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Abstract. A problem concerning stationary configurations
of an inhomogeneous, current-carrying, two-dimensional
plasma sheet as the solution of the Grad–Shafranov equation
with boundary conditions given on cross-sheet profiles at the
foot of the sheet and at infinity is considered, with the aim
of using its solution for the description of the interaction of
two current systems: the current system of the geomagnetic
field, and the tail currents. The obtained solution is an ex-
act analytical solution which contains 5 independent param-
eters characterizing the intensity of the current sheet. As the
solution is exact, it may be applied to describe the most in-
teresting transitional magnetospheric region: that of a strong
interaction between the magnetic fields of the geodipole and
of the current sheet, i.e. the region where characteristic scales
of the change of all variables along and across the sheet are
of the same order. This makes it possible to model the struc-
ture of the transitional region and its dynamics under quasi-
stationary variation of the input parameters. The obtained so-
lution describes the principal processes developing at various
phases of magnetospheric disturbances, such as (1) forma-
tion of a very intense thin current sheet localized within the
transition region, (2) changing from the quasi-dipolar mag-
netic field to the configuration when a “neck” is formed in
this region. An important feature of the obtained solution is
the existence of a critical value of one of the parameters of
the problem, which leads to the change in the geomagnetic
field configuration described above. The solution can be used
as an initial condition in simulating dynamical processes in
the magnetotail current sheet, as well as in testing the current
sheet stability. In the summary a series of limitations in the
model problem under consideration is discussed.
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1 Introduction

The major purpose of the present study is to develop an exact
two-dimensional mathematical description of the stationary
current sheet configurations and their quasi-stationary evolu-
tion under varying geomagnetic conditions. The problem is
reduced to a solution of the Grad–Shafranov equation. The
region of transition from dipolar to stretched magnetic field
lines is considered, which the topology determines the choice
of the boundary conditions for the problem.

In general, under a two-dimensional geometry, a nonuni-
formity along the tail current sheet can be set in two man-
ners: (a) via nonuniform boundary conditions along the tail
(further along thex-axes, which is sunward directed), or (b)
through differentz-dependent boundary conditions (further
along thez-axes, which is directed upward, perpendicular to
the current sheet) on the left (near-Earth) side of the sheet
and far down the tail (x → −∞). The boundary conditions
of the first type are related to the variation of the magne-
topause and lobe parameters down the tail. The second type
of boundary conditions reflects the relation between the in-
ternal and external magnetic field sources in the Earth’s mag-
netosphere. Only the boundary conditions of the second type
will be treated in the present study.

In the papers (Manankova et al., 2000a, b) the solutions of
the Grad–Shafranov equation were examined for the bound-
ary conditions set, as in Kan (1973): on the left boundary
(x = 0) at the sheet centre (z = 0), the plasma densityn(0, 0)

and magnetic fieldz-componentBz(0, 0) are given. The so-
lutions being sought after have to reproduce the observed dis-
tributions Bz(0, x) and n(0, x) down the tail. The choice
of the near-Earth boundary values ofn(0, 0) and Bz(0, 0)

is based on the observations. Two topologically different
solutions can be obtained in this case. One of them has a
monotonous character and transfers to the Harris (1962) so-
lution. The other (Manankova et al., 2000a, b) describes
a spatially oscillating, inhomogeneous solution along the
tail distribution of plasma and magnetic field (see also Ko-
marov, 1963; Fadeev et al., 1965). It is clear that neither
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monotonously declining down the tail nor oscillating solu-
tion can be applied to describe the formation in the near
tail of such structures as thin, intense current sheets, for-
mation of a “neck” (a region with minimum current density
and negativeBz values), steep gradients of plasma and mag-
netic field distributions, etc. This makes an attempt reason-
able to build a more general class of solutions of the Grad–
Shafranov equation which could be used to reproduce the
structure of the near-Earth geomagnetic tail region in the
quiet and disturbed conditions (Manankova and Pudovkin,
2002). A quasi-stationary evolution is modeled only as a se-
ries of stationary solutions at any fixed value of time.

2 Formulation of the problem

The physical model, in the frame of which there is discussed
a two-dimensional, perfectly conducting, current-carrying
plasma sheet (further for brevity referred to as “a plasma
sheet”), is a collisionless, neutral, two-stream plasma with
macroscopic velocities of charged particlesViey = −Veey ,
with ey being the unit vector along they-axes, which is di-
rected toward dusk. The velocitiesVi , Ve are adopted to
be independent of the coordinates. It is known that such
a defined plasma sheet can be treated both in kinetics (the
Vlasov–Maxwell equations) and in magneto-hydrodynamics
(MHD) (for details, see Manankova and Pudovkin, 1999).
The problem is reduced to a solution of the Grad–Shafranov
equation, which has the form

∇
2aA(x, z) = −2K exp{aA(x, z)}, (1)

whereA(x, z) is the magnetic vector potentialy-component,
K = 4πqβan0/m2, q is the charge of an ion,a = qβ/2,
β = V/c, c is the light velocity,V = Vi , 2 = kT is plasma
temperature in energy units;x = mx∗, z = mz∗ are the
dimensionless coordinates,x∗, z∗ are dimensional coordi-
nates,m−1 is the characteristic length scale, which is cho-
sen in such a way as to haveK = 1. In this case one can
relate the plasma density (the quasi-neutrality is assumed,
i.e. (ni(x, z) = ne(x, z) = n(x, z)) to the vector potential
A(x, z) as

n(x, z) = n0 expaA(x, z), (2)

wheren0 is the constant of integration equal to the plasma
density along the magnetic field line withA(x, z(x)) = 0.
The choice of the constants involved in the formulation of the
problem was discussed in detail by Manankova and Pudovkin
(1996) in calculating the energetic parameters of the plasma
sheet. Everywhere else we consider2 to be constant.

It has to be especially noted that Eq. (1), with an expo-
nential right-hand side, is obtained from the system of one-
fluid magneto-hydrodynamics (in the isothermal process ap-
proximation), taking into account that for the description of
a current-carrying plasma sheet, one has to use in the sys-
tem of the MHD equation Ohm’s law in a generalized form.
This uniquely determines the right-hand side of Eq. (1) as an

exponent. This question is considered in detail in the above
cited paper by Manankova and Pudovkin (1999).

The solution of Eq. (1) can be written as follows (Walcker,
1915)

aA(x, z) = ln
4|f ′(η)|2

[1 + K|f (η)|2]2
, (3)

wheref (η) is an arbitrary analytical function of the complex
variableη = z + ix, with i being the imaginary unity,f ′(η)

is the derivative of this function with respect toη. In the case
of f (η) being analytical, we can write:f (η) = ũ(x, z) +

iṽ(x, z), where ũ(x, z) = Ref (η), ṽ(x, z) = Jmf (η);
ũ(x, z), ṽ(x, z) are harmonical functions of the real variables
x andz. In the work by Vekua (1960) it was shown that re-
lation (3) presents all possible solutions of Eq. (1). Thus,
the problem is reduced to the choice of a particular function
f (η), consistent with the adopted symmetry of the problem
and boundary conditions.

As is mentioned in the Introduction, we consider the two-
dimensional plasma sheet in the region−∞ < x ≤ xb,
−∞ < z < +∞. On the upper and lower boundaries uni-
form boundary conditions are set

Bx = −
∂A

∂z∗
→ ±B∞, z → ±∞. (4)

On the right boundary (x → −∞) the solution is required
to transfer to that of Harris (1962), withA(−∞, 0) = 0 and
n(−∞, 0) = n0. As distinct from the Kan treatment when
it was reasonable to give in the centre of the sheet at the in-
ner boundary the values of the magnetic field intensity and
plasma density, in the case under consideration, it is reason-
able to give the maximum information on the magnetic field,
while the plasma density distribution along the sheet has to
be obtained from the solution of the corresponding nonlin-
ear, self-consistent problem. We introduce into the boundary
conditions the following information on the field of the in-
ner magnetosphere: at the pointx = xb we give not only

the value ofBz(xb, 0) but also ∂
∂x

Bz(x, 0)

∣∣∣
x=xb

and suppose

them to be equal to the corresponding values of the field of
the internal sources. Having set the boundary conditions, in
the next section we will determine the appropriate form of
the functionf (η).

3 Stationary configurations of the nonuniform plasma
sheet set by different conditions on the near-Earth
and far tail boundaries

Manankova et al. (2000a, b) classified all known exact solu-
tions of Eq. (1). The simplest one is the solution of Harris
(1962)

f (η) = expη,

which is uniform along thex-axes’ plasma sheet, withx
varying from−∞ to +∞. If f (η) has the form

f (η) = exp

{
η +

λ

η − iα

}
, (5)
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then we obtain the solution of Kan (1973), which contains the
major term that determines the decline of the plasma density
and magnetic fieldBz-component down the tail.

If we take

f (η) = γ̃

{
C̃ + exp

[
η +

λ

η − iα

]}
,

we have the solution of Manankova et al. (2000a, b), which
similar to Eq. (5) describes the decline ofn and Bz when
moving tailward and, in addition, for̃C 6= 0 yields a nonuni-
form, spatially oscillating branch of the solution, i.e. a set of
filaments. This branch is not treated in the present work.

For the boundary conditions set in the manner discussed
in the previous section, the functionf (η) should be taken in
the form that includes one more term of expansion compared
to Eq. (5)

f (η) = exp{η + ϕ(η)} , ϕ(η) =
λ

η − iα
+

λ1

(η − iα)3
, (6)

whereλ andλ1 are constant and determined from the bound-
ary conditions. Since we suggest for the left boundary:
x = xb 6= 0, we can setα = 0. Then, with the use of
Eqs. (2) and (3) the expression forn(x, z) andA(x, z) can be
written in the following form:

aA(x, z) = ln
(1 + uz)

2
+ u2

x

ch2[z + u(x, z)]
, a =

2m

B∞

=
qβ

2

n(x, z) = n0 expaA(x, z), u(x, z) ≡ Re ϕ(η)

Bx(x, z)

B∞

= (1 + uz)th(z + u)

−
(1 + uz)uzz + uxuxz

(1 + uz)2 + u2
x

Bz(x, z)

B∞

= −ux th(z + u) +
(1 + uz)uzx + uxuxx

(1 + uz)2 + u2
x

u(x, z) =
λz

D
+

λ1(z
3
− 3zx2)

D3
, D = z2

+ x2

ux =
∂

∂x
u(x, z) = −

2λzx

D2
−

12λ1zx(z2
− x2)

D4

uz =
∂

∂z
u(x, z) =

λ(x2
− z2)

D2

+
3λ1(−x4

− z4
+ 6x2z2)

D4

uzx =
∂2u(z, x)

∂x∂z
=

2λx(−x2
+ 3z2)

D3

+
12λ1x(x4

+ 5z4
− 10x2z2)

D5

uxx = −uzz =
−2λz(z2

− 3x2)

D3

−
12λ1z(z

4
+ 5x4

− 10x2z2)

D5
. (7)

Let us consider more in detail by determining ofλ andλ1.
From Eq. (7) theBz-component of the magnetic field in the
centre of the sheet is given by the formula

Bz(x, 0)

B∞

=
uzx(x, 0)

1 + uz(x, 0)
,

where

uz(x, 0) =
λ

x2
−

3λ1

x4
, uzx(x, 0) =

−2λ

x3
+

12λ1

x5
.

It is convenient to changeλ andλ1 for y = λ/x2
b andy1 =

λ1/x
4
b . With the use of the boundary conditions one obtains

the following system of two equations fory andy1

Bz(xb, 0)

B∞

· xb =
−2y + 12y1

1 + y − 3y1
≡ γ

∂

∂x

(
Bz(x, 0)

B∞

) ∣∣∣
x=xb

· x2
b =

6y − 60y1

1 + y − 3y1
− γ 2

≡ γ1. (8)

The solution of this system is

y =
−6(C + 5)γ

[3γC + 21γ + 24]
, y1 =

−γ (C + 3)

[3γC + 21γ + 24]
, (9)

whereC = (γ1 + γ 2)/γ . Further in the numerical calcula-
tions the magnetic field of the inner magnetosphere is taken
as that of a two-dimensional dipole:Bzd(x, 0) = M/x2. In
this case there can be found a simple relation betweenγ and
γ1 (cf. Eq. 8):

γ1

γ
=

[
∂
∂x

Bz(x, 0) · x

Bz(x, 0)

] ∣∣∣
x=xb

= −2, C = γ − 2

and from Eq. (9) we have fory andy1:

y =
−6γ (γ + 3)

(3γ 2 + 15γ + 24)
, y1 =

−γ (γ + 1)

[3γ 2 + 15γ + 24]
. (10)

In the consideration that has been performed above the typ-
ical scale of the problem is the characteristic thickness of
the plasma sheetL = 1/m. However, in the treatment
of the quasi-stationary evolution of the system, which is
the subject of the following sections, this parameter will
be variable. Thus, it is more convenient to transfer to the
Earth’s radiusRE as a scale size of the problem. Having de-
notedx = x∗/RE , z = z∗/RE , m = mRE , λ = λ/m2,
λ1 = λ1/m

4, we can rewrite some of relations (7) as

u(x, z) = m

{
λ z

D
+

λ1(z
3
− 3z x2)

D
3

}
,

D = x2
+ z2

ux(x, z) =
−2λz x

D
2

−
12λ1z x(z2

− x2)

D
4
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uz(x, z) =
λ(x2

− z2)

D
2

+
3λ1(−x4

− z4
+ 6x2z2)

D
4

z + u(x, z) = m

{
z +

λz

D
+

λ1(z
3
− 3z x2)

D
3

}
. (11)

The quantitiesλ = x2
by andλ1 = x4

by1 can be determined
with the use of Eq. (10).

4 Parameters of the solution. Physical mechanism of
the thin current sheet formation in the near-Earth
magnetotail

As was mentioned above, when moving tailward from the
near-Earth boundaryx = xb, the solution obtained tends to
that of Harris. The latter is uniform along thex current sheet,
which is characterized by five parameters with the two rela-
tions imposed, that is only three of the parameters are inde-
pendent. The five parameters are

B∞, n0, β = V/c, 2 = kT , m = 1/L. (12a)

The two relations are

B2
∞ = 16πn02, m2

= 4πn0β
2q2/2. (12b)

In modeling a quasi-stationary evolution of the current
sheet we must stipulate which of parameters in Eq. (12a) will
be altered and what their variation should be to reproduce
correctly the current sheet perturbations at different stages of
magnetospheric disturbances. A problem concerning station-
ary configurations of an nonuniform, current-carrying, two-
dimensional plasma sheet with boundary conditions given on
cross-sheet profiles at the foot of the sheet and infinity is con-
sidered, with the aim of using its solution for the description
of the interaction of the two current systems: one is related
to the rather stationary inner magnetosphere and the other is
that of the dynamical magnetospheric tail.

The solution is determined by different combinations of
parameters in Eq. (12a) as well as byxb (the near-Earth
boundary location) andBzd(xb, 0), which, in turn, depends
onx0 — the distance involved in the normalization of the 2-
D dipolar field over a 3-D field. In the present work we take
x0 = −10 andBzd(x, 0) = 3 · 103/x2(nT ), according to the
magnetospheric magnetic field model of Tsyganenko (Tsy-
ganenko, 1989). The combinations of the parameters that
entered the solution are

γ = Bzd(xb, 0) · xb · mRE/B∞,

m/B∞ =
a

2
= qβ/22. (13)

In addition, the solution depends onm, xb, n0, B∞. Thus,
five independent parameters determine the solution: three in-
dependent parameters from (12a, b),xb andx0.

Now we consider the quasi-stationary dynamics of the
plasma sheet by altering some of these parameters in four
special cases.

(a) Let the disturbance of the sheet, caused byB∞ (or n0),
increase under invariable temperature2, current veloc-
ity β and the location of the left boundaryx = xb .
Thenm/B∞ = const,γ = const. This means thatm
grows proportionally toB∞, leading to a contraction of
the plasma sheet.

(b) Let the temperature2 increase under invariablexb, β

andn0. Thenm ∼ 2−1/2, B∞ ∼ 21/2, m/B∞ ∼ 2−1

andγ ∼ 2−1 . These relations indicate that by chang-
ing the temperature we inevitably change some of the
other parameters characterizing the plasma sheet (this
is also true for point (a)). Thus,2(0), γ (0), m(0),
B

(0)
∞ refer to the undisturbed state of the plasma sheet,

and γ (1), m(1), B
(1)
∞ relate to the altered temperature

2 = 2(1), thenγ (1)
= γ (0)2(0)/2(1), m(1)

= m(0)
·

(2(0)/2(1))1/2, B
(1)
∞ = B

(0)
∞ · (2(1)/2(0))1/2, etc.

(c) Let the disturbance be connected to the acceleration of
the charged particles in the neutral sheet, i.e. with the
growth ofβ undern0, 2, with xb being constant. Then
γ ∼ β, m ∼ β, a = 2m/B∞ ∼ β. Therefore, sim-
ilar to point (b) we obtainβ(1)/β(0)

= a(1)/a(0)
=

γ (1)/γ (0)
= m(1)/m(0).

(d) The increase ofB∞, which is related to energy accu-
mulation in the magnetospheric tail, typically displaces
the location of the left boundaryx = |xb| closer to
the Earth. This results in|xb| decrease and variation
of the parameterγ according to the relationγ1/γ0 =

x
(0)
b /x

(1)
b . As will be further demonstrated, this varia-

tion is of principal importance, for it controls reconfigu-
ration of the magnetic fields and currents afterγ reach-
ing the critical value ofγcr .

Though the special cases considered do not cover all possible
quasi-dynamical variations of the plasma sheet, they clearly
suggest that the parameters governing the state of the sheet
change self-consistently in the process of its quasi-stationary
evolution.

To complete this section we draw the reader’s attention
to thin current sheets originating in the near-Earth magneto-
tail at the growth phase of a substorm. The mechanism of
their formation has been discussed in literature for the last
two decades. Among the theoretical studies devoted to this
problem the most complete are those by Schindler and col-
leagues (e.g. Schindler et al., 1993). The authors consider the
quasi-stationary evolution of the magnetotail current in the
framework of the linearized Grad–Shafranov equation with
the boundary conditions of either of the two types discussed
in the Introduction. The Harris solution is taken as an initial
unperturbed state of the current sheet. The parameters of the
Harris solution are kept invariable in the course of the cur-
rent sheet evolution, with the latter being entirely governed
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Fig. 1. (a) Variation of the dimensionless field componentBz(x, 0)/Bzd (xb, 0) along the sheet versus the dimensionless distancex. For
comparison, the variationBzd (x, 0)/Bzd (xb, 0) is shown by a dotted line.(b), (c) Variation of the dimensionless plasma density (current
density)n(x, 0)/n0 = j (x, 0)/j0. (d) The plasma densityn(xb, 0)/n0 underx = xb = −7 as a functionγ . Numbers at curves correspond:
γ1 = −1.5, γ2 = −2.0, γ3 = −2.5, γ4 = −3.5, γ5 = −4, γ6 = −4.5.

by quasi-static changes in the boundary conditions. Thin cur-
rent sheet formation as a slow process driven by boundary
deformations is also considered in a more recent work by
Becker et al. (2001 and references therein). In comparing
these treatments with the present study, it is clear that the un-
derlying physical mechanism suggested here is different: the
current sheet with the parameters that vary self-consistently
in the process of its evolution adjusts to the given boundary
conditions.

Among the four special cases considered in this section
we point out case (d), in which both the current sheet param-
eters and boundary conditions (through the value ofxb) are
variable. However, we stress again that their variations are
self-consistent. The possibility to treat them independently,
for example, as additive contributors, needs special argumen-
tation.

5 Specialities and applications of the solution obtained

The most prominent dynamical processes in the magneto-
sphere are known to proceed in the region of transition from
dipolar to stretched magnetic field configuration, where the
scale sizes along thex- andz-coordinates are of the same or-
der: O(Lx) = O(Lz); here,O is the standard order symbol,
Lz, Lx denote characteristic lengths for variation in thez-
andx-direction. Therefore, for this region we cannot apply
the model problem solutions in which the so-called “tail-like
approximation”Lx � Lz (Schindler, 1972; Birn et al., 1975)
is suggested. The solution obtained in the present paper has
a simple form (especially in the centre of the current sheet
(z = 0)) and is not restricted by any special requirements:
the solution obtained is the exact analytical solution. In this
section we use it to follow the main features of the magnetic
field and current quasi-static evolution.
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Fig. 2. Variation of the dimensionless field component
Bz(x, 0)/Bzd (x, 0) along the sheet. Numbers at the curves corre-
spond:γ1 = −1.5,γ2 = −2.0,γ3 = −2.5,γ4 = −3.0,γ5 = −3.5,
γ6 = −4.0, γ7 = −4.5.

According to Eqs. (7) and (10) the magnetic fieldBz(x, 0)

is given by the relation

Bz(x, 0) =
B∞

m xb

·

−2y
(

xb

x

)3
+ 12y1

(
xb

x

)5

1 + y
(

xb

x

)2
− 3y1

(
xb

x

)4
. (14)

If we take into account formula (13), thenB∞/(m · xb) =

Bzd(xb, 0)/γ . As is seen from Eq. (14), the peak value of
Bz(x, 0) is determined byBzd(xb, 0), i.e. depends on the left
boundary location, while theBz(x, 0) distribution along the
sheet is mostly controlled by the value ofγ . The plasma
density distribution, which, in our consideration, coincides
with that of the current density, can be described as follows

n(x, 0)/n0=

[
1+y

(
xb

x

)2

−3y1

(
xb

x

)4
]2

=j (x, 0)/j0, (15)

wherej0 = j (−∞, 0).
It is interesting to note that expression (14), depending

on the value ofγ , indicates either a monotonous decline of
Bz(x,0) down the tail or a non-monotonous distribution, hav-
ing a pointxR such asBz(xR,0) = 0. This point location can
be found as

x2
R/x2

b = (γ + 1)/(γ + 3). (16)

From formulas (14)–(16) it follows that forγ > −3 we have
a monotonous decline ofBz(x, 0) andn(x, 0) (Fig. 1a, b),
while the caseγ < −3 corresponds to the non-monotonous

profile with a minimum in the region of negativeBz(x, 0)

(Fig. 1a). Note that the configuration with thexR-point re-
sults in the non-monotonous profilen(x, 0), namely the pro-
file with a minimum of the current density (Fig. 1c). These
features of the magnetic field and current density distribu-
tions can be relevant to the substorm development, for it is
known that the expansion phase instability is related to the
region of local decrease in the cross-tail current and to that
of smallBz values.

By using formulas (14)–(15), one can estimate the typ-
ical extent of the current sheet perturbationxl caused by
the left boundary condition. In the caseγ < −3 it can be
roughly taken asxl ≈ xR, then from formula (16) we obtain
(xl/xb)

2
= (γ + 1)/(γ + 3). One more relation following

from the solution seems informative

Bz(x, 0)

Bzd(x, 0)
=

−2y
xb

x
+ 12y1

(
xb

x

)3

γ [1 + y
(

xb

x

)2
− 3y1

(
xb

x

)4
]

. (17)

This relation shows how far from the boundaryx = xb down
the tail the dipolar magnetic field remains essential. From
Fig. 2 one can see that the larger the value of|γ | or, in other
words, the more intense the cross-tail current is, the narrower
the region where the dipolar magnetic field is not compen-
sated for by the field of the external source.

Let us rewrite Eq. (17) in a more convenient form

Bz(x, 0)

Bzd(xb, 0)
=

Bzd(x, 0)

Bzd(xb, 0)
·

−2y
xb

x
+ 12y1

(
xb

x

)3

γ [1+y
(

xb

x

)2
− 3y1

(
xb

x

)4
]

. (18)

As is seen from Eq. (18), Fig. 1a (the dotted line) and Fig. 2,
the ratioBz(x, 0)/Bzd(xb, 0) becomes of the order ofO(ε),
with ε being a small parameter, at such distances where it
was of the order ofO(1) in the absence of the current sheet:
Bzd(x, 0)/Bzd(xb, 0) = O(1). In the region where in the
absence of the current sheet the ratioBzd(x, 0)/Bzd(xb, 0)

was of the order ofO(ε), it will be of the order ofO(ε2), i.e.
in this region the left boundary condition does not affect the
current sheet. Here, the sheet can be considered as a uniform
sheet, with the accuracy ofO(ε2). Of course, all this is valid
only for uniform boundary conditions along the sheet. If the
latter slowly varies down the tail, this will cause the sheet’s
nonuniformityBz(x, 0)/B∞ = O(ε). But this mechanism is
principally different from what we suggest.

It is interesting to compare the consideration performed
in this section with the results of the studies that treat the
same problem under the “tail-like approximation” (Wang and
Bhattacharjee, 1999). The authors considerLz/Lx = O(ε),
neglect the terms of the order ofO(ε2) and reduce the two-
dimensional Grad–Shafranov equation to a one-dimensional
equation that has a solution of the formA(z, εx), with the
transition region, whereLx/Lz = O(1) is excluded from the
treatment. We note that in the region whereLz/Lx = O(ε),
the ratioBz(x, 0)/B∞ is also of the order ofO(ε). Accord-
ing to our results, at distances where the “tail-like approxi-
mation” remains true the perturbation of the order ofO(ε) is
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Fig. 3. Dimensionless plasma density (current density) relief:n(x, z)/n0 = j (x, z)/j0. The valuesxb andB∞ are fixed: xb = −7,

B∞ =
3·102

7 (nT). (a) γ = −1.5, m = 0.15; (b) γ = −2.5, m = 0.25; (c) γ = −3.5, m = 0.35, xR = −15, 6; (d) γ = −4, m = 0.4,
xR = −12.1. Note the difference in vertical scales in the upper and lower panels.

already “compensated” by the current sheet, i.e. only terms
O(ε2) are non-zero. These terms cannot be found in the
framework of a one-dimensional Grad–Shafranov equation.

Now we consider more in detail the principal features of
the obtained solution.

1. For γ ≤ −3 at the point x = xR given by
Eq. (16) we haveBz(xR, 0) = 0, Bx(xR, 0) = 0 and
Bz(xR, 0)/Bx(xR, 0) = 0, when|xR| → ∞ (γ = γcr),
andBz(xR, 0)/Bx(xR, 0) 6= 0, when|xR| 6= ∞ (γ 6=

γcr). The ratioBz(xR, 0)/Bx(xR, 0) is a slope of the
magnetic field line atx = xR. Thus, we can see that
the magnetic field lines are tangential only at the point
|xR| = ∞, whenγ = γcr = −3. Note that we exam-
ine the same (non-filamentary) branch of the solution
of the Grad–Shafranov equation versusγ . The value
γ = γcr = −3 is not referred to as the origin of a bi-
furcation point: the filamentary branch of the solution
exists independently.

2. From Eq. (15) it follows that underγ > −3 the current
sheet adjusts to the left (near-Earth) boundary condition
by increasing both plasma and current density in the
transition region, with|γ | increasing as well (Fig. 1b,
d). As a result, in the region adjacent to the left bound-
ary the density of the current is by an order of magni-
tude larger and the sheet is essentially thinner than it

is farther down the tail (Fig. 3a, b). At this stage of
the current density growth, the displacement of the con-
toursn(x, z)/n0 = const proceeds tailward (Fig. 4a, b).
Thus, one can see that it is possible to describe the for-
mation of very thin, intense current sheets in the tran-
sition region in terms of the simple exact solution of
the Grad–Shafranov equation. Forγ < −3 the current
sheet adjusts to the left boundary condition by decreas-
ing the plasma and current densities in the transition re-
gion, which is accompanied by a reconfiguration of the
magnetic field (Figs. 1a, c, d and 3c, d). At this stage
of the current density reduction, in the adjacent to the
left boundary region, the displacement of the contours
n(x, z)/n0 = const that cross thex-axes atx > xR

is toward the Earth, while those that cross thex-axes at
x < xR are tailward (Fig. 4c, d).

The physical mechanism of the magnetic field, plasma
and current density redistribution discussed above can
be realized as follows. The current-carrying plasma
sheet is a spatially confined congestion of particles
(Vlasov, 1961) held by Ampere force. Conglomeration
of plasma elements can be considered to be due to the
attraction of the elementary parallel “current threads”
which form the cross-tail current (Braginsky, 1957).
Under uniform boundary conditions such a system with
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Fig. 4. Isolines of the plasma density (current density):n(x, z)/n0 = j (x, z)/j0. Number of the curves corresponds to the value of the
dimensionless plasma density (current density). The valuexb, B∞, γ , m as in Fig. 3.

equal probability can stay either as a homogeneous or
filamentary configuration, with the scale size of the fil-
aments being determined as (Vlasov, 1961):

l2j =
2

mω2
j

, ω2
j =

4π
(

j
c

)2

ρ
, (19)

whereωj is the eigenfrequency,2 is the characteris-
tic energy,ρ is the plasma mass density, andj is the
current density. Equation (19), known as a pinch-effect
condition, can be treated as a state equation relating the
linear scales of a plasmoid to the temperature, mass den-
sity and magnetic field. In these terms the formation of
a narrow channel with a minimum of the current den-
sity and negativeBz values (further referred to as “a
neck”) described by our solution can be interpreted as
a result of “competition” between the two distinct re-
gions of the cross-tail current: the one adjacent to the
left boundary underγ , having reachedγcr , and the other
infinitely stretched down the tail uniform sheet by an
order of magnitude smaller current density, either of

which tends to draw the current elements from the re-
gion of the “neck” development.

3. The contoursn(x, z) = const, with the governing pa-
rameters being fixed, are also the isocontours of the
vector potentialA(x, z) = const. However, unlike
the model solutions with a quasi-stationary altering of
the boundary conditions, our treatment of dynamics of
the density contours does not reproduce identically the
dynamics of the magnetic field lines. Indeed, accord-
ing to Eq. (2)n(x, z) = n(A(x, z), a), the parameter
a = 2m/B∞, controlling the current sheet far down the
tail, can change in the process of quasi-static evolution
(see also Sect. 4). The difference in behaviour of the
density and vector potential isocontours can also be fol-
lowed from the functional relation between them. Let
a0 be the value of thea parameter over which the vector
potential is normalized. Then, from Eqs. (2) and (13)
we have

a0A(x, z) =
a0

a
ln

n(x, z)

n0
=

γ0

γ
ln

n(x, z)

n0
.
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Fig. 5. Isolines of the dimensionless vector potentiala0A(x, z) =
γ0
γ ln n(x,z)

n0
. The valuexb, B∞, γ , m as in Fig. 3,a0, γ0 – the value

of parametera = 2m/REB∞, and the value of parameterγ (13) as at Fig. 3a. Number of the curves corresponds to the value of vector
potentiala0A(x, z).

Since in a perfectly conductive plasma the frozen-in
condition is held, Figs. 5a, b, c, d indicate not only re-
distribution of the magnetic field lines, but also plasma
displacement with the governing parameters being al-
tered.

4. For understanding the underlying mechanism of devel-
opment of the strongly nonuniform current sheet in the
near-Earth region, it is important to remember that we
have not used linearization of the Grad–Shafranov equa-
tion, i.e. its reduction to the Shrödinger equation. In
other words, the solution obtained is an exact solution
of the nonlinear problem. With this respect there are a
few points to be clarified. In the most interesting transi-
tion region we havej (x, z)/j0 = O(ε−1), with ε being
a small parameter,j0 being the current density at the
centre of the sheet far down the tail. Having taken into
account the relationj (x, z)/j0 = expaA(x, z), one can

see that in this case we cannot use linearization of the
right-hand-side of Eq. (1), for the resulting expansion

expaA(x, z) = expa[A0(z) + A1(x, z)]

'
1

ch2(z)
[1 + aA1(x, z) + O(ε2)]

in whichA0(z) is the part of the vector potential related
to the Harris sheet, only describes the effects of the or-
der of O(ε). Another aspect which has already been
discussed above, is that the pinch-effect and the sheet
filamentation are intrinsically nonlinear processes. The
treatments under a linear approximation can only give
a sinusoidal variation of the current distribution, not the
filaments formation (Trubnikov, 2002).
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5. Only one type of solution of Eq. (1) is treated in the
present study without addressing the problem of its sta-
bility. Earlier, Manankova and Pudovkin (1996) exam-
ined in detail the energetic parameters of the current
sheet under uniform boundary conditions and showed
that the free energy (or Helmholtz thermodynamical po-
tential) of such a system is the same for both the uniform
and filamentary state, i.e. it is impossible to distinguish
between which of these two modi is energetically pref-
erential. Performing a similar examination for the cur-
rent sheet with the nonuniform boundary condition is a
much more complicated problem, which is beyond the
scope of the present study. In principle, in this case the
two states of the current sheet may be non-equivalent
energetically.

6 Summary

1. The solution of the Grad–Shafranov equation obtained
in the present work is an exact analytical solution of
the nonlinear problem which is determined by five in-
dependent parameters that characterize the state of the
magnetospheric tail. The solution enables one to esti-
mate self-consistently the effects of such factors as the
current-carrying particle acceleration, temperature vari-
ation, the change in the integral cross-tail current, etc.,
in the configuration of the plasma sheet and magnetic
field.

2. The possibility of obtaining an exact solution of the
nonlinear equation (linearization of the Grad–Shafranov
equation and transfer to the linear Schrödinger equa-
tion have not been used) allows one to apply this solu-
tion for the description of the most interesting transition
region of the magnetosphere–region of a strong inter-
action of the geodipole and magnetotail current fields.
This makes it possible to model self-consistently the
structure, characteristic size of the transition region and
its dynamics under quasi-stationary variation of the cur-
rent sheet parameters.

3. It is known that for the description of the transition re-
gion of the magnetosphere one cannot use the models
based on the approximation of a “slow variation” along
the sheet (tail approximation) whenLx � Lz, where
Lx, Lz are characteristic scales of the change in all vari-
ables with thex- and z-coordinates. Under the “tail-
like” approximation the solution has the formA(z, εx).
The obtained exact solution of the 2-D problem for
uniform boundary conditions along the sheet may be
used to include (by means of the known scheme of the
asymptotic expansion) a slow variation of the sheet pa-
rameters along the x-axis and to construct a solution of
the type:A(x, z; εx, εz).

4. The solution obtained can be used as an initial configu-
ration in simulating dynamical processes in the magne-
totail current sheet, as well as in testing the current sheet

stability. Unlike the Harris layer which has essentially
a different topology and can lead to singularities when
being used as an initial approximation, the exact solu-
tion already contains the principal topological features
of the internal and external current system interaction.

5. It should be noted that the boundary conditions used in
the problem most completely reproduce the physics of
the phenomena developing within the closer zone in the
centre of the current sheet. This outlines the region in
which the constructed simple model is plausible. It is
in this region that the most important magnetospheric
dynamical processes are known to develop. While con-
sidering the interaction of the two current systems, we
excluded from the equations the current system of the
inner magnetosphere, and took into account its contri-
bution only via the boundary conditions.

And here arises a question on the limits of the applicability
of the model problem under consideration. Of course, the
model has a series of limitations. These restrictions natu-
rally resulted from the fact that the boundary conditions, as
has been said above, most adequately reproduce the physics
of the discussed phenomenon only in the central part of the
plasma sheet:

Let us consider some consequences.

(a) With the increase in the distance from the centre of the
sheet(z = 0), the shape of the magnetic field lines for
the system determined by the values of|γ | > |γc| = 3
does not agree with the expected picture correspond-
ing to the interaction of the two current systems: the
geodipole and magnetotail current systems (Figs. 4d,
5d).

(b) It is impossible to describe a current sheet disturbance
corresponding to large values of|γ | whenxR → xb:
the information on the interacting current systems given
by the boundary condition is in this case insufficient for
the consideration of the current sheet.

(c) Presented calculations (Figs. 4–5) make it possible to
consider the configuration of the field (of the currents)
for both |γ | > |γc| and|γ | < |γc|. As was said above,
the quasi-stationary evolution is modelled only as a se-
ries of stationary solutions for any fixed value of time.
The process of the transition through the critical value of
the parameterγ in the frame of the model of the quasi-
stationary evolution in this paper is not discussed in it-
self. This problem needs a special consideration.

Acknowledgements.This work was supported by the Russian Foun-
dation for Basic Research, grant No 03-05-64865.

Topical Editor T. Pulkkinen thanks two referees for their help in
evaluating this paper.



A. V. Manankova: 2-D current-carrying plasma sheet 2269

References

Becker, U., Neukirch, T., and Schindler, K.: On the quasi-static
development of thin current sheets in magnetotail-like magnetic
fields, J. Geophys. Res., 106, 3811–3825, 2001.

Birn, J., Somer, R. R., and Schindler, K.: Open and closed magne-
tospheric tail configurations and their stability, Astrophys. Space
Sci., 35, 389–402, 1975.

Braginsky, S. I.: On the behaviour of fully ionized plasma in the
strong magnetic field, Sov. Phys. JETP (in Russian), 33, 645,
1957.

Fadeev, V. M., Kvarzhava, I. F., and Komarov, N. N.: The self-
focusing of the local plasma currents, Nucl. Fusion (in Russian),
5, 202–209, 1965.

Harris, E. G.: On a plasma sheath regions of oppositely directed
magnetic field, Nuovo Cimento, 23, 115–121, 1962.

Kan, J. R.: On the structure of the magnetotail current sheet, J.
Geophys. Res., 78, 3773–3781, 1973.

Komarov, I. N.: Topology of stationary plasma configurations in
crossed self-consistent fields: spatially periodical structures of
plasma, Nucl. Fusion (in Russian), 3, 174–182, 1963.

Manankova, A. V., and Pudovkin, M. I.: Energy characteristics of
a two-dimensional current-carrying plasma, Geomagnetism and
Aeronomy (English Translation), 36, 426, 1996.

Manankova, A. V., and Pudovkin, M. I.: The description of a two-
dimensional current-carrying plasma sheet in the hydrodynamic
approximation of a single-component plasma model, Geomag-
netism and Aeronomy (English Translation), 39, N 1, 40, 1999.

Manankova, A. V., Pudovkin M. I., and Runov, A. V.: Stationary
configurations of the two-dimensional current-carrying plasma
sheet: exact solutions, Geomagnetism and Aeronomy (English

Translation), 40, N 4, 430, 2000a.
Manankova, A. V., Runov, A. V., Prosolin, V. I., and Pudovkin, M.

I.: On two-dimensional steady-state non-uniform plasma sheet
configurations. Proc. of the Fifth International Conference on
Substorms (St.Petersburg, Russia, 16–20 May 2000), ESA SP-
443, 401–404, 2000b.

Manankova A. V. and Pudovkin, M. I.: Steady-state configurations
of an inhomogeneous current-carrying 2D-plasma sheet: quasi-
stationary evolution of the system, in: Proc. 4th Intern. Conf.
“Problems of Geocosmos” (St.Petersburg, 3-8 June 2002), edited
by Semenov, V. S., Lyatskaya, A. M., Kubyshkina, M. V., Bier-
nat, H. K., 132–135, 2002.

Schindler, K.: A self-consistent theory of the tail of the magneto-
sphere, in: Earth’s magnetospheric processes, 200–209, edited
by McCormac, B. M., Reidel, D., Norwell. Mass., 1972.

Schindler, K. and Birn, J.: On the cause of thin current sheets in the
near-Earth magnetotail and their possible significance for magne-
tospheric substorms, J. Geophys. Res., 98, 15 477–15 485, 1993.

Trubnikov, B. A.: Current filaments in plasmas, Plasma Physics (in
Russian), 28, 346–359, 2002.

Tsyganenko, N. A.: A magnetospheric magnetic field model with a
warped tail current sheet, Planet. Space Sci., 37, 5–20, 1989.

Vekua, I. N.: Notes on the solution properties of the equation1U =

−2KeU , Siberian Math. Journ. (in Russian), 1, 331–342, 1960.
Vlasov, A. A.: A theory of new plasmoid, J. of Technical Physics

(in Russian), 31, 785–796, 1961.
Walcker, G. W.: Some problems illustrating the forms of nebulae,

Proc. R. Soc. London, Ser. A, 91, 410, 1915.
Wang, X. and Bhattacharjee, A.: An equilibrium model of the

Earth’s magnetotail: thin current sheet and a near-Earth neutral
line, J. Geophys. Res., 104, 7045–7048, 1999.


