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Abstract. A new approach to extractfoF2 long-term trends,
which are free to a great extent from solar and geomagnetic
activity effects, has been proposed. These trends are insensi-
tive to the phase (increasing/decreasing) of geomagnetic ac-
tivity, with long-term variations being small and insignificant
for such relatively short time periods. A small but significant
residualfoF2 trend, with the slopeKr = −2.2 × 10−4 per
year, was obtained over a 55-year period (the longest avail-
able) of observations at Slough. Such small trends have no
practical importance. On the other hand, negative (although
insignificant) residual trends obtained at 10 ionosonde sta-
tions for shorter periods (31 years) may be considered as a
manifestation of a very long-term geomagnetic activity in-
crease which did take place during the 20th century. All of
the revealedfoF2 long-term variations (trends) are shown to
have a natural origin related to long-term variations in so-
lar and geomagnetic activity. There is no indication of any
manmadefoF2 trends.

Key words. Ionosphere (ionosphere-atmosphere interac-
tions, ionospheric disturbances)

1 Introduction

Due to an increasing interest in the anthropogenic impact
on the Earth’s atmosphere the ionospheric parameter long-
term trends are widely discussed in recent publications (Bre-
mer, 1992, 1998; Givishvili and Leshchenko, 1994, 1995;
Givishvili et al., 1995; Danilov, 1997, 1998; Ulich and Tu-
runen, 1997; Rishbeth, 1997; Jarvis et al., 1998; Upadhyay
and Mahajan, 1998; Sharma et al., 1999; Foppiano et al.,
1999; Danilov and Mikhailov, 1999; Mikhailov and Marin,
2000; Deminov et al., 2000; Danilov and Mikhailov, 2001).
The interest in the ionospheric trend analysis was greatly
stimulated by the model calculations of Rishbeth (1990) and
Rishbeth and Roble (1992), who predicted the ionospheric
effects of the atmosphere greenhouse gas concentration in-
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crease. Since then, researchers have been trying to reveal
the predicted ionospheric effects related to the thermosphere
cooling (Bremer, 1992; Givishvili and Leshchenko, 1994;
Ulich and Turunen, 1997, Jarvis et al., 1998; Upadhyay and
Mahajan, 1998). The atmosphere cooling effect should have
been noticeable in thehmF2 rather than in thefoF2 trends,
due to a weak dependence ofNmF2 on neutral temperature.
Moreover, the expected neutral temperature decrease due to
the greenhouse effect should result in a positivefoF2 trend
in contrast to the observations (Mikhailov and Marin, 2000).
The analyzes have shown that there are well-pronounced and
significanthmF2 as well asfoF2 trends. The worldwide pat-
tern of the F2-layer parameter trends turned out to be very
complicated and this cannot be reconciled with the green-
house hypothesis. On the other hand, one cannot exclude the
anthropogenic effects in the upper atmosphere related to the
increasing rate of rocket and satellite launching during the
last few decades, which has led to the thermosphere pollu-
tion (Kozlov and Smirnova, 1999; Adushkin et al., 2000).
Therefore, further efforts are required in this direction to find
out the physical mechanism of the F2-layer trends.

Despite many publications devoted to the F2-layer param-
eter long-term trends, the results of different authors are still
contradictory to a great extent. This is due to both the ac-
curacy of the experimental material and the methods used
to extract long-term trends from the observations. The most
suitable for the trend analysis parameter is the F2-layer criti-
cal frequency. It has been observed routinely over the world-
wide ionosonde network for 3–5 solar cycles using one and
the same method of ionospheric sounding. The critical fre-
quency,foF2, is registered directly (unlikehmF2) and with
an acceptable accuracy of≈ 0.1 MHz. Unlike foE or foF1,
the F2-layer critical frequency is observed all day long and
this allows one to follow diurnal variations in thefoF2 long-
term trends. But even in case offoF2, the useful “signal” is
very small and the “background” is very noisy, therefore, the
success of analysis depends strongly on the method used. An
approach being developed by Danilov and Mikhailov (1999)
and Mikhailov and Marin (2000, 2001) has allowed us to
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Fig. 1. A comparison of annual mean
δfoF2 variations at Slough (12:00 LT)
when the usual monthly median andQ-
medianfoF2 values are used in the cal-
culations.

find systematic variations infoF2 andhmF2 trends, unlike
other approaches (e.g. Bremer, 1998; Upadhyay and Maha-
jan, 1998), resulting in various signs and magnitudes of the
trends at various stations. An application of this approach
to thefoF2 trend analysis resulted in a geomagnetic control
concept (Mikhailov and Marin, 2000, 2001) to explain the
revealed latitudinal and diurnal variations of the F2-layer pa-
rameter long-term trends. It was shown that an interpretation
of the F2-layer parameter trends should consider the geomag-
netic effects as an inalienable part of the trends revealed and
this can be done based on the contemporary understanding of
the F2-layer storm mechanisms (Mikhailov and Marin, 2000,
2001).

Although the geomagnetic control concept allowed us to
explain the main morphological features of thefoF2 long-
term trends revealed, there are still some questions remain-
ing. The most important one is whether it is possible to re-
move the geomagnetic effect from thefoF2 long-term vari-
ations, in order to analyze the residual trends. What is the
origin (anthropogenic or natural) of such residual trends if
they exist? Earlier developed approaches cannot be used for
such analysis as they givefoF2 trends that are strongly con-
taminated with geomagnetic activity effects, despite the at-
tempts to delete them (Mikhailov and Marin, 2000, 2001).
Therefore, a revised method has been developed in this pa-
per which allows us to delete to a great extent solar and ge-
omagnetic activity effects from the observedfoF2 long-term
variations and reveal the residualfoF2 trends.

2 Method description

A revised method described here is based on the analysis
given in Sect. 3 of the paper. The final version of the method
comprises the following.

1. We proceed from an assumption that observedfoF2
variations are mainly due to solar and long-term ge-
omagnetic activity variations that (with some reserva-
tions) may be described withR12 and 11-year running

meanAp indices. The results of our analysis (see later)
have shown that such a combination provides the best
description accuracy and the most consistent results.
Therefore, the method includes the following steps. A
regression of monthlyfoF2 withR12

foF2reg = a0 + a1 Rα
12 (1)

is used to find monthly relative deviations

δfoF2 = (foF2obs − foF2reg)/foF2obs . (2)

We analyze (for each LT moment) relative rather than
absoluteδfoF2 deviations considered in thefoF2 and
hmF2 trend analyzes by Bremer (1998); Ulich and Tu-
runen (1997); Jarvis et al. (1998); Upadhyay and Maha-
jan (1998); Sharma et al. (1999); Foppiano et al. (1999).
As far as we know relative deviations were considered
only by Deminov et al. (2000) in theirfoF2 long-term
trend analysis. Relative deviations allow us to com-
bine different months and obtain an annual meanδfoF2
that is used in the analysis, with the final method be-
ing based on the 11-year running meanδfoF2 values.
A simple arithmetic running mean smoothing with an
11-year gate is applied everywhere.

The optimal 12 different values ofα (for each month of
the year) are specified to provide the least standard de-
viation (SD) after a regression (see later) of an 11-year
smoothedδfoF2 withAp132 (11-year running mean Ap
indices). The 11-yearδfoF2 smoothing requires all 12
values ofα to be available simultaneously at each step
of theSD minimization. This implies an application of
special multi-regressional methods (Press et al., 1992)
matched to solve the problem considered.

The expression (1) is of a general type and depending
on α, it can describe both the linear and nonlinear rela-
tionship of foF2 with R12. The regression coefficients
ai are specified by the least-squares method for each
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Fig. 2. Observed and polynomial ap-
proximatedAp132 andδfoF2132 varia-
tions used in the trend analysis. Dashed
line is a linear, very long-term trend
with the slope K = 0.02 per year in
geomagnetic activity obtained over the
observedAp132 variations. Note also
a 4-year shift between theAp132 and
δfoF2132 variations.

month and a givenα value. It should be stressed that
the expression (1) does not provide the best approxima-
tion of the observedfoF2 versusR12 dependence (other
dependencies may yield a smaller sum of the residu-
als), but it should be considered in terms of the follow-
ing regression withAp132 to find the minimalSD (see
later). Therefore, the regression (1) is not a “model” in
the usual sense of the word, since it is accepted in all
earlier approaches. This regression is used to remove
the solar activity part from the observedfoF2 variations
as a “pure”foF2 dependence on solar activity (presented
by theR12 index) a priori is not known for each month
(see Sect. 6: Discussion).

2. Q-medians proposed by Deminov et al. (2000) are used
in the method instead of the usual monthlyfoF2 ones.
SuchQ-medians are obtained over quiet days of each
month. In our approach, unlike that of Deminov et al.
(2000), a day is considered to be quiet if dailyAp ≤ 10
for this and the two previous days. TheQ-median value
is set to zero if there are no such days in a month. A
threshold was set to 1 and 3 quiet days a month. Testing
has shown that generally 3-quiet day medians provide
better results for some stations, but too many gaps in
the observations, due to such severe selection, led to pe-
culiar results on other stations. Therefore, the 1-quiet
day threshold has been accepted. An example of annual

meanδfoF2 (after Eq. 2) variations obtained with the
usual monthly andQ-medians is shown in Fig. 1. The
difference is seen for the two cases, both during the pe-
riods of solar maximum and minimum. It may seem not
to be very large, but one should keep in mind that during
the trend analysis, we work at the level of noise and even
small differences in the initial material may affect the fi-
nal result. Despite the removal of short-term (monthly)
geomagnetic effects by usingQ-medians, strong year-
to-yearδfoF2 fluctuations take place (Fig. 1). These os-
cillations may be related to the variations in solar ac-
tivity (Ivanov-Kholodny and Chertoprud, 1992; Ivanov-
Kholodny, 2000), but they are not removed by any re-
gression withR12 or Ap, and an 11-year running mean
smoothing is applied to conquer them (see later).

3. Unlike our earlier method, where only years around so-
lar cycle maxima and minima were analyzed to avoid
the hysteresis effect at the rising and falling parts of so-
lar cycles, the proposed method uses all years available.
A comparison has shown close results for different year
selections using the proposed method. This takes away
the problem of using different year selections forfoF2
andhmF2 trend analysis (Marin et al., 2001; Mikhailov
and Marin, 2001).

Gaps in observations are not filled in. If the number
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Table 1. Correlation coefficients,r, betweenδfoF2132 andAp132 found over one and the same period 1957–97 (1962–92 after 11-year
smoothing). The “appr.” refers to the polynomial approximatedδfoF2132 andAp132 variations. The first line refers toQ-medians, the
second to the usual monthlyfoF2 medians used in the calculations. Bold face figures show significantr with a confidence level 99%, normal
face figures correspond to 95% confidence level, italic figures are not significantr. The optimal time shift1t (in years) betweenδfoF2132
andAp132 variations is given as well

00:00 LT 12:00 LT
Station δfoF2132 appr. 1t δfoF2132 appr. 1t δfoF2132 appr. 1t δfoF2132 appr. 1t

vs. Ap132 vs. Ap132 appr. vs. Ap132 vs. Ap132 appr.
Lycksele −0.773 0 −0.778 0 −0.906 -2 −0.932 -2

−0.863 -5 −0.859 -5 −0.959 0 −0.984 0
Uppsala −0.911 -2 −0.943 -2 −0.919 -2 −0.946 -2

−0.758 -2 −0.757 -2 −0.938 0 −0.977 0
St. Petersburg −0.504 -2 −0.493 -2 −0.927 -3 −0.957 -3

−0.734 0 −0.771 0 −0.887 -1 −0.913 -1
Juliusruh −0.843 -2 −0.857 -2 −0.881 -3 −0.898 -3

−0.881 0 −0.916 0 −0.882 -2 −0.908 -2
Moscow −0.828 -2 −0.842 -2 −0.928 -3 −0.974 -3

−0.922 0 −0.948 0 −0.908 -2 −0.942 -2
Tomsk −0.684 -3 −0.671 -3 −0.629 -3 −0.608 -3

−0.795 0 −0.828 0 −0.809 0 −0.833 0
Slough −0.902 -3 −0.921 -2 −0.941 -3 −0.971 -3

−0.791 0 −0.817 0 −0.935 -2 −0.977 -2
Dourbes −0.918 -4 −0.960 -4 −0.861 -4 −0.918 -4

−0.845 -1 −0.856 -1 −0.725 -2 −0.756 -3
Poitiers −0.916 -4 −0.931 -4 −0.859 -4 −0.894 -4

−0.924 -2 −0.957 -2 −0.770 -5 −0.817 -4
Rome −0.933 -2 −0.967 -2 +0.919 -3 +0.951 -3

−0.853 -4 −0.865 -4 −0.594 -3 −0.625 -3

of months with availablefoF2 values for a given year
is less than 6, then the year is marked as “zero”. Dur-
ing the 11-yearδfoF2 smoothing, the arithmetic mean is
calculated over the non-zero years only.

4. The geomagnetic activity effect is deleted from the 11-
year running meanδfoF2 variation using a regression
with Ap132

δfoF2132 = b0 + b1 Ap132(t + n)

+ b2 Ap2
132(t + n) , (3)

wheren is a time shift in years ofAp132 with respect to
δfoF2132 variations, which is selected to give the least
SD for the residuals after Eq. (3). The regression co-
efficientsbi are specified by the least-squares method.
A nonlinear dependence ofδfoF2 on the geomagnetic
activity is expected in accordance with Zevakina and
Kiseleva (1978) and Muhtarov and Kutiev (1998).

5. An analysis has shown that the best results (the least
SD) can be obtained if an additional smoothing is ap-
plied to δfoF2132 andAp132 variations. Such smooth-
ing is made by a 5-order polynomial approximation of
these parameter variations. The initial and approxi-
matedAp132andδfoF2132variations are shown in Fig. 2
for Slough (12:00 LT) as an example. A 4-year shift is
clearly seen between the two variations.

6. The residual linear trend with the slopeKr (in 10−4

per year) is estimated over the residuals after the regres-
sion (3).

7. The test of significance for the linear trend parameter
Kr (the slope), as well as for the correlation between the
parameters analyzed, is made with Fisher’sF criterion
(Pollard, 1977)

F = r2(N − 2)/(1 − r2) ,

wherer is the correlation coefficient andN is the num-
ber of pairs considered. Keeping in mind that we work
with smoothed variations we set the number of degrees
of freedom to be(N −2) = 4 (the 5th order polynomial
is defined by 6 coefficients). Such tough requirements
on the(N − 2) value formally results in insignificant
trends, in many cases, despite the existence of obvious
and pronounced trends calculated over some dozens of
points. Sometimes the number of degrees of freedom is
higher than 4 and this is mentioned separately in each
case. Student’s T-criterion (Pollard,1977) was used to
test whether the difference between values is significant.

3 Choosing a combination of parameters

In developing the method we have considered monthly, the
annual mean and the 11-year running meanδfoF2, to find the
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Table 2. Correlation coefficients,r, betweenδfoF2132 andR132 found over one and the same period 1957–97 (1962–92 after 11-year
smoothing). The “appr.” refers to the polynomial approximatedδfoF2132 andR132 variations. The first line refers toQ-medians, the second
to the usual monthlyfoF2 medians used in the calculations. Bold face figures show significantr with a confidence level 99%, normal face
figures correspond to 95% confidence level, italic figures are not significantr. The optimal time shift1t (in years) betweenδfoF2132 and
R132 variations is given as well

00:00 LT 12:00 LT
Station δfoF2132 appr. 1t δfoF2132 appr. 1t δfoF2132 appr. 1t δfoF2132 appr. 1t

vs. R132 vs. R132 appr. vs. R132 vs. R132 appr.
Lycksele −0.631 0 −0.768 0 −0.791 -1 −0.924 -1

−0.888 -5 −0.885 -4 −0.845 0 −0.921 0
Uppsala −0.849 -1 −0.952 -1 −0.891 0 −0.947 -1

−0.548 -3 −0.728 -2 −0.789 0 −0.910 0
St. Petersburg −0.400 -5 −0.425 -4 −0.905 -3 −0.973 -3

−0.450 0 −0.575 0 −0.720 0 −0.852 -1
Juliusruh −0.683 -1 −0.849 -1 −0.795 -3 −0.911 -2

−0.699 0 −0.843 0 −0.775 -2 −0.887 -2
Moscow −0.718 -3 −0.851 -2 −0.948 -2 −0.994 -2

−0.774 0 −0.890 0 −0.843 -1 −0.924 -2
Tomsk −0.608 -5 −0.659 -3 −0.596 -5 −0.614 -4

−0.545 0 −0.674 0 −0.613 0 −0.682 0
Slough −0.768 -2 −0.919 -2 −0.942 -4 −0.996 -3

−0.555 0 −0.672 0 −0.949 -2 −0.991 -1
Dourbes −0.939 -4 −0.997 -4 −0.896 -3 −0.960 -4

−0.737 -1 −0.762 -1 −0.662 -2 −0.730 -3
Poitiers −0.922 -5 −0.957 -3 −0.852 -4 −0.947 -5

−0.837 -1 −0.951 -1 −0.767 -2 −0.830 -4
Rome −0.867 -1 −0.981 -1 +0.869 -1 +0.957 -2

−0.869 -5 −0.898 -4 −0.509 -1 −0.558 -3

combination which would provide the leastSD after delet-
ing the geomagnetic activity effect. The latter was supposed
to be presented by smoothed or non-smoothedAp or R12
indices. Usual monthly andQ-median, smoothed and non-
smoothedfoF2 values were considered. TheR12 index was
considered (along withAp) as an indicator of long-term so-
lar/geomagnetic activity variations (Deminov et al., 2000).
In the beginning we examined the correlation coefficients be-
tweenδfoF2 andAp (or R12) indices. Only the results which
led us to the final method (Sect. 2) are presented here.

All correlation coefficients for monthly, as well as for an-
nual meanδfoF2, are found to be low (0.2–0.5), both for non-
smoothed and smoothed Ap (orR12) indices and, therefore,
cannot be considered as candidates for the method. An es-
sential increase in the correlation coefficient takes place only
after moving to 11-year running mean values. An additional
increase in the correlation is possible if one applies a smooth-
ing approximation toδfoF2132andAp132 (orR132) variations
(Fig. 2). Such approximated values provide the largest corre-
lation coefficients and the leastSD; therefore, this approach
was used in the final method.

The testing results over 10 stations are given in Tables 1
and 2, whereQ- and the usual monthlyfoF2 medians are
compared.Ap132andAp132approximated indices were used
in Table 1, whileR132 andR132 approximated – in Table 2.
One and the same period 1957–1997 (1962–1992 after the
11-year smoothing) for all stations was considered. Max-

imal correlation coefficients corresponding to the optimal
time shift ofAp132 (or R132), with respect toδfoF2132 varia-
tions, are given in Tables 1 and 2 for 00:00 and 12:00 LT.

The results of Tables 1 and 2 show that the correlation co-
efficients are larger when both approximatedδfoF2132 and
Ap132 (or R132) variations are considered. The difference
when approximated and non-approximated indices are used
is significant at the 99.9% confidence level according to the
T-criterion. The use ofQ-medians compared to the usual
monthly ones provides a larger number of significant cases.
The percentage of significant cases (Q-medians/usual medi-
ans) is 80% / 67% whenAp132 is used, and 67% / 45% when
R132 is considered. Therefore,Q-medians seem to be prefer-
able for the method. On the other hand, the difference be-
tween significant correlation coefficients from Tables 1 and 2
is not significant according to the T-criterion whenAp132
is used, and the difference between the two medians is sig-
nificant at the 98% confidence level (Q-medians are better)
whenR132 is considered. Thus, some additional character-
istics should be compared. A comparison of the time shift
betweenδfoF2 andAp132 (or R132) variations can help se-
lect the best combination. The average optimal time shifts
along withSD calculated for the significant cases from Ta-
bles 1 and 2 are given in Table 3. TheQ-medians/Ap132 ap-
proximated combination provides the leastSD for the time
shift, which is around−3 years. This combination has been
chosen for the final method.
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Table 3. Average optimal time shift with±SD betweenδfoF2 andAp132 (or R132) approximated variations calculated from the results of
Tables 1 and 2

Q-medians Usual monthly medians

Ap132 appr. R132 appr. Ap132 appr. R132 appr.

−2.8±0.83 −2.3±1.25 −1.4±1.59 −1.6±1.62

Table 4. Ionosonde stations and calculated slopeKr (in 10−4 per year) for the period of increasing geomagnetic activity 1965–1991.KM+m

values from Mikhailov and Marin (2000) are given for a comparison. Bold face figures forKM+m show significant trends with a confidence
level≥ 90%, italic face figures are trends which are not significant at the 90% confidence level

Station 8 8inv Geographic 00:00 LT 12:00 LT
Deg Deg Lat Lon Kr KM+m Kr KM+m

Lycksele 62.70 61.42 64.70 18.80 −6.21 +1.9 −0.96 −26.0
Uppsala 58.44 56.61 59.80 17.60 −0.56 −42.2 −0.40 −27.6
St. Petersburg 56.17 55.91 60.00 30.70 −1.04 −19.2 −0.09 −16.1
Juliusruh 54.40 51.61 54.60 13.40 −1.80 −33.7 −0.82 −12.2
Ekateringburg 48.42 51.45 56.70 61.10 −5.20 −30.2 −0.31 −12.0
Moscow 50.82 51.06 55.50 37.30 −1.10 −25.6 +0.31 −12.0
Tomsk 45.92 50.58 56.50 84.90 −0.95 −16.9 −1.10 +5.0
Slough 54.25 49.80 51.50 359.43 −0.27 −13.1 −0.52 −5.9
Dourbes 51.89 47.80 50.10 4.60 −0.30 −3.9 −0.25 +1.7
Poitiers 49.40 45.05 46.60 0.30 −0.83 −9.4 −0.67 −0.3
Rome 42.46 37.48 41.90 12.52 0.00 −2.3 −2.57 +6.2
Ashkhabad 30.39 30.55 37.90 58.30 −0.40 −4.4 −0.88 −1.4

Table 5. Same as Table 4, but for the period of decreasing geomagnetic activity 1955–1970

Station 00:00 LT 12:00 LT
Kr KM+m Kr KM+m

Slough +0.66 +38.9 −1.29 +20.3
Moscow +0.25 +32.2 −0.03 +16.2
Tomsk +0.46 +12.4 +0.06 +15.2

The obtained significant correlation coefficients (Tables 1
and 2) are seen to be large and negative both for 00:00 and
12:00 LT. The only case of positive correlation ofδfoF2 with
geomagnetic activity is demonstrated at the lower latitude
station of Rome at 12:00 LT, and this may be explained in
the framework of contemporary F2-layer storm mechanisms
(Mikhailov and Marin, 2001).

4 Rising and falling periods in geomagnetic activity

The basic points of the geomagnetic control concept by
Mikhailov and Marin (2000) is the dependence offoF2
trends on geomagnetic (invariant) latitude and the existence
of negative/positivefoF2 trends for the periods of long-
term increasing/decreasing geomagnetic activity. Both fea-
tures were explained using the F2-layer storm mechanisms
(Mikhailov and Marin, 2001). Therefore, if the revised ap-
proach is free of the geomagnetic control, then both features

should be absent in thefoF2 trends revealed. The same pe-
riod 1965–1991, as in Mikhailov and Marin (2000) of in-
creasing geomagnetic activity (Fig. 2, top), was chosen for
the analysis (Table 4). Keeping in mind the 11-year smooth-
ing, only stations with available observations for the period
1960–1996 could be analyzed. SlopesK for (M+m) year
selection from Mikhailov and Marin (2000) are given for
a comparison. Table 4 shows that unlike our previous re-
sults the calculated trends do not demonstrate any latitudi-
nal dependence being small and insignificant. Relatively
large and insignificantKr for Lycksele (00:00 LT) and Rome
(12:00 LT) are random and due to the scatter of data for the
conditions in question.

Similar analysis was made for the 1955–1970 period (Ta-
ble 5) of decreasing geomagnetic activity (Fig. 2, top) for
the 3 stations from Mikhailov and Marin (2000) where ob-
servations are available at least since 1950. The calculated
trends are seen to be small and insignificant, whileKM+m
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Fig. 3. Observed, calculatedδfoF2132 and their difference resulting in a residualfoF2 trend with the slopeKr for Slough 12:00 LT (top
panels), along with the relationship between polynomial approximatedδfoF2132 andAp132 (bottom panels). Right-hand panels show the
results with a complementary trend (Kc = +3.1 × 10−4 per year). Note the tightening of two branches in theδfoF2132 versusAp132
dependence (left-hand, bottom) after applying a complementary trend (right-hand, bottom).

are large and positive, in accordance with the geomagnetic
control concept.

The results obtained show that the proposed method pro-
videsfoF2 trends which are small, insignificant and latitudi-
nal independent, regardless of the phase of the geomagnetic
activity long-term variation. This means that trends are free
of geomagnetic effects in terms of the geomagnetic control
concept. On the other hand, most of the trends are seen to
be negative (Table 4) and this may tell us about an additional
mechanism affecting the trends (see later).

5 ResidualfoF2 trends

The obtainedfoF2 trends were shown to be insignificant for
relatively short time intervals (rising or falling periods of ge-
omagnetic activity). Obviously, high correlation coefficients,
resulting in good fitting and smallKr , can be easier obtained

for short time intervals, including only one branch of the ge-
omagnetic activity variation, but this may not be the case for
longer periods. Therefore, the method was applied to Slough
where foF2 observations for 12:00 LT are available for the
1933–1997 period. After 11-year smoothing, the available
period for analysis reduces to 1938–1992. Calculated and
observedδfoF2132 variations, as well as their differences, are
shown in Fig. 3 (left-hand, top). The proposed method is seen
to describe the main features of the observedδfoF2132 varia-
tion. The residuals demonstrate a long-term linear trend with
a slopeKr = −2.23 × 10−4 per year, which is significant
at the 95% confidence level. Instead of pronounced negative
foF2 trends for the 1940–1960 and 1970–1992 periods and
a positive trend for the 1960–1970 period, which we would
have under the geomagnetic control concept, the residuals
(Fig. 3) do not reflect these long-term variations in geomag-
netic activity. Some fluctuations of the residuals around the
regression line reflect the imperfection of the model fitting
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Fig. 4. Relationship between polynomial approximatedδfoF2132 andAp132 for Juliusruh (12:00 and 00:00 LT) (top panels) and the same
dependencies after applying a complementary trend (bottom). Note the tightening of the loops in the second case.

the observedδfoF2132 variations.

Strong diurnal variation of thefoF2 trend magnitude was
another feature revealed and explained in the framework
of the geomagnetic control concept (Mikhailov and Marin,
2000, 2001). This was also checked for Slough wherefoF2
observations for all LT moments are available for the 1944–
1997 period. The results of the calculations are given in Ta-
ble 6. Unlike our previous results, the calculatedKr are small
and most of them are insignificant all day long. Only trends
around noon and in the evening turn out to be significant. De-
spite this insignificance in the trends (which were calculated
absolutely independently for 24 LT moments), they clearly
demonstrate a consistent pattern of some diurnal variation
(Table 6). This means that the calculated trends are not ran-
dom and may need physical interpretation in future. The im-
portant result for further discussion is that most of the trends
in Table 6 are negative similar to the conclusion made in Ta-
ble 4. The optimal time shift betweenAp132 andδfoF2132
variations averaged over 24 LT moments is−3.4±0.88 years.

This is comparable with the estimate obtained over 10 sta-
tions for 12 LT (Table 3, theQ-medians/Ap132 approximated
combination).

The residual trend is seen to result from incomplete fit-
ting of the calculatedδfoF2132 variation to the observed one
(Fig. 3, left-hand, top). This is due to theδfoF2132 versus
Ap132 regression used in the calculations. The left-hand bot-
tom panel of Fig. 3 gives a dependence between approxi-
matedδfoF2132 andAp132 values used in the calculations.
Two branches are seen in this dependence: one – before the
end of the 1950s, the other – after 1971. The type of de-
pendence is about the same, but the curves are seen to be
shifted. An additional analysis has shown that the differ-
ence between the two branches remains, regardless of the
shift (−5 ÷ 0 years) applied to theAp132 variation with re-
spect to theδfoF2132 one. It seems as if the “efficiency” of
geomagnetic disturbances has increased since the middle of
the 1960s as the sameδfoF2132 values correspond to lower
Ap132 after 1971.
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Table 6. Diurnal variation of the slopeKr (in 10−4 per year) of
the residual trend for Slough. The optimal time shift1t (in years)
betweenδfoF2132 andAp132 variations is given as well. Bold face
figures show significant trends with a confidence level 95%, nor-
mal face figures are trends with a confidence level 90%, italic face
figures are trends which are not significant at the 90% confidence
level

LT Kr 1t LT Kr 1t

00 −1.84 -3 12 −2.76 -5
01 −1.68 -3 13 −2.48 -4
02 −1.54 -3 14 −3.96 -3
03 −0.53 -2 15 −4.27 -4
04 +0.12 -2 16 −5.75 -4
05 +0.45 -2 17 −7.90 -4
06 +0.04 -2 18 −10.50 -4
07 −0.91 -3 19 −8.76 -4
08 −2.51 -3 20 −5.53 -3
09 −1.90 -4 21 −4.75 -5
10 −3.39 -4 22 −2.59 -4
11 −3.71 -4 23 −1.74 -3

Table 7. The minimalSD (in 10−3) and corresponding slopes (in
10−4 per year) of a complementaryKc and residualKr trends for
Slough (12:00 LT). The start years for the complementary trend to
start are shown

Start years SD Kc Kr

1980 4.19 +2.98 −1.79
1975 3.85 +3.22 −1.48
1970 3.38 +3.41 −1.18
1965 3.18 +3.04 −1.04
1960 2.88 +3.20 −0.73
1955 2.46 +3.19 −0.44
1950 2.14 +3.17 −0.18
1945 2.09 +3.27 −0.33
1940 1.99 +3.23 −0.23
1938 2.01 +3.11 −0.07

The ambiguity in this dependence can be removed to a
great extent by applying a “complementary” linear trend to
theδfoF2132 variation. Table 7 shows the results of such cal-
culations for Slough (12:00 LT) when a complementary trend
with the slope Kc was switched on for different start years.

The results of Table 7 show thatSD and the slopeKr of
the residual trend decrease as the start year for the comple-
mentary trend shifts towards the beginning of the period in
question, with the complementary trend being about the same
with the slopeKc, close to+3×10−4 per year. The leastSD

(the best fitting) is obtained if the complementary trend is
applied for the whole period analyzed, starting from the first
year, with the latter being important for further discussion.
The final variations are shown in Fig. 3 (right-hand boxes). A
complementary positive trend withKc = 3.1×10−4 per year
tightens the loops in theδfoF2132 versusAp132 dependence

to practically one curve (Fig. 3, right-hand, bottom). The re-
sultant residual trend is close to zero (Kr = −0.07× 10−4

per year) in this case. Similar results were obtained for some
other stations with the complementary trends depending on
station and LT. An example of tightening the loops in the
δfoF2132 versusAp132 dependence demonstrates Juliusruh
for the 1962–1994 period (Fig. 4).

6 Discussion

The proposed approach to thefoF2 trend analysis allows us
to remove to a great extent solar and geomagnetic activity
effects fromfoF2 long-term variations and to show that the
residualfoF2 trends are small both for rising and falling pe-
riods of geomagnetic activity (Tables 4 and 5). The residual
significantfoF2 trend for Slough (12:00 LT), with the longest
available period offoF2 observations, was found to be small
with the slopeKr = −2.23 × 10−4 per year. Such a small
trend gives around 0.1 MHz in thefoF2 change over a 55-
year period for any reasonable meanfoF2 value accepted.
Therefore, such trends have no practical importance. But
from a physical point of view, the obtained result is inter-
esting, telling us that practically all observedfoF2 long-term
variations may be attributed to the variations in solar and ge-
omagnetic activity, i.e. they are of a natural origin. Although
this result was obtained using conventional indices,R12 and
Ap, they should be converted toRα

12 andAp132, to be used in
the trend analysis. This is due to the fact that initialR12 and
monthlyAp cannot properly present solar and geomagnetic
activity effects in thefoF2 long-term variations and more ef-
ficient indices are required. There are some related problems.
The first one concerns the procedure of the solar activity ef-
fect removal. The commonly accepted approach is based on
the foF2 regression (linear dependence) with sunspot num-
berR12. This came from empirical modelling (for instance,
IRI-90), where quite a different problem was solved. The
goal of monthly median ionosphere empirical modelling is to
find the best approximation for the observed monthly median
foF2, M(3000)F2,foF1, or foE solar cycle variations using
any index of solar activity. A linear or nonlinear relationship
with direct solar indices (R12, F10.7) or ionospheric indices
(T , IG,MF2) is used to solve this problem (e.g. Mikhailov
and Mikhailov, 1999 and references therein). MonthlyfoF2
medians include both solar and geomagnetic activity effects
and the empirical relationship withR12 is no more than a
successful approximation, having practically nothing to do
with the F2-layer formation mechanisms. Therefore, using
the regression offoF2 with R12 we attribute toR12 both ef-
fects in the observedfoF2 variations. Whether it is possible
to describe “pure”foF2 solar activity variations using theR12
index and how such a dependence looks like is a question of
special consideration. Anyway, it is clear that such a “pure”
dependence cannot just be a linear regression offoF2 with
R12, which only presents the first term of an expansion in a
power series ofR12.
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As an example, this can be shown for the mid-latitude
summer daytime F2-layer, when vertical plasma drift is close
to zero due to small thermospheric winds. For such geophys-
ical conditions we can use the well-known expressions by
Rishbeth and Barron (1960)

Nm F2 = 0.75× qm/βm, βm × H 2/Dm = 0.6 , (4)

where ion production rate,qm, linear loss coefficient,βm,
and ambipolar diffusion coefficient,Dm, are given at the F2-
layer maximum, withH being the atomic oxygen neutral
scale height. These two expressions may be combined and
re-written for a fixed heighth1, say 300 km (Mikhailov et
al., 1995), to give

Nm F2 ∝
Io [O]4/3

1

T
5/6
n [N2]2/3

1

, (5)

whereIo – solarEUV flux, [O] and [N2] – atomic oxygen
and molecular nitrogen concentration,Tn – neutral temper-
ature. According to the Nusinov (1984, 1992) model total
solarEUV flux is I0 ∝ F

2/3
10.7. The ratio of thermospheric pa-

rameters in Eq. (5) may be estimated using the MSIS-86 ther-
mospheric model (Hedin, 1987). This ratio may be shown to
be proportional toF 4

10.7 at 300 km height. Therefore,

f oF2 ∝

√
NmF2 ∝ F

7/3
10.7 .

Annual meanF10.7 andR12 indices are known to be highly
correlated (the correlation coefficient is 0.991, and is signif-
icant at the 99% confidence level). Then we obtainfoF2∝
R2.33

12 . According to our calculations for Slough (as an ex-
ample), the summer daytime (12:00 LT)α values are the fol-
lowing: May (2.43), Jun (2.61), Jul (2.78), Aug (1.85), which
are close to the above made estimate. Therefore, the “pure”
foF2 dependence onR12 may differ essentially from just the
linear law usually used in thefoF2 long-term trend analysis.
It should be stressed once again that the regression (1) is not
a “model” in the usual sense of the word, since it is accepted
in all earlier approaches. This regression removes the solar
activity part from the observedfoF2 variations, rather than
drawing the best curve over the observed points.

The other problem concerns the removal of geomagnetic
activity effects from thefoF2 variations. The use of monthly
or even annual meanAp indices is not efficient as our anal-
ysis has shown. Indeed, an inclusion of the monthlyAp in-
dex to the regression does not remove the geomagnetic ac-
tivity effects, but only contaminates (due to low correlation
with monthly foF2) the analyzed material without chang-
ing, in principle, the results obtained (Mikhailov and Marin,
2000). As it was mentioned earlier, the usual monthlyfoF2
medians bear F2-layer storm effects (geomagnetic activity
effects) which, however, cannot be removed using conven-
tional monthlyAp indices. This is not surprising, since the
global Ap index cannot, in principle, take into account the
whole complexity of the F2-layer storm effects with posi-
tive and negative phases depending on season, UT and LT of
storm onset, storm magnitude, etc. Therefore, an interpre-
tation of the F2-layer parameter long-term trends (based on

previous methods) should consider the geomagnetic effects
as an inalienable part of the trends revealed, and this can be
done based on the contemporary understanding of the F2-
layer storm mechanisms (Mikhailov and Marin, 2000, 2001).

A fruitful idea has been proposed by Deminov et al.
(2000), who used quiet timefoF2 median (Q-median) values
to analyze thefoF2 long-term trend for Slough. Specially se-
lected quiet time periods were used to produce such monthly
Q-medians, which are free from short-term (monthly) vari-
ations of geomagnetic activity. We have used a simpler ap-
proach to obtainfoF2 Q-medians, which are also free from
short-term geomagnetic activity effects (as our analysis has
shown), but long-term geomagnetic activity variations are
still present in suchfoF2 Q-medians. This is clearly seen
in Fig. 2, where theδfoF2 variation closely follows the long-
termAp132 changes with a≈4–year time shift.

An essential point of the proposed method is the 11-year
running mean smoothing ofδfoF2 andAp values. The use
of 11-year smoothing conquers quasi-biannualδfoF2 oscilla-
tions (Fig. 1), which are not removed by any regression with
monthly or annual meanAp, due to low correlation coeffi-
cients. This is a principle point which usually is not taken
into account during the trend analysis. As far as we know,
only Ulich and Turunen (1997) and Deminov et al. (2000)
used correspondingly 11-year and 5-year smoothing in their
analyzes. Our consideration has shown that only the use of
11-year running meanδfoF2 andAp smoothing, along with a
polynomial approximation of these variations (which works
as an additional smoothing), allows one to bring up to the
0.90–0.95 correlation coefficient level (Table 1). Only with
such high correlation coefficients (which are significant at
the 95–99% confidence level) it is possible to draw a conclu-
sion that observedfoF2 long-term variations can be presented
mainly by solar and geomagnetic activity variations.

The 11-year smoothing ofδfoF2 values enable us to use
all years with observations, rather than only years around so-
lar minimum (m) or solar minima and maxima (m+M). The
latter was the crucial point of our previous method (Danilov
and Mikhailov, 1999; Mikhailov and Marin, 2000), which
allowed us to avoid the hysteresis effect infoF2 solar cycle
variations. The effect is known to take place at the rising and
falling parts of a solar cycle and is due to peculiarities in solar
EUV flux and geomagnetic activity variations in the course
of a solar cycle (Mikhailov and Mikhailov, 1995).

An interesting result is a−3 ± 1-year time shift between
Ap132 andδfoF2132 variations (Table 3), which provides the
maximal correlation coefficient (Table 1). The results of the
calculations show that this time shift varies slightly from sta-
tion to station (for one and the same LT) and depends on LT
at a given station (Table 6). An analysis of this problem is
out of scope for this paper and now it is not clear what the
mechanism of such a 3–4 year delay is in the thermosphere
reaction to the long-term changes in geomagnetic activity.
Such a large time delay implies that the whole Earth’s atmo-
sphere is involved with the processes provoked by geomag-
netic activity. Changes in the global atmospheric circulation
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Fig. 5. Annual mean and 11-year run-
ning meanAp index variations during
the 20th century. Annual meanAp in-
dices prior to 1932 were reconstructed
from aa indices available since 1868.
Symbols (m) and (M) refer to years of
solar cycle minimum and maximum.

and related variations in the thermospheric neutral composi-
tion and temperature are the most probable mechanisms.

Although the proposed approach essentially deletes so-
lar and geomagnetic activity effects and gives small and in-
significant residualfoF2 trend for the rising period of geo-
magnetic activity (Table 4), most of these trends are negative.
Slough (12:00 LT) also demonstrates negative and significant
residual trend calculated over the 55-year period which in-
clude both rising and falling periods in geomagnetic activity
(Fig. 3, left-hand box).The same result was obtained on diur-
nal variations for Slough (Table 6). Therefore, this result can
hardly be coincidental. NegativefoF2 trends may be consid-
ered as a manifestation of the geomagnetic control which is
not completely removed by the proposed method. Indeed,
there is a very long-term increase in geomagnetic activity
(e.g. Clilverd et al., 1998) which requires more smoother
than Ap132 indices for its description. This long-term in-
crease takes place even for the analyzed period (Fig. 2, top),
where a positive (K = 0.02 per year) trend is seen in the
observedAp132 variation. Figure 2 (top) is only a fragment
of the general picture showing the increase in geomagnetic
activity in the course of the 20th century (Fig. 5). This is a
very delicate question which requires special consideration
and is not discussed here.

An inclusion of a complementary linearδfoF2 trend to
our analysis restores the unambiguity in theδfoF2132 versus
Ap132 dependence (Figs. 3 and 4) and practically results in
a zero residual trend. Let us consider the sense of this com-
plementary trend. The loop in theδfoF2132 versusAp132 de-
pendence (Figs. 3 and 4), in principle, may be related to some
changes in theAp index determination after the middle of the
1960s (new stations, a modified method, etc.). The differ-
ence between the two branches is not large (10–15%), but it
is clearly seen in Figs. 3 and 4. On the other hand, Fig. 4 (top)
shows that we have a new branch after 1990, shifted in the
same direction and this can hardly be related to any changes
in the method of theAp index determination. Therefore, we
should accept that observedδfoF2132 values include an addi-

tional negative long-term trend which is not described byRα
12

andAp132 variations and the complementary trend just com-
pensates it. An intriguing explanation of the complementary
trend could be related to the anthropogenic activity, such as,
for instance, the increasing rate of rocket and satellite launch-
ing, which leads to the thermosphere pollution (Kozlov and
Smirnova, 1999; Adushkin et al., 2000). Indeed, switching
on a complementary trend since 1960 (as the beginning of
the cosmic era) improves to some extent the picture with the
loops in Figs. 3 and 4, but the best results (the leastSD) are
obtained if the trend is switched on from the first year (1938)
of the period analyzed (Table 7). It is impossible to link this
result with the anthropogenic space pollution. Therefore, the
only plausible explanation (as it is seen from now) of the
complementary trend is a compensation of a negative trend
initially presented in the observedδfoF2132 values. This neg-
ative trend presumably has the same F2-layer storm nature as
discussed by Mikhailov and Marin (2001) and is due to the
earlier discussed very long-term increase in geomagnetic ac-
tivity in the 20th century.

7 Conclusions

1. A new method to extractfoF2 long-term trends, which
are free to a great extent from solar and geomagnetic
activity effects, has been proposed. This is achieved by
using:

(a) a foF2 regression withRα
132 (whereα is a fitting

parameter) to remove the solar activity part from
thefoF2 long-term variations;

(b) relative rather than absoluteδfoF2 deviations to find
δfoF2132 (11-year running mean values);

(c) a regression withAp132 (11-year running meanAp

values) to remove the geomagnetic activity effects
from thefoF2 long-term variations. BothδfoF2132
and Ap132 variations are to be further smoothed,
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to provide the best correlation coefficients. Neither
monthly nor annual meanδfoF2 values provide a
high enough correlation withAp indices and cannot
be recommended for thefoF2 trend analysis;

(d) foF2 quiet time (Q-medians) rather than usual
monthly medians;

(e) all availableδfoF2 observations rather than (m) or
(m+M) year selections used in the previous version
of our method;

(f) a −3 ± 1-year time shift betweenAp132 and
δfoF2132 variations, to obtain the best correlation
(the leastSD). This time shift may be due to a large
delay in the thermosphere reaction to the long-term
changes in geomagnetic activity, with the physical
mechanism of such an influence being unclear now.

2. ThefoF2 trends calculated for rising and falling phases
of the long-term geomagnetic activity variation show
neither latitudinal dependence nor any dependence on
the phase being small and insignificant. The exis-
tence of such dependencies for the trend magnitude was
the basic point of the geomagnetic control concept by
Mikhailov and Marin (2000, 2001).

3. The residual trend for Slough, calculated over the 55-
year period, is small (Kr = −2.2 × 10−4 per year)
and significant. Such smallfoF2 trends have no prac-
tical importance. On the other hand, negative (although
primarily insignificant), residual trends that are calcu-
lated over 10 ionosonde stations for a shorter period
(31 years) may be considered as a manifestation of a
very long-term geomagnetic activity increase, which
did take place in the 20th century (Clilverd et al., 1998).
But this effect cannot be removed even by using very
smoothed indices, such asAp132.

4. The main conclusion is that all revealedfoF2 long-term
variations (trends) may be attributed to the long-term
solar and geomagnetic activity variations, i.e. they are of
a natural origin. There is no indication of any manmade
foF2 trends.
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