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Abstract. We present a new type of hybrid simulation
model, intended to simulate a single stable auroral arc in the
latitude/altitude plane. The ionospheric ions are treated as
particles, the electrons are assumed to follow a Boltzmann
response and the magnetospheric ions are assumed to be so
hot that they form a background population unaffected by
the electric fields that arise. The system is driven by as-
sumed parallel electron energisation causing a primary neg-
ative charge cloud and an associated potential structure to
build up. The results show how a closed potential structure
and density depletion of an auroral arc build up and how they
decay after the driver is turned off. The model also produces
upgoing energetic ion beams and predicts strong static per-
pendicular electric fields to be found in a relatively narrow
altitude range (∼5000–11 000 km).

Key words. Magnetospheric physics (magnetosphere-iono-
sphere interactions; auroral phenomena) – Space plasma
physics (numerical simulation studies)

1 Introduction

Dynamic interactions and energy flow between the magneto-
sphere and the ionosphere are associated with auroral emis-
sions, which can be either diffuse or discrete. Quiet dis-
crete aurora consists of one or several auroral arcs. Dur-
ing disturbed times, discrete aurora can be very complicated
but usually can still be described as being a superposition
of several auroral arcs, which however now may undulate,
wiggle, and wind up. Thus, a single quiet auroral arc is a
basic building block of ionosphere-magnetosphere coupling
whose physical origin we should try to understand before the
more complicated, dynamical phenomena can be efficiently
studied. It is known that auroral arcs are elongated, narrow
forms that are associated with inverted-V type electron pre-
cipitation (Evans, 1974; Lin and Hoffman, 1979). The term
inverted-V originally referred to the shape of the dependence
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of the electron energy on latitude but, nowadays is usually
used to describe any electron energy spectrum having a dis-
tinctive monoenergetic peak; the latitudinal dependence does
not need to resemble that of an inverted V letter (Newell,
2000).

It is known with high certainty that there is a U-shaped po-
tential structure (Carlqvist and Boström, 1970; Lundin and
Eliasson, 1991; Carlson et al., 1998) above the optical arc
in the acceleration region. Thus in this paper we will use
the term “arc” to refer not only to the optical arc but also its
associated potential structure and its associated plasma cav-
ity, if any. Magnetospheric electrons are accelerated down-
ward and ionospheric ions upward by the upward parallel
electric field associated with the potential structure (Lundin
and Eliasson, 1991; Carlson et al., 1998). Ionospheric elec-
trons cannot rise above the bottom of the potential struc-
ture and magnetospheric ions are prohibited from reaching
the ionosphere by the potential, unless they are energetic
enough to overcome the potential. Typically a density deple-
tion is observed above the bottom of the U-potential (Persoon
et al., 1988; Carlson et al., 1998) and several types of plasma
waves are commonly observed at different parts of the poten-
tial structure (Gurnett, 1991; André, 1997; Lysak and André,
2001).

The potential contours that are U-shaped at low altitude
must close somewhere. In principle this can happen either in
the other hemisphere in a symmetric potential structure or at
some intermediate altitude below the equatorial plane (Hal-
linan and Stenbaek-Nielsen, 2001). If the potential contours
close in the opposite hemisphere, electrons which are accel-
erated downward at the bottom of the potential must enter
the flux tube by moving perpendicularly against an electro-
static force somewhere in the magnetosphere. On the other
hand, if the contours are closed below the equatorial plane,
there must be a downward electric field at that altitude which
the electrons must overcome in order to enter the potential
structure. Thus, if the question of potential closure can be
resolved, the class of possible models for powering the au-
roral arcs by magnetospheric mechanisms can be restricted
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in an important way. Recent results support the idea that
the potential contours close below the equatorial plane (Jan-
hunen et al., 1999; Janhunen and Olsson, 2001; Hallinan and
Stenbaek-Nielsen, 2001).

Most attempts to understand the formation of auroral arcs
have been based on simulation models. Magnetohydrody-
namic (MHD) based three-dimensional simulations coupled
with models of precipitation-induced ionisation production
in the ionosphere have been developed by several authors
(Sato, 1978; Watanabe et al., 1993). Some of these works
also contain an anomalous resistivity added (Otto and Birk,
1993; Watanabe et al., 1993). In the MHD simulations the
main emphasis has been in studying the feedback instability,
i.e. the nonlinear feedback between ionospheric conductance
reacting to electron precipitation and the field-aligned cur-
rent carried by the precipitating electrons. Magnetic recon-
nection that might occur in the acceleration region, because
of the presence of anomalous resistivity leading into elon-
gated current sheet formation, has been studied with non-
ideal MHD (Otto and Birk, 1993). Both the feedback insta-
bility and anomalous resistivity were found to produce elon-
gated field-aligned current sheets that were interpreted as the
large-scale manifestations of auroral arcs. MHD which con-
tains both the ionospheric feedback instability and anoma-
lous resistivity has been found to produce U-shaped potential
structures under some conditions (Watanabe et al., 1993). A
model, having two electron fluids and perpendicular ion mo-
tion with Alfv én waves, was used to show that a model based
on Alfvén waves produces a time-asymptotic state that can
be regarded as electrostatic (Rönnmark and Hamrin, 2000).
Finally, two-dimensional MHD-type model augmented with
electron inertia has been used to study the development and
striation of auroral arcs (Seyler, 1990).

One-dimensional, fully kinetic, simulations for under-
standing the origin of the parallel electric fields have also
been developed (Ergun et al., 2000; Schriver et al., 2001).
It was found that the bottom of the U-potential may con-
sist of two separate layers of parallel electric field, the lower
one of which separates the cold ionospheric plasma from the
auroral density depletion and the upper one separates mag-
netospheric protons from the auroral density depletion (Er-
gun et al., 2000). Depending on the magnetospheric source
plasma boundary conditions, both upward and downward
parallel electric fields were found to develop (Schriver et al.,
2001). Recently, a spontaneous formation of several field-
aligned current sheets resembling auroral arcs was found to
occur using a two-dimensional semiglobal hybrid simulation
(Swift and Lin, 2001).

In this paper we present a new type of two-dimensional
electrostatic hybrid simulation model in which both iono-
spheric and magnetospheric electrons are assumed to follow
a Boltzmann response, ionospheric ions are treated explic-
itly as particles and magnetospheric ions are, for simplicity,
assumed to be so hot that they are unaffected by the poten-
tial structure and therefore form a uniform background. This
type of simulation is able to describe the formation of paral-
lel electric fields, auroral density depletion and upflowing ion

beams self-consistently in a two-dimensional setting. Wave-
particle interactions of electrons are not self-consistently in-
cluded in the model but effects describing them can be added
in the manner described below. Our model contains the same
physics as the one-dimensional models of Ergun et al. (2000)
and Schriver et al. (2001), except for the omission of elec-
tron kinetic effects which, however, are not essential for the
questions we study here. Because of our assumption that
magnetospheric ions are very hot, we cannot expect to re-
produce the double transition layer feature of Ergun et al.
(2000). The advantages of our model are that it contains
full ion kinetics and two spatial dimensions together with the
possibility of studying the global effects of assumed elec-
tron wave-particle interactions. With our model we cannot,
however, describe the magnetospheric auroral arc powering
mechanism self-consistently as the MHD simulations do; en-
ergy input from the magnetosphere is contained in the as-
sumed electron anisotropy caused by wave-induced parallel
energisation. The development of a new type of ion pusher
(“monopole solver”) increases the efficiency of our model
considerably and thus increases its practical applicability.
We verify that the model produces the observational satellite
signatures of an inverted-V region such as ion beams, con-
vergent electric fields, parallel electric fields and an auroral
density depletion. In this paper we use the model for study-
ing the closure of the potential contours and the lifetime of
auroral density depletions after the inverted-V precipitation
that created them has disappeared.

The structure of the paper is such that we first present the
simulation model, then show some results with figures with
a discussion of their implications. At the end there is a dis-
cussion and summary section.

2 Simulation model

To simulate a system composed of auroral flux tubes we sep-
arate the electron and ion time scales. Electrons are assumed
to move so fast compared to ions that the electron distribu-
tion reaches a quasi-stationary state before ions start mov-
ing. Thus the problem breaks down into (1) computing the
time-asymptotic electron density profile when the ion den-
sity is known and fixed, (2) moving the ions one step further
in known electric and magnetic fields. The magnetic field
is assumed to be fixed and equal to the dipole field all the
time. Thus the model is electrostatic and the electric field is
a potential gradient,E = −∇V .

Because we are interested in scale sizes larger than the De-
bye length, quasi-neutrality holds, i.e. the total electron and
ion densities are equal everywhere and at all times. Thus
there are four particle populations: magnetospheric ions,
magnetospheric electrons, ionospheric ions (taken to be O+),
and ionospheric electrons. We denote their densities byn

(m)
i ,

n
(m)
e , n

(i)
i andn

(i)
e , respectively. The ionosphere is assumed

to be a complete absorber for both electrons and ions and
secondary particle production is neglected. We now discuss
each of these populations in turn.
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Magnetospheric ions (n
(m)
i ) are assumed to be so energetic

that they are virtually unaffected by the electric field and thus
they form a static background positive charge density profile
n

(m)
i . In reality, this assumption is often valid and is made

here for the sake of simplicity. We assume that the hot ions
form an isotropic Maxwellian population at high altitude and
that ions hitting the ionosphere are lost completely. The pres-
ence of ionospheric loss modifies the density profile from a
constant value so that the density is given by

n
(m)
i =

1

2
n(m)

src

(
1 +

√
1 − B/B(i)

)
(1)

wheren(m)
src is the magnetospheric source plasma density,B is

the local magnetic field andB(i) is the ionospheric magnetic
field (Janhunen, 1999, Eq. (31), henceforth called J99).

Similarly to magnetospheric ions, also magnetospheric
electrons (n(m)

e ) are assumed, in the ground state of the
system, to originate from an isotropic Maxwellian source
plasma at high altitude with complete loss occurring at the
ionosphere. In the absence of an electric field the magneto-
spheric electron density profilen(m)

e0 is, because of isotropy,

equal to the magnetospheric ion density profilen
(m)
i (Eq. 1).

When an electric potential profileV is present, the magneto-
spheric electron density is modified by the Boltzmann factor
so thatn(m)

e = n
(m)
e0 exp(eV/T

(m)
e ), whereT

(m)
e is the source

plasma temperature of magnetospheric electrons. The for-
mula is only valid if the potential structure is sufficiently sim-
ple so that particle accessibility effects do not arise. This will
be the case for the potential structures that form in our simu-
lation.

Ionospheric ions (n(i)
i ) are the ones that are treated as

macroparticles in the simulation. Thus their density is ob-
tained, at each time step, directly by the charge accumulation
procedure. The ions are emitted from the bottom of the sim-
ulation box corresponding to an isotropic Maxwellian popu-
lation whose density and temperature is given below.

Ionospheric electrons (n
(i)
e ) are, similarly to the magne-

tospheric ones, assumed to follow the Boltzmann response,
n

(i)
e = n

(i)
e0 exp(eV/T

(i)
e ), wheren

(i)
e0 is the ionospheric elec-

tron density profile in theV = 0 case andT (i)
e is the tem-

perature of the ionospheric electrons. There are several pos-
sibilities for specifying a model forn(i)

e0 , all of which, how-
ever, yield almost identical final simulation results. This is
becauseT (i)

e � T
(m)
e and thus only minor changes inV

are enough to bringn(i)
e into charge balance with the other

species, regardless ofn
(i)
e0 . For simplicity, we assume in this

work thatn(i)
e0 has a constant value which is equal to the iono-

spheric source densityn(i)
src at the bottom of the simulation

box.
The magnetospheric source plasma density in all runs is

n
(m)
src = 0.3 cm−3. There are 105 grid points along the mag-

netic field direction and 60 in the perpendicular. The grid
spacing varies because of the dipole geometry but is about
350 km in the field-aligned direction and about 370 m in the

latitudinal direction near the ionosphere. The timestep is
0.7 s. The total number of macroparticles varies but is typ-
ically about 580 000. The duration of one 1800 s run with
these parameters is about 6 h (700 MHz AMD Athlon pro-
cessor). The other parameters are listed in Table 1.

The quasi-neutrality condition now reads

n
(i)
e0 exp(eV/T (i)

e ) + n
(m)
e0 exp(eV/T (m)

e ) = n
(m)
i + n

(i)
i . (2)

It is assumed here that the magnetospheric source plasma
electrons are in the same potential as the ionospheric elec-
trons. If this is not what is wanted, the equation should be
correspondingly modified. For each field line, this equation
must be solved numerically forV at each altitude. The right
hand side of the equation is known sincen

(i)
i is accumulated

from the simulation macroparticles representing ionospheric
ions (remembering to take into account also flux tube scal-
ing). Since the left hand side of Eq. (2) is a monotonic func-
tion of V , the solution is unique. We have now completed
solving the electron response problem, under the various as-
sumptions stated; i.e. from a knownn(i)

i we know how to
calculateV and thus the electric fieldE = −∇V everywhere.

The remaining task is to push the ions one step forward in
known electric and magnetic fields. Gravitation is also taken
into account and can be handled in the same way as the elec-
tric field. The electric fieldE is the potential field−∇V and
the magnetic fieldB is the dipole field. This is, in princi-
ple, an easy problem for which many methods are available.
One of the simplest methods is the Buneman solver (Hock-
ney and Eastwood, 1988), which is the staggered leapfrog
method applied to the Lorentz force expression. A property
of the Buneman solver is that it gives the correct particle drift
velocity even if the timestep is longer than the Larmor period;
but the Larmor radius is then exaggerated because the parti-
cle moves along a straight line during each timestep. The ex-
aggeration of the Larmor radius is harmful only if it exceeds
the perpendicular grid spacing. Thus we obtain the timestep
condition1t < 1x⊥/vi for the Buneman solver. Here1x⊥

is the perpendicular grid spacing andvi is the (maximum)
ion perpendicular speed.

At the ionospheric end of the simulation box the perpen-
dicular grid spacing1x⊥ is so small (∼ 1 km) that using
the Buneman solver would require using a short timestep,
making the simulation slow. One can obtain a more efficient
scheme by approximating the electric and magnetic fields in
the vicinity of the particle in such a way that an exact solu-
tion can be obtained. It turns out that approximatingB by
the field of a hypothetical magnetic monopole gives a good
method which is outlined in Appendix A. In the monopole
solver the timestep condition is1t < 1x‖/vi , where1x‖ is
the parallel grid spacing. Thus one can use a factor of1x‖

/1x⊥ longer timestep than in the Buneman solver; this is a
significant improvement because1x‖/1x⊥ ∼ 103 near the
ionosphere (see below).

When the ionospheric ions reach higher altitudes, in
a stationary state the conservation of particles dictates
nv/B=const wheren is the density,v is the parallel veloc-
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ity and B is the magnetic field. This gives a useful rough
estimate even though the state in the simulation is not com-
pletely stationary. Thusn ∼ B/v, so that both flux tube
expansion and ion energisation contribute to a rapid lower-
ing of the ionospheric ion density as a function of altitude.
If nothing is done to improve the situation, most comput-
ing power is spent at low altitudes and the ion distribution
function in the interesting high altitude regions is badly un-
dersampled. Our solution to this problem is to split a particle
into two whenever the grid cell, where the particle resides,
contains too few macroparticles. Each macroparticle carries
a number (weight) telling how many physical particles it rep-
resents. After each splitting, the weights of the daughter par-
ticles are half of the weight of the original unsplit particle
(Kallio and Janhunen, 2001). The reverse procedure, joining
particles together if a grid cell contains unnecessarily many
macroparticles, is not needed here since the ions are almost
always moving upward and thus along a widening flux tube.

We have now outlined the solution method of the coupled
ion and electron equations but not yet discussed how the au-
roral arc is actually driven. To this end we take a rather gen-
eral approach and assume the existence of a primary electron
densityn

(m),extra
e which is due to electron parallel energisa-

tion, presumably caused by wave-particle interactions. Thus
we replace the quasi-neutrality condition, Eq. (2), by

n
(i)
e0 exp(eV/T (i)

e ) + n
(m)
e0 exp(eV/T (m)

e )

+n(m),extra
e = n

(m)
i + n

(i)
i . (3)

From observations it is known that the electron plasma on
auroral field lines at∼ 4−6 RE radial distance is often com-
posed of a “middle-energy” population (100–1000 eV) and
a hot population (a few keV) (Janhunen et al., 2001; Jan-
hunen and Olsson, 2000). The middle-energy population is
often anisotropic in such a way that the parallel temperature
T‖ is larger than the perpendicularT⊥ while the hot popu-
lation is isotropic. The middle-energy anisotropies are cor-
related with bursty plasma waves. In Eq. (3) we take the
n

(m)
e0 term to represent the hot population andn

(m),extra
e the

middle-energy population. Our working hypothesis is that a
resonant electron parallel energisation mechanism affects the
middle-energy population only, thus producing theT‖ > T⊥

anisotropy while leaving the hot population intact.

To get an explicit model forn(m),extra
e we compute the

electron density altitude profile for a bi-Maxwellian source
plasma distribution functionfBM ,

fBM(W‖, W⊥) = n
(m),extra
e0

(me

2π

)3/2

1

T⊥

√
T‖

exp

(
−

W‖

T‖

−
W⊥

T⊥

)
, (4)

whereW‖ andW⊥ are the parallel and perpendicular kinetic
energies, respectively,T‖ andT⊥ are the temperatures,me is

the electron mass andn(m),extra
e0 is the source plasma density

associated with the anisotropic component at the magneto-

spheric end of the simulation box. The distribution function
fBM is normalised so that∫

d3vfBM

(
1

2
mev

2
‖
,

1

2
mev

2
⊥

)
= n

(m),extra
e0 (5)

(Eq. (3) of J99). To compute the density profile we utilise
Eqs. (16) and (18) of J99 in the absence of a potential drop
(V = V0 = 0 in that paper’s notation). Note that there is
a factor 2π/m2 missing in Eq. (16) of J99. The density is
obtained by integrating over the parallel and perpendicular
electron energiesE‖ andE⊥,

n =
2π

m2
e

∫
∞

0
dE⊥

∫ (b0/b−1)E⊥

0
dE‖

fBM

(
E‖ +

(
1 −

1

b

)
E⊥,

1

b
E⊥

)√
me

2E‖

. (6)

Hereb = B/B(m) andb0 = B(i)/B(m), whereB(m) is the
magnetic field at the magnetospheric end of the simulation
box andB(i) is the ionospheric field. The upper limit of the
parallel energy integration in Eq. (6) depends onb0; parallel
energies larger than the limit are in the loss cone and thus
excluded from the integration. The parameterb0 thus deter-
mines the loss cone width and by settingb0 → ∞ we would
obtain a case without ionospheric losses. The total density
n

(m),extra
e is composed of upgoing and downgoing parts which

are given bynup = n, ndown = limb0→∞ n (see J99). Doing
the integrals we obtain, after some simplifications,

n(m),extra
e = nup

+ ndown
=

bn
(m),extra
e0

(
1 +

√
b0−b

T‖

T⊥
+b0−1

)
2
[
1 + (b − 1)T⊥

T‖

] . (7)

One sees that wheneverT‖ 6= T⊥, Eq. (7) produces an

altitude-dependentn(m),extra
e , from which it follows that the

potentialV must also depend on altitude in a specific manner
in order to satisfy Eq. (3). In the absence of anisotropy and
without ionospheric losses (T‖ = T⊥ andb0 → ∞), Eq. (7)

would yield n
(m),extra
e = n

(m),extra
e0 , i.e. a constant. Fig. 1

showsn(m),extra
e for two different values ofT‖/T⊥. Basically,

n
(m),extra
e grows downward because of flux tube convergence,

except that in the vicinity of the ionosphere it gets reduced
again because of the ionospheric loss. The reduction close to
the ionosphere would be smaller if secondary electrons were
taken into account.

The strength of the arc formed can be controlled by the pa-
rametersT‖, T⊥ andn

(m),extra
e0 . By increasing theT‖/T⊥ ratio

one makes the arc stronger, the potential structure deeper and
its bottom altitude lower. A similar effect is also produced by
increasingn(m),extra

e0 . In the simulation here, we use Gaussian

profiles forT‖/T⊥ andn
(m),extra
e0 with half-width 0.05o. This

parameter defines the latitudinal width of the arc that devel-
ops.
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2 3 4 5
R

1

2

3

4

5

6

n

Fig. 1. The quantityne(m),extra given by Eq. (7) as a function of radial
distanceR (in units of Earth radius) forT‖/T⊥ = 2 (solid line) and
T‖/T⊥ = 8 (dashed line). Normalisation is such thatne(m),extra = 1
atR = 5.

We assume thatn(m),extra
e is not affected back by the elec-

tric field. This is just a way of parameterising the driver, not
an essential physical limitation.

The coordinate system used in the simulation is described
in Appendix B. We use a coordinate system which is de-
signed for allowing an exact dipole field without sacrificing
numerical performance.

We initialise the runs by letting the simulation box first
be completely empty and starting to emit ionospheric cold
ions from the lower boundary. The emitted ions gradually
move up and fill the simulation box with a density that drops
approximately exponentially with altitude, since gravity lets
only the highest energy ions reach high altitudes. During this
initialisation phase we do not compute the electric field, i.e.
the ions are treated as independent test particles. The length
of the initialisation phase is 1 hour. We refer tot = 0 as
the situation at the end of the initialisation phase, because at
t = 0 the self-consistent run starts.

We now summarise conceptually the operations during
one timestep in the simulation algorithm. The density due
to ionospheric ions is first accumulated from the ion posi-
tions. This, summed with the density of hot magnetospheric
ions (a fixed profile), gives the total plasma density which
we require to be equal to the total electron density due to
quasi-neutrality. Since the electrons follow a Boltzmann re-
sponse, their densities depend on the potentialV by Eq. (3).
We solveV numerically from Eq. (3) to get the electric field
E = −∇V , which is used to propagate the ions one step fur-
ther. The magnetic field is constant and equal to the dipole
field all the time.

At a point where the termn(m),extra
e is nonzero, the elec-

tron density due to other electrons must be reduced in order
to retain quasi-neutrality with the ion density at that point.
The system accomplishes this reduction by creating a neg-
ative potential structure around the point which repels elec-
trons and thus reduces their density locally. Qualitatively,
one may think that introducing negative charge creates a neg-
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Fig. 2. Density of cold ionospheric ions att = 400 s, averaged over
the previous 10 s.

ative potential structure, just as in Poisson equation based
simulation, even though in the present simulation Poisson’s
equation does not explicitly appear.

3 Simulation results

3.1 Baseline run

The run described here is such that the driver is turned on at
t = 100 s and turned off att = 700 s, after which the run is
continued for another 10 minutes to study the decay of the
formed arc.

In Fig. 2 we show the density due to ionospheric ions at
t = 400 s, i.e. 5 minutes after turning on the process pro-
ducing the primary charge cloud. A density depletion has
started to develop and has proceeded down to about 6500 km
altitude. Ion outflow is also visible as an enhanced density
in Fig. 2 at the centre of the arc up to about 30 000 km alti-
tude. Since the ion beam ions move fast, their contribution to
the density is small. The particle flux conservation requires
thatnv/B is constant wheren is the ion beam density,v the
ion beam velocity andB the local magnetic field. When the
ion beam accelerates upward,v increases andB decreases so
both effects combine to produce a rapid decrease ofn. Notice
that hot magnetospheric ions are not included in the density
plotted here.
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Fig. 3. Electric potential att = 400 s, averaged over the
previous 10 s.
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Fig. 4. Density of cold ionospheric ions att = 700 s, averaged
over the previous 10 s.
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Fig. 5. Total density att = 700 s, averaged over the previous
10 s.
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Fig. 7. Perpendicular (positive northward) electric field att =

700 s.

The electric potential contours att = 400 s are shown in
Fig. 3. The lowest dip of the potential structure has pro-
ceeded down to 6500 km altitude at this time. The depth
of the potential minimum is about 2.5 kV. The depth can
be changed by changing the parameters of the process that
causes the primary negative charge cloud (see previous sec-
tion and Table 2). The potential structure appears somewhat
more narrow than the density depletion. Most of the potential
contours close below 20 000 km altitude.

The ionospheric ion density att = 700 s (just before shut-
ting off the driver) is shown in Fig. 4. At this stage, a clear
density depletion starts from∼ 5500 km upward. The den-
sity enhancement due to the ion beam is now clearly visible
at the centre of the arc. The ions, that the potential structure
has sucked up from the dense and cold ionospheric plasma
layers, form the ion beam and have partly exited the sys-
tem. Since the flux tube widens strongly as a function of
altitude, the contribution of these ions to the plasma density
at high altitude is small, however, and is invisible when the
total plasma density (ionospheric+magnetospheric) is plotted
(Fig. 5). Fig. 5 shows the lower portion of the density deple-
tion, but above∼ 15 000 km the total density is dominated by
the magnetospheric ion background and thus does not show
any structure.

The potential structure at 700 s, i.e. just before turning off
the driver (Fig. 6) has moved downward by the same amount
as the density depletion. The lowest dip reaches 5500 km
altitude. The maximum potential depth is 3 kV.

68.9 69 69.1
0

10000

20000

30000

Upward E at t=700

ILAT

km

In mV/m

−1.66

−1.46

−1.26

−1.06

−0.863

−0.664

−0.465

−0.266

−0.0664

0.133

0.332

0.531

0.73

0.929

1.13

1.33

1.53

Fig. 8. Parallel (positive upward) electric field att = 700 s.

The perpendicular and parallel electric field components
can be computed from the 10-s averaged potential and are
shown in Figs. 7 and 8, respectively. The perpendicular field
reaches∼ 400 mV/m magnitude in the acceleration region
(∼ 7000 km altitude) and has a convergent signature. The
parallel electric field is much smaller in magnitude (Fig. 8);
the maximum upward parallel field of∼ 1.6 mV/m occurs
near the bottom of the acceleration region (∼ 6000 km alti-
tude). Downward electric fields of smaller magnitudes oc-
cur in upper regions. Notice that strong perpendicular elec-
tric fields are concentrated in a rather narrow altitude range
(∼ 5000–11 000 km).

After the driver has been turned off, the potential struc-
ture disappears in the electron time scale which is infinitely
fast in the present simulation. However, the density deple-
tion remains for∼10 min. In Fig. 9 we show the density
of ionospheric ions att = 1300 s, i.e. 10 min after turning
off the driver. Some remnants of the upgoing ion beam can
still be seen around 20 000–30 000 km altitude. Below about
10 000 km, the plasma has almost returned to its original state
but, above 10 000 km, a density depletion can still be identi-
fied. This stage of development could be called a “dead”
auroral density depletion, as opposed to a “live” density de-
pletion shown in the other figures.

In Fig. 10 we show simulated horizontal satellite passes
through the system att = 700 s (the fully developed potential
structure, just before the driver is turned off). Satellite cross-
ings are shown at 3000, 6000, 9000 and 12 000 km altitudes,
including the total plasma density and the plasma potential
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Fig. 9. Density of cold ionospheric ions att = 1300 s, averaged
over the previous 10 s.

along the orbit. At 3000 km altitude there is essentially no
signal of the potential structure (the weak and wide potential
minimum that is seen there is due to the ionospheric elec-
tric field). At 6000 km altitude one can see the formation
of a sharp potential structure and a wider density depletion.
At 9000 km the potential structure is wider, as is the density
depletion. At 12 000 km the satellite is in the centre of the
potential structure.

3.2 Other simulation runs

To investigate the effect of some input parameters in the base-
line run we make four other runs. The runs and the changed
parameters are listed in Table 1. The corresponding results
for the potential bottom altitude, the depth of the potential,
the density depletion minimum ionospheric ion density and
the maximum perpendicular and parallel electric fields are
given in Table 2.

In the “Anisotropy” run, the middle-energy electron aniso-
tropyT‖/T⊥ is lowered from 8 to 3. The result is a weak arc
at very high altitude; the potential depth is only 1 kV and the
bottom of the structure resides at 12 500 km altitude (Table
2). In a study of potential structures as a function of alti-
tude using Polar data, only weak potential structures (less
than 2 kV depth) were seen at high altitude (Janhunen et al.,
1999).

In the “Lowdens” run the partial density of the middle-
energy anisotropic electron population is halved. This brings
about a rather similar outcome as the “Anisotropy” run, al-
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Fig. 10. Simulated satellite passes at 3000, 6000, 9000 and
12 000 km altitudes, showing the total plasma density and the
plasma potential along the satellite orbit as a function of invariant
latitude.

though now the potential structure bottom altitude is little
lower (11 000 km) and the structure is more concentrated in
altitude.

In the “Highdens” run the density of the anisotropic elec-
trons is doubled. The resulting arc is a strong one, the po-
tential depth being 12 kV and the bottom altitude as low
as 2600 km. The peak perpendicular electric fields exceed
1 V/m.

In the “Winter” run, the ionospheric source plasma density
is halved. The potential bottom altitude is now 2600 km but
the potential depth (3.7 kV) is rather similar to the baseline
run. The peak perpendicular field (800 mV/m) is twice as
large as in the baseline run.

In all the runs presented here, no perpendicular potential
difference was assumed to exist in the magnetospheric source
plasma, i.e. Eq. (3) was used as is, without adding any offsets
in the Boltzmann factors. We also made one run by assum-
ing a Gaussian-shaped negative−3 kV potential profile in the
source plasma, of the same half-width as the arc and without
n

(m),extra
e . Thus, Eq. (3) was, in this run, replaced by

n
(i)
e0 exp(eV/T (i)

e ) + n
(m)
e0 exp(e(V − V0)/T (m)

e )

= n
(m)
i + n

(i)
i , (8)
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Table 1. Run input parameters

Run T⊥ T‖/T⊥ n
(m),extra
e0 /n

(m)
src T

(m)
e T

(i)
e n

(i)
src arc width

Baseline 100 eV 8 0.1 4 keV 8 eV 20 cm−3 0.05o

Anisotropy · 3 · · · · ·

Lowdens · · 0.05 · · · ·

Highdens · · 0.2 · · · ·

Winter · · · · · 10 cm−3
·

Table 2. Run state att = 700 s

Run Pot.depth Pot. bottom alt. Minimum ionosph. dens. Max.E⊥ Max. E‖

Baseline 3 kV 5500 km 0.005 cm−3 400 mV/m 1.6 mV/m
Anisotropy 1 kV 12 500 km 0.01 cm−3 80 mV/m 0.5 mV/m
Lowdens 0.9 kV 11 000 km 0.02 cm−3 80 mV/m 0.5 mV/m
Highdens 12 kV 2600 km 0.001 cm−3 1300 mV/m 3.6 mV/m
Winter 3.7 kV 2600 km 0.004 cm−3 800 mV/m 2 mV/m

where V0 is the Gaussian potential profile of the source
plasma. The arc, in this case, is driven by magnetospheric
shear flow instead of wave-induced parallel electron energi-
sation and the resulting potential structure is U-shaped, i.e.
the potential contours do not close within the simulation box.
The low-altitude characteristics of the run are very similar to
the baseline run but some differences occur at high altitude
where the potential structures differ. In particular, convergent
perpendicular electric fields appear not only at low altitude
but also at high altitude in the shear-flow driven run.

4 Discussion and summary

Equation (3) determines the potentialV when the densities
of the various plasma components are known. To get some
insight into the equation, let us consider it in two limiting
cases and get an expression for the potential in each. Be-
low the bottom of the acceleration region, the potentialV is
much smaller than the magnetospheric electron temperature,
|eV | � T

(m)
e . In this case the exponential multiplyingn(m)

e0
is almost unity and the equation can be solved forV to yield
(remembering thatn(m)

e0 = n
(m)
i )

V =
T

(i)
e

e
log

(
n

(i)
i − n

(m),extra
e

n
(i)
e0

)
. (9)

This expression gives a potential of the order of the cold
ionospheric electron temperatureT (i)

e but it diverges loga-
rithmically when n

(m),extra
e approachesn(i)

i . The point at

which n
(m),extra
e = n

(i)
i defines the bottom of the accelera-

tion region, above which the approximation|eV | � T
(m)
e

is no longer valid. When this occurs, however, we know that

|eV | � T
(i)
e so that the first exponential in Eq. (3) can be

dropped and the equation can again be solved forV :

V =
T

(m)
e

e
log

(
1 −

n
(m),extra
e

n
(m)
i

)
. (10)

This produces potential values which are of the same order
of magnitude asT (m)

e and it can be used to estimate the depth
of the potential structure. The parametern

(m),extra
e appearing

in these formulae depends on altitude (Eq. (7) and Fig. 1)
and so depends on the partial density of the middle-energy
anisotropic component at the magnetospheric end of the sim-
ulation boxn

(m),extra
e0 as well as on the middle-energy com-

ponent temperature ratioT‖/T⊥.
We summarise our findings briefly.

1. The simulation is based on a separation of electron and
ion time scales, as well as the separation of the parallel
and perpendicular dynamics.

2. The “monopole solver” is needed to avoid resolving
the ion travel time through a perpendicular grid cell
(with the monopole solver, one only needs to resolve
the travel time over a parallel cell).

3. After starting the driver, the potential structure and the
associated density depletion form rather quickly but first
reside at higher altitude. Within some minutes, the po-
tential structure “digs” its way into the denser iono-
spheric plasma layers, making the ions flow up as field-
aligned energised beams. An almost stationary state is
reached after about 10 minutes; at this time the lower
boundary of the density depletion has reached so high
density plasma that further downward motion is very
slow.
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4. In the baseline model, strong convergent perpendicular
electric fields are confined in a relatively narrow altitude
range (about 5000–11 000 km).

5. The strongest parallel fields (of about 1 mV/m magni-
tude) point upward. There are much weaker downward
fields at higher altitudes, however.

6. After turning off the driver, the potential structure dis-
appears immediately (in the electron time scale) but
the density depletion and partly the ion beam remain
∼10 min.

7. The arc can be made stronger by increasing the
anisotropyT‖/T⊥ or the density of the anisotropic com-

ponentn(m),extra
e0 . A strong arc has a deeper potential

structure and it extends to lower altitude than a weak
arc.

8. The arc bottom altitude can be lowered by decreasing
the ionospheric source plasma densityn

(i)
src (winter-like

conditions). Changing this parameter does not appre-
ciably modify the potential structure depth.

9. By adding an offset in the Boltzmann factor, the arc can
also be driven by magnetospheric shear flow. In this
case the potential contours do not close in the simulation
box. The low-altitude phenomenology of the shear flow
driven arc is very similar to the anisotropy driven arc of
the baseline run.

The model described here is in accordance with the “coop-
erative” model of auroral acceleration presented earlier (Jan-
hunen and Olsson, 2000). In this model, wave-particle in-
teractions and a potential structure are together responsible
for producing inverted-V electron signatures; waves do the
energisation and the potential structure gives the shape of
the low-altitude energy spectrum. In the present simulation,
the wave-electron interactions are modelled only by their as-
sumed effect on the middle-energy electrons (the anisotropic
populationn

(m),extra
e in Eq. 3). In the future, more realis-

tic wave-particle interaction models should be incorporated
in the simulation. A straightforward way of doing this is
to model electrons as particles and solve the electric field
from Poisson’s equation. This requires a lot of computing
power which, however, may become available in the rather
near future. Another way to extend the current model would
be to make it three-dimensional or to add the return current
region adjacent to the arc by modelling the relevant iono-
spheric physics.

Acknowledgements.We thank Andris Vaivads for useful com-
ments.

Topical Editor thanks two referees for their help in evaluating
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5 Appendix A: Monopole solver

The ion pusher needs to update the ion position and velocities
in a known electric and magnetic fields. The electric field

E is electrostatic,E = −∇8, and the magnetic fieldB is
the dipole field. The convergent nature of the magnetic field
should be taken into account as accurately as possible. We
shall approximate the dipole field in the vicinity of the ion
with the field of a magnetic monopole. The monopole field
is convergent and is thus a much better approximation for the
dipole field than a constant field.

Consider a charged particle in a magnetic monopole field
and a radial electric field (Clemmow and Dougherty, 1969),

v̇ = q
v × r

r3
− 8′(r)r̂, (11)

where the hat denotes a unit vector,v = dr/dt , and the dot
denotes a time derivative,ṙ ≡ dr/dt = v.

Forming the vector product of Eq. (11) withr and taking
the time derivative, we obtain

d

dt
(r × v) = r ×

dv

dt

=
q

r3

[
r2v − (r · v) r

]
. (12)

On the other hand one can derive

r · v =
1

2

d

dt

(
r2
)

= r
dr

dt
= rṙ (13)

Substituting Eq. (13) into Eq. (12) we obtain

d

dt
(r × v) = q

(
v

r
−

ṙr

r2

)
= q

d

dt

(r

r

)
= q

d r̂

dt
(14)

We can integrate Eq. (14) once with respect to time to find
that

r × v = q
(
r̂ − k

)
(15)

wherek is a constant vector.
Taking the dot product of Eq. (15) witĥr we obtain

0 = r̂ · r × v = q(1 − r̂ · k), (16)

i.e. r̂ · k̂ = 1/k. Sincer̂ · k̂ = cosθ whereθ is the angle be-
tweenk and the position vectorr, we infer thatθ is a constant
of motion and the motion of the particle therefore is confined
to a conical surface (Clemmow and Dougherty, 1969). The
symmetry axis of the cone is given byk.

Introducing a Cartesian coordinate system(x, y, z) with ẑ

= k̂ and the associated polar coordinates(r, θ, ϕ), θ does not
change while the particle moves, onlyr andϕ do so. Thus,
to solve the orbit, it is enough to solver(t),ϕ(t). Taking the
cross product of Eq. (15) withr we find

r × (r × vϕ) = −r2vϕ = −qr × k, (17)

from which we obtain

vϕ = q
r × k

r2
. (18)

On the other hand, since the radius of the cone isr sinθ and
because|r̂ × k̂| = | sinθ | we can write

vϕ = −(r × k̂)ϕ̇. (19)
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The minus sign follows from the fact that, in a right-handed
spherical coordinate system,ϕ grows in the direction ofz×r.
Combining Eq. (18) with Eq. (19) we obtain

ϕ̇ = −
qk

r2
. (20)

Using Eq. (20) we can solveϕ(t) by integration, ifr(t) is
known.

To find r(t), let us form the quantityd(v2)/dt and utilise
Eq. (11) and Eq. (13):

d

dt

(
v2
)

= 2v · v̇ = −2
8′(r)

r
v · r

= −28′(r)ṙ = −
d

dt
(28(r)) , (21)

from which we obtain, by integrating once,

v2
= 2(U − 8(r)) (22)

whereU is a constant (the “total energy”). Let us also form
(d/dt)(rṙ):

d

dt
(rṙ) =

d

dt
(r · v)

= v2
+ r · v̇

= v2
− 8′(r)r

= 2U − 28(r) − 8′(r)r, (23)

where we used Eq. (22) in the last phase. Equation (23) is
an ordinary second order differential equation forr(t) which
is, however, difficult to solve analytically unless8(r) has
some special properties. For our purposes here we only need
to find an analytical form of8(r) which allows for explicit
solution and contains enough free parameters to allow a local
approximation which is valid in the vicinity of the particle.
To this end we consider the case when8(r) contains terms
of the formr±2 only, i.e.

8(r) =
1

2

(p1

r2
− p2r

2
)

(24)

wherep1 andp2 are real parameters. Using this form for
8(r) we derive, from Eq. (23), the equation

d2

dt2

(
1

2
r2
)

=
d

dt
(rṙ) = 2U + 2p2r

2. (25)

Notice thatp1 drops out from Eq. (25). Introducing a new
variableu ≡ r2, Eq. (25) takes the form

ü = 4(U + p2u) (26)

whose general solution is (returning again to usingr(t))

r(t)2
= −

U

p2
+ αe2t

√
p2 + βe−2t

√
p2 (27)

whereα andβ are constants of integration. These constants
must be determined from the initial conditions

r(0)2
= r2

0 (28)

and

d

dt

(
r2
)∣∣∣∣

t=0
= 2r0vr(0), (29)

which gives us

α =
1

2

[
r2
0 +

U

p2
+

r0vr(0)
√

p2

]
β =

1

2

[
r2
0 +

U

p2
−

r0vr(0)
√

p2

]
. (30)

Substituting Eq. (27) into Eq. (20) and integrating with re-
spect tot , one can derive the orbit (r(t), ϕ(t)). If one wants to
avoid complex numbers, one must consider the casesp2 > 0
andp2 < 0 separately. The integration is straightforward and
yields arc-tangent functions in both cases. In the ion pusher
one also has to differentiate the orbit in order to obtain the
velocitiesvr(t) andvϕ(t). The resulting expressions are not
terribly long but, since they are not particularly illuminating
either we shall not reproduce them in this Appendix.

One also has to find the position of the monopole as well as
the parametersq, p1 andp2 that give a best fit to the wanted
magnetic and parallel electric fields at a point. It turns out
that one can reproduce not onlyB andEr but also(B · ∇)B

and∂Er/∂r in the vicinity of the point. We give the result-
ing expressions without derivation (the derivation is simple,
though):

sign(q) = −sign(B · ∇B), (31)

|q| =
4B5

(B · ∇B)2
, (32)

R =
2B2

|B · ∇B|
(33)

whereR is the distance from the point to the monopole (the
direction of the monopole is equal to±B̂),

p1 =
1

4
R3
(

ER − R
∂ER

∂R

)
, (34)

p2 =
3

4

ER

R
+

1

4

∂ER

∂R
. (35)

In these formulaeER is the parallel electric field. In or-
der to account for the perpendicular electric field, we make
a coordinate transformation to a frame moving with the
E × B velocity with respect to the inertial frame, calculate
the monopole orbit there, and transform the result back to the
inertial frame.

We have verified that the monopole solver described in
this Appendix produces accurate results by comparing the
results with the Buneman solver (Hockney and Eastwood,
1988) with a very small timestep. We have also verified the
monopole solver result with the exact solution in some spe-
cial cases.
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Fig. 11. The function F(x).

6 Appendix B: Coordinate system

Our coordinate system(χ, θi, ϕi) is defined so thatθi andϕi

are, respectively, the magnetic dipole colatitude and longi-
tude of the ionospheric footpoint andχ is a coordinate along
the magnetic field such thatχ = 0 at the ionospheric plane.
The exact nature ofχ will be defined below. The benefit of
the (χ, θi, ϕi) coordinate system is that the coordinates are
“field-aligned” in the sense that a stack of grid cells having
the sameθi andϕi belong to the same dipole flux tube.

Let us define a transformation from Cartesian coordinates
(x, y, z) to (χ, θi, ϕi) by going through ordinary spheri-
cal coordinates(r, θ, ϕ), defined byr2 = x2

+ y2
+ z2,

cosθ = z/r, tanϕ = y/x. The equation of a dipole field line
is r = L sin2 θ , whereL is the McIlwainL-parameter (the
radial distance at which the field line intersects the equatorial
plane). TheL-parameter is related to the footpoint colatitude
θi by 1 = L sin2 θi . Thus sinθi = sinθ/

√
r. We also haveϕi

= ϕ.
Let us denote the field-aligned distance from the iono-

sphere bys, s =
∫

ds. Definingχ = s would be a natu-
ral choice and would giveχ a simple physical interpretation.
However, it would make the coordinate system quite oblique
at a larger distance from the Earth (for example, smaller
L-values would reach the equatorial plane at much smaller
s-values than higherL-values). Our next trial is to define
χ = s/L. We can now calculates as

s =

∫
ds

=

∫ θ

θi

dθ

√(
dr

dθ

)2

+ r2

=

∫ θ

θi

dθ
[
L2 sin4 θ + (2L sinθ cosθ)2

]1/2

= L [F(cosθi) − F(cosθ)] , (36)

where we have defined

F(x) ≡

∫ x

0
du
√

1 + 3u2. (37)
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Fig. 12. The(χ, θi) coordinate grid inϕi = 0 sector with no cosθi

correction factor.χ varies between 0 and 0.4.

The functionF(x) has an explicit expression,

F(x) =
1

2
x
√

1 + 3x2 +

arsinh
(
x
√

3
)

2
√

3
, (38)

but we shall not use it in the simulation because it is rather
slow to compute. The functionF is plotted in Fig. 11. Thus,
the mapping to(χ, θi, ϕi) coordinates isϕi = atan(y/x), θi =

asin(sinθ/
√

r), andχ = F(cosθi)−F(cosθ) if χ is defined
asχ = s/L.

In theϕi = 0 sector, the resulting(χ, θi) coordinate grid is
shown in Fig. 12 when the magnetic latitude of the footpoint
90o

− θi varies from 65o to 73o. We see that the coordi-
nate grid is field-aligned as it should, but still becomes quite
oblique at larger distances from the Earth. Although not a
problem in principle, it is slightly inconvenient.

To fix the problem we introduce the following slight mod-
ification to the definition ofχ :

χ = [F(cosθi) − F(cosθ)] cosn θi (39)

wheren is a constant. By experimentation we find thatn = 6
gives a good result at the auroral latitudes (Fig. 13). Although
this modification isad hoc,it fulfills its task in making the co-
ordinate system nicer to use. Notice thatχ is a dimensionless
quantity, varying between 0 and about 0.4.

The inverse problem, computing(x, y, z) from
(χ, θi, ϕi) can be solved as follows: cosθ = F−1(
F(cosθi) − χ cos−n θi

)
, after which r = sin2θ/ sin2 θi ,

z = r cosθ , x = r sinθ cosϕi , y = r sinθ sinϕi . Thus
one has to invert the functionF , which is not possible
analytically. Inspecting Fig. 11 one sees thatF is smooth
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Fig. 13. The (χ, θi) coordinate grid inϕi = 0 sector with cos6 θi

correction factor in the definition ofχ . χ varies between 0 and 0.4.

and thus seems an easy target to approximate well, with
e.g. rational functions. While several approximations are
possible, we use the following ones in the simulation code:

F(x) ≈

(1.6 × 10−7
+ x(0.9999785+

x(0.37903242+ 1.09712277x)))

(1.0 + x(0.378476814+

x(0.6032214500+

(−0.224339539+ 0.036716376x)x))) (40)

ForF−1 we need to include more terms to achieve the same
accuracy:

F−1(y) ≈

(−6.4 × 10−10
+

y(1.000000253+ y(2.7875642069+

y(7.9691664652+ y(10.656220332+

y(10.276790312+ 1.8454989994y))))))

(1 + y(2.7875808529+ y(8.4687310845+

y(12.055991255+ y(13.486991377+

y(5.4127374482+

(0.267184339− 0.0038382709654y)y)))))). (41)

The relative error in these approximations is no more than the
roundoff error when using 32-bit floating point numbers (in
the range 10−7 to 10−6), which is enough for our numerical
simulation.
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