less accurate nominal lag profiles are obtained.
Then the bias becomes smaller and it is also expected that
the accuracy of the plasma parameters to be determined is
not seriously affected.

Height integration by means of inversion seems to be the
proper way of reducing range resolution. In Sect. 5 a direct
theory closest to the conventional height integration was ap-
plied as a demonstration, but more advanced theory matrices
could be constructed, which take into account the variation of
the lag profile between the low-resolution range gates. The
simplest possibility would be to assume linear variation but,
for example, cubic spline interpolation could also be used.
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Alcaydé, D., Blelly, P-L., and Lilensten, J.: GIVEME, “General
Ionosphere Visualization and Extraction from a Model for the
Eiscat Svalbard Radar”, Eiscat Technical Note, 94/52, EISCAT
Scientific Association, Kiruna, Sweden, 1994.

Barker, R. H.: Group synchronizing of binary digital systems, in:
communications Theory, edited by Jackson, W., Academic, New
York, 273–287,1953.

Blinchikoff, H. J. and Zverev, A. I.: Filtering in the Time and Fre-
quency domains, Malabar, Krieger, 1987.

Damtie, B., Lehtinen, M. S., Huuskonen, A., and Nygrén, T.: High
resolution observations of sporadic-E layers within the polar
cap ionosphere using a new incoherent scatter radar experiment,
Ann. Geophysicae, 20, 1429–1438, 2002.

Dougherty, J. P. and Farley, D. T.: A theory of incoherent scattering
of radio waves by a plasma, Proc. Roy. Soc. A, 257, 79–99, 1960.

Farley, D. T.: Incoherent scatter correlation function measurements
Radio Sci., 4, 935–953, 1969.

Farley, D. T.: Multiple-pulse incoherent-scatter correlation function
measurements Radio Sci., 7, 661–666, 1972.

Hagfors, T.: Density fluctuations in a plasma in magnetic field, J.
Geophys. Res., 66, 1699–1712, 1961.

Huuskonen, A., Nygŕen, T., Jalonen, L., Turunen, T., and Silén, J.:
High resolution EISCAT observations of the ion-neutral collision
frequency in the lower E-region, J. Amos. Terr. Phys., 48, 827–
836, 1986.

Huuskonen, A., Lehtinen, M. S., and Pirttilä, J.: Fractional lags in
alternating codes: Improving incoherent scatter measurements
by using lag estimates at noninteger multiples of baud length,
Radio Sci., 31, 245–261, 1996.

Ioannidis, G. and Farley, D. T.: Incoherent scatter observations at
Arecibo using compressed pulses, Radio Sci., 7, 763–766, 1972.

Key, E. L., Fowle, E. N., and Haggart, R. D.: A method of sidelobe
suppression in phase coded pulse compression systems, M.I.T.
Lincoln Lab., Lexington, Tech. Rept. 209, November 1959.

Lehtinen, M. S.: Statistical theory of incoherent scatter measure-
ments, EISCAT Tech. Note 86/45, 97 pp., EISCAT Sci. Assoc.,
Kiruna, Sweden, 1986.
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