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Abstract. During the last two decades the fractal geometry
has become a powerful approach to different physical prob-
lems. It is also found to be useful in image processing appli-
cations. A numerical quantity that characterizes the auroral
structure would be important for auroral investigations. We
try to obtain the quantity on the basis of the box-counting
dimension of the line of equal intensity. In this paper we
present results of some tests of our procedure by simulated
images. The possibilities that the approach gives us for anal-
ysis of the auroral dynamics are discussed. The auroral dy-
namics during several typical auroral events are considered.

Key words. Ionosphere (auroral ionosphere) – Magneto-
spheric physics (magnetosphere-ionosphere interactions) –
Space plasma physics (nonlinear phenomena)

1 Introduction

Ground-based observations of the polar aurora have very
long traditions in geophysics. Small-scale auroral struc-
tures and distortions have been photographed, and their gen-
eration mechanisms have been discussed since the early
1950s. Now it is known that the aurora variety is a re-
sult of numerous processes occurring in the different re-
gions of the magnetosphere-ionosphere system: energization
due to parallel electric fields, Kelvin–Helmholtz instability,
wave-particle interactions, current sheet pitch-angle scatter-
ing, field-line resonances, etc. (see, for example, reviews in
Lyons et al., 1999; Partamies, 2001).

Investigation of these processes usually requires a separa-
tion of temporal and spatial variations. Ground-based tele-
vision (TV) observations give the data which contain two-
dimensional spatial and very good temporal information.
However, now the images themselves are mainly used only
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as illustrations. Other methods of data presentation (for ex-
ample keograms) contain only a small part of important in-
formation that is available in TV data. It would be useful to
construct a numerical quantity to characterize auroral struc-
tures more completely. The fractal geometry is a powerful
approach to the problem. There are many interesting results
obtained by fractal geometry in other geophysical applica-
tions (for example, application to cloud structures, to geolog-
ical structures, etc.). There are some reasons for application
of the similar approach to aurora observations.

Even early investigators note the fact that the fine dis-
tortions of the auroral structure have some kind of self-
similarity. In 1970, Hallinan and Davis (1970) categorized
morphologically the fine vortical structures in three differ-
ent groups, according to their size, lifetime, rotational sense,
and reversibility. These groups were named folds, curls,
and spirals. Often the vortical structures make the periodi-
cal systems vortical streets. However, the vortical structures
from different groups can appear simultaneously. Modern
data of ground-based and satellite observations show the par-
allels between characteristics of the vortical structures in a
wide range from hundreds of meters to hundreds of kilome-
ters (Trondsen and Cogger, 1998). Self-similarities have also
been obtained (Lui et al., 2000) for characteristics of the au-
roral blobs by satellite observations.

In our previous paper (Kozelov, 1997) we presented the
fractal approach for the description of the auroral images.
The approach is based on the calculation of the spectrum of
the box-counting dimension of isolines on auroral images.
Some examples of the approach application to TV data of
ground-based auroral observations was shown in Kozelov
(2000). Here we have the purpose to present more detailed
substantiation of the approach and to illustrate its applica-
tion to analysis of auroral structures. After definition of the
image processing algorithm we discuss some substantiations
and provide the tests of this procedure by simulated images.
Then we consider the possibilities which the approach gives
us for analysis of auroral dynamics. We follow the auroral
dynamics by the evolution of the isoline dimension spectrum
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Fig. 1. Box-counting dimension of isoline as a function of intensity
level: solid line – for full image; crosses – for linear arc; circles –
for diffuse band.

during several typical auroral events.

2 Definition of the isoline dimension spectrum (IDS)

To characterize the structure of the auroral image we use
the fractal dimension spectrum of lines of equal intensity
(Kozelov, 1997, 2000). The calculation procedure used is
based on the box-counting method (Feder, 1988) and con-
tains the following steps:

1. The isoline of equal intensityL(I) has been obtained
for each level of intensityI in a digitized TV image;

2. Using pixels as a mesh, the numberN(δ, I ) of boxes
of sideδ(δ = 2i, i = 0, 1, ...7) that overlap the isoline
L(I) have been counted;

3. The dimensionD(I) of isoline L(I) is the logarith-
mic rate at whichN(δ, I ) increases asδ decrease, and
it has been estimated by the gradient of the graph of
logN(δ, I ) against−logδ for eachI .

The box-counting dimension obtained in the calculation
procedure is the estimation of fractal dimension (Falconer,
1995). However, the range of scales available in the TV
image is not large (TV image in VHS system contains of
230–240 lines, real spatial scales depend on optical lens used
and the distance to the object); therefore, we mean only pre-
fractal structure, not the fractal one, which suggests a limit
for δ → 0. In any case, the number of mesh boxes of side
δ that intersect an isoline is an indication of how spread out
or irregular the line is when examined at scaleδ. The di-
mension reflects how rapidly the irregularities develop asδ

decreases. Theoretically, the dimension of the subset of a

plane may have a value in the range from 0 (dimension of
disconnected set of points) to 2 (dimension of plane figures).
The dimension of a smooth line is equal to 1.

3 Example of image analysis

An example of processing of one TV frame using the above
method is shown in Fig. 1. The dependenceD(I) for the
frame is typical, and therefore we shall consider it in detail.
The frame contains an area of auroral emission consisting
of a quiet linear arc and a diffuse band. The lines of equal
intensities (isolines) for three levels of intensity are shown
in Fig. 2. Below the levelI = 9 in the emission area in the
frame there is only a small-sized structure associated with the
background (background sky glow and stars) and the circuit
noise. One can see from the figure forI = 8, that the isoline
in this area consists of a set of small-sized units, and there-
fore the isoline dimension depends mainly on how densely
these units cover the plane, i.e. on their quantity. Further,
asI is higher than level 9, the auroral structure is localized
from the noise. This area has rather smooth boundaries, and
therefore in dimension spectrum the minimum is derived at
I = 13. The isoline forI = 13 separates the area filled by
background noise from the area of auroral forms.

For intensities appropriate to auroral forms, the most es-
sential is the presence of the local maximum onD(I), in this
case at the intensityI = 18. Let us name this intensity as
an intensity of the Most Complex Isoline (MCI). As we can
see further, theD(I) may have several of such local maxima
when there are several structures of different intensity. In the
considered case the auroral emission consists of two differ-
ent forms, a linear arc and a diffuse band, having different
dependenceD(I). However, these forms have the same in-
tensity, and therefore only one common maximum is shaped.
Above the levelI = 15, at which the forms are divided, it
is possible to calculate the dependenceD(I) for each form
separately. The obtained dependences are shown in Fig. l,
together with the integral dependence. One can see that the
local maximum atI ∼ 18 is caused by the influence of only
the diffuse band (Dmax ∼ 1.5), while the dependenceD(I)

for the arc in a broad region of intensities (from 17 up to 25)
is practically constant (∼1.22–1.24).

As we already noted above, the fractal (box) dimension
reflects how rapidly the isoline length (or “distorsion”) in-
creases as spatial scale decreases. But what dimension do
we obtain, if in the image there are two (or more) different
structures? It is possible to show (Falconer, 1995), that the
fractal dimension of association of several (not intersected)
fractal sets is equal to the maximum of the dimensions of
these sets. This is fair atδ → 0. However, for the box-
counting dimension calculated in the limited range of scales
the following rule is valid.
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Fig. 2. Isolines for different intensity levels.

3.1 Proposition

Let S1 andS2 be the unintersected fractal sets, andD1 and
D2–those box-counting dimensions, respectively. If for a box
scale ofδ > 0 the number of boxes that overlap the sets
areN1(δ) andN2(δ), respectively, then the estimation of the
box-counting dimension of theS1 ^ S2 set may be obtained
as:

D1+2(δ) ≈
N1(δ)D1 + N2(δ)D2

N1(δ) + N2(δ)
. (1)

3.2 Proof

Fordδ � δ using the definition ofD1 we can write:

logN1(δ + dδ) = logN1(δ) − D1 log
(δ + dδ

δ

)
.

Therefore:

N1(δ+dδ) = N1(δ)
(δ + dδ

δ

)−D1
≈ N1(δ)

(
1−D1

dδ

δ

)
.(2)

Similarly, by definitions ofD2 andD1+2:

N2(δ + Dδ) ≈ N2(δ)
(
1 − D2

δ + dδ

δ

)
(3)

N1+2(δ + dδ) ≈ N1+2(δ)
(
1 − D1+2

δ + dδ

δ

)
. (4)

For unintersected setsN1+2(δ) = N1(δ)+N2(δ), therefore
from Eq. (4) we obtain:

N1(δ+dδ)+N2(δ+dδ) ≈ (N1(δ)+N2(δ))
(
1−D1+2

dδ

δ

)
.(5)

Fig. 3. Number of boxes covering the isoline as a function of box
scale for isolines presented in Fig. 2.

Using substitutions from Eq. (2) and Eq. (3) to Eq. (5):

N1(δ)
(
1 − D1

dδ

δ

)
+ N2(δ)

(
1 − D2

dδ

δ

)
≈

(
N1(δ) + N2(δ)

)(
1 − D1+2

dδ

δ

)
.

Now one can simplify the expression and obtain:

N1(δ)D1 + N2(δ)D2 ≈
(
N1(δ) + N2(δ)

)
D1+2,

from which Eq. (1) follows directly.
One can see that in the limit ofδ →0 we would have

D1+2(δ) → max(D1, D2). The proposition is obviously
generalized on a case of the greater number of auroral forms.
Therefore, for finite scaleδ > 0 we can be sure that the great
structure near zenith of an all-sky image will be the main
contributor in the integral dimension value. Other structures
near the horizon will have a relatively smaller weight.

Generally, it is not obvious that the dependence
logN(δ, I ) on logδ is close to the linear one. Figure 3 shows
some examples of such dependences for isolines discussed
above. One can see that these dependences, especially for
smallδ, are practically linear. The linear approximating was
conducted by the least-squares method, and the discrepancy
of the dimension value does not exceed 0.05. If it is not stip-
ulated, this estimation will be implied in all further results.

4 Testing by model images

Now we discuss the numerical testing of the box-counting di-
mension algorithm using the model images with the known
fractal characteristics. The necessity of testing is urged by
several reasons: first, the range of possibleδ scales is not
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Fig. 4. Examples of the regular prefractal structures:DH – theoretical fractal dimension;D – box-counting dimension calculated by the
image.

great; second, the projection of the auroral emission area
in an all-sky image strongly distorts the spatial scales; and,
third, the correspondence between the fractal dimension of
the set and the dimension of its boundary is not always obvi-
ous (Falconer, 1995). The testing of the algorithm was con-
ducted over many steps and we will shortly illustrate each
step.

4.1 Regular prefractals

For this test the images of different regular prefractals were
constructed on a grid 256× 256 by the obvious from a figure
recursive procedure with 5 iterations. At such spatial resolu-
tion the prefractal image practically does not differ from the
image of the appropriate regular fractal. The capability of
an estimation of fractal dimension value by the box-counting
algorithm was tested. The examples of the obtained results
are shown in Fig. 4. In the figure the theoretical dimensions
of fractals (DH ) and box-counting dimensions calculated by
the model image are presented. One can see that the algo-
rithm confidently evaluates expected fractal dimension by the
model image. There is a tendency towards underestimation
of the dimension, on the average, by 0.04–0.06 compared to
the theoretical dimension.

4.2 “All-sky” projection of prefractals

An important property of fractals is that the fractal dimension
is an invariant for the wide class of transformations, namely
the so-called bi-Lipschitz transformations (see details in Fal-
coner, 1995, Corollary 2.4b). Basically, the mapping deter-
mining a projection of auroral glow in a TV frame by fish-eye
(“all-sky”) camera, obeys these conditions at all points, ex-
cept the points appropriate to directions which are perpendic-
ular to geomagnetic field lines. However, for prefractals on a
grid with the finite resolution the invariance of box-counting
dimension is not obvious. The results of numerical testing
are shown in Fig. 5 for the images of the regular prefractals,
transformed by “all-sky” projection. When constructing the
images it was presumed that the structure altitude is 100 km
above the Earth’s surface. One can see that the estimation
of the dimension by the box-counting algorithm practically
does not differ from the dimension for the distortionless im-
ages. However underestimation of the dimension value is
larger than in the previous test, and it can reach∼0.1 for di-
mensions> 1.4.
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Fig. 5. Examples of the regular prefractal structures, transformed by all-sky projection:DH – theoretical fractal dimension;D – box-counting
dimension calculated by the image.

Fig. 6. Testing of dependence of the box-counting dimension on structure position.

4.3 Position of the structure in the sky

It seems obvious that the details in the image obtained by
the all-sky camera become less discernible with the motion
of the auroral structure to the horizon; therefore, the results
of the dimension calculations depend on the position of the
auroral structure in the image. The results of testing of this
reason are shown in Fig. 6. One can see that the calculated
box-counting dimension slowly depends on the position of
the structure in frame. The expected tendency towards de-
creasing of the dimension to 1.0 (i.e. loss of details of struc-
ture) at the structure movement to horizon has an effect only
directly near the horizon.

4.4 Noised image with altitude distribution of emission

To simulate the more realistic images we used the uniform
auroral arcs with the preset fractal structure and altitude
emission distribution which is typical for arcs in the polar
aurora. However, the television signal contains different dis-
tortions associated with features of the recording system and
activity of different self-tunings at the record. Here we shall
simply consider, that the distortions consist of two compo-
nents: (1) additive random noise with normal distribution and
(2) distortions circumscribed by a hardware function of the
recording system. It is possible to consider that this function
is rather smooth in frame in an effective range of intensities
and has little time variation. Therefore, this distortion has no
influence on the dimension calculation, and only the random
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(a) (b)

Fig. 7. Dependence of the isoline dimension spectrum on the noise:(a) linear sensitivity scale of model image, solid line – without noise,
other lines – noise with zero mean and dispersions of 1, 4 and 9 units of intensity, respectively;(b) logarithmic sensitivity scale.DH –
theoretical fractal dimension. References to Fig. 4 show the fractal structure used for image modelling.

Fig. 8. Examples of isolines used in box-counting calculations of the spectra presented in Fig. 7:(a) solid line from Fig. 7a;(b) solid line
from Fig. 7b.

noise in small intensities is assumed.
By the model images the capability of finding “the most

complex isolines” (MCI) was tested. The MCI region is ex-
pressed in a maximum on the curveD(I). Some examples
of the obtained spectra of isoline dimension are shown in
Fig. 7. The arc structure used is presented by reference to

Fig. 4 and dimension of associated regular fractals. The iso-
lines for some characteristic levels of intensity are adduced
in Fig. 8. The existing television cameras at the expense of
activity of self-turning systems have different sensitivity de-
pending on the light intensity. Usually, the cameras have a
linear scale of sensitivity, for some of them the sensitivity
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Fig. 9. Analysis of the auroral dynamics during event 1. Panels from top to bottom:(a) temporal evolution of the isoline dimension spectrum;
(b) dependence of the greatest isoline dimension with time;(c) dependence of the intensity corresponds to “the most complex isoline” (MCI)
with time; (d) images associated with the moments, marked in the previous panel.

scale is nonlinear, close to logarithmic. The nonlinear scale
allows one to register the greater range of intensities without
saturation of the TV tube, and in this sense it is preferable for
aurora observation. We consider both situations. Figure 7a
shows IDSs calculated for model images with linear sensi-
tivity scale. The noise is assumed to have the normal distri-
bution with zero mean and dispersions of 1, 4 and 9 units of
intensity, respectively. One can see that significant noise can
completely disguise the maximum on the curve ofD(I). For
comparison Fig. 7b presents IDSs obtained for model images
with logarithmic sensitivity scale. One can deduce that for
the images with a nonlinear (logarithmic) scale of intensities
the maximum on theD(I) curve is better seen. In addition,
though the dimension value in the maximum does not coin-
cide with the dimension of the regular fractal used for image
simulation, nevertheless the larger value at the maximum of
the D(I) curve corresponds to the larger dimension of the

fractal.

5 Analysis of auroral dynamics

In previous sections the definition and the testing of the frac-
tal approach for describing of the auroral structure have been
discussed. The approach is based on the calculation of the
spectrum of the box-counting dimension of isolines in the
auroral image. Now we consider the possibilities which the
approach gives us for the analysis of auroral dynamics. We
shall try to follow the auroral dynamics by the evolution of
the isoline dimension spectrum during several typical auroral
events.

For the analysis we use the data of ground-based TV ob-
servations, which was provided by the Loparskaya station
during 1993–1994 by a narrow angle lens camera (angle of
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Fig. 10. The same as Fig. 9, but for event 2.

view was∼30◦). The application of narrow angle lens al-
lows one to increase the spatial resolution of the fine auroral
structure to< 0.5 km. Unfortunately, the utilization of the
greater part of the records was complicated by the presence
of a regular external modulation and saturation in intensive
lights. Five intervals which do not have these distortions have
been selected for the analysis. The TV data have been digi-
tized by a standard PC frame-grabber with spatial resolution
of 255× 255 points, time resolution of 5 frame/s and 64 in-
tensity levels.

The results of processing these sets of frames are shown in
Figs. 9–14. Each figure contains (from top to bottom):

(a) The D(I, t) panel – temporal evolution of theD(I)

spectrum, the value of isoline dimension is shown by
grey gradations in axes of time – intensity.

(b) Dependence of the greatest isoline dimension with time.
This dimension is associated with the intensity for “the
most complex isoline”, therefore, we refer to it as
D(MCI). A similar dependence for a local maximum
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Fig. 11. The same as Fig. 9, but for event 3.

at large intensities is marked in Fig. 12 and Fig. 13 by
crosses.

(c) Dependence of the intensity for MCI with time, we refer
to it asI (MCI). The position of intensity appropriate to
a local maximum is shown by crosses. Some moments
in this panel are marked by dotted lines.

(d) TV images are displayed which are associated to the
moments, marked in the previous panel.

Let us consider the events in detail, in ascending order of
complexity and we shall try to observe as the changes in the
auroral glow appear in the dynamics of local maxima in the

isoline dimension spectrum and intensities, associated with
maxima.
Event 1, Fig. 9
The images contain a stable arc with ray structure. Accord-
ing to Hallinan and Davis (1970), the rays in active auro-
ral arcs are curls. In the beginning of an event the arc is
bright, the structure is well observed, the maximum value
of the dimension isD = 1.45–1.5 at intensitiesI = 40–45.
Gradually, the arc dies away and rays spread. This evolution
is expressed by the decrease in the maximum dimension to
D = 1.35–1.4 and intensity toI = 30.
Event 2, Fig. 10
Diffuse spots. During the considered 130 s, the spots greatly
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Fig. 12.The same as Fig. 9, but for event 4. Dependences for the local maximum at large intensities and for the intensity associated with the
local maximum are marked in panels(b) and(c) by crosses.

change their form and position. Nevertheless,I (MCI) varies
very smoothly and slowly. At the same time, the maximum
dimension varies within rather broad limits: from 1.73 to
1.88, that is the changes happen just in the structure of the

auroral glow, rather than in intensity. The appearance of
brighter localized spots (15–30 s and 50–80 s) is seen in de-
pendenceD(I, t) at I > 35 and is accompanied by a de-
crease in the maximum dimension atI < 35. Let us mark
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essentially large values of the maximum dimension in this
case compared to the first event.
Event 3, Fig. 11
Diffuse glow. In the beginning of the interval the auroral
glow looks like two diffuse bands without any fine structure.
During the first 250 s, the emission intensity was changing
significantly and practically merged with the background by
the time I = 200 s. The maximum dimension smoothly
oscillated (with a period of about 70 s) within the limits of
1.6–1.7. After the momentT5 (260 s) a strong brightening
of the aurora happened, and for some time the small-sized
brighter spots occurred, that led to the increase in the maxi-
mum dimension to 1.85. After the momentT8 the glow re-
turns to its initial state and gradually dies away. It is possible
to note, that during this event, compared to the first one, there
are essential variations as maximum dimensionD(MCI), and
I (MCI), and these variations are not correlated.
Event 4, Fig. 12
During the first 5 s of this event, the bright arc is moving
from the middle to the left side of the image. Behind the
arc there is a diffuse band. Later, the two waves of bright-
ening are running along the arc (in the image from top to
bottom), after that the arc intensity is decreasing. The waves
of brightening have been identified according to Hallinan and
Davis (1970) as folds. On theD(I, t) panel it is possible to
note the regions having different dynamics: (1) AtI < 20
there are smooth time variations of the maximum dimension
(D = 1.45–1.55) andI (MCI); this area characterizes mainly
the diffuse band behind the arc. (2) AtI > 20 on theD(I, t)

panel there is a more dynamical local maximum of dimen-
sion (D = 1.25–1.4). This maximum follows the movement
of bright structures. For the motion along the arc the waves
of brightening run to the horizon and decrease in the size,
whereD(I, t) displays such motion as a decrease inI (MCI).
Event 5, Fig. 13
This event is a typical evolution of the auroral arc in the back-
ground of diffuse glow. As in the previous case on theD(I, t)

panel it is possible to select two regions having different dy-
namics. AtI < 25 there is a smooth growth of the maximum
dimension fromD = 1.7 up to 1.8,I (MCI) is also increasing
a little; this area characterizes the diffuse glow. The structure
evolution of the arc is mirrored by theD(I, t) atI > 25. The
moment ofT0–the arc is bright without noticeable fine struc-
ture,D(MCI) = 1.55. The momentT1–region of bright emis-
sion on the arc is divided into two parts and becomes more
precise, and the maximum dimension decreases to 1.38. The
momentT3–a gap starts to occur on the arc, and the maxi-
mum dimension is magnified up to 1.55. Then the arc damps
and breaks up into rays (T4, T5). The number of rays gradu-
ally decreases (T6, T7), and the arc merges with background
glow (T8).

The ranges of dimension values for the most complex iso-
line, D(MCI), obtained for discussed types of auroral struc-
tures, are given in the Table 1. Since all data were recorded
by the same instrumentation, there is a possibility to compare
the obtained dimensions for the considered events. One can
see that the dimensions have the expected tendency: the dif-

fuse structures are more complex, and therefore, they have
the dimension value above, rather than the discrete one. One
exception has occurred for the diffuse band in the fourth
event. The detailed additional consideration has shown, that
in this case, isolines forI < 22 consist of a strongly struc-
tured part from a diffuse glow and a large, smooth linear part
along the border of the bright arc. The dimension of the full
isoline is a weighed-mean value (see Proposition in Sect. 3),
therefore, it is a little bit lower than in the other cases. The
range of dimension values calculated without the linear part
of the isolines is given in the table in brackets. From the
considered examples of TV data processing it is possible to
make the following conclusions:

1. For all considered series of TV frames the isoline di-
mension spectra for adjacent frames vary smoothly, and
this allows one to use dependencesD(I, t) for the de-
scription of the auroral dynamics.

2. The maxima in the isoline dimension spectra is associ-
ated with the structures in the image, thus the change
in maxima value and intensities associated with them
reflects the dynamics of the auroral structure.

3. The obtained dimensions for different auroral events
have the expected tendency: the diffuse forms have
thedimension value above, rather than discrete struc-
tures.

6 Conclusions

The paper provides a definition and testing of the fractal ap-
proach for the description of the auroral structure. The ap-
proach is based on the calculation of the spectrum of the box-
counting dimension of isolines in an auroral image. Then an
auroral form is usually present in the image; there are three
important regions in the spectrumD(I) curve: (1) the re-
gion of noised background intensities; (2) the region with
the most complex isolines (MCI); and (3) the region of sep-
aration between them. The MCI region corresponds to the
most complex structure in the auroral form, and the dimen-
sion value for the MCI,D(MCI), is usually greater than 1.25.
For the region of separation the dimension value is smaller
and usually in this region there is an intensity with minimal
dimension. The isoline for this intensity separates the auroral
form from the noised background. In the region of the noised
background the dimension value increases with the intensity
decrease.

From the above presented results we can summarize that
the description of the auroral image by the spectrum of iso-
lines dimension allows us:

– to localize an auroral structure in the background glow;

– to characterize numerically the spatial structure of the
aurora;

– to select the range of intensities associated with the most
developed auroral structures;
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Fig. 13. The same as Fig. 12, but for event 5.

– to observe the dynamics of the auroral structure devel-
opment.

This description can give us an essential supplement to the
standard methods of auroral data processing, as the obtained
characteristics of the image (IDS,I (MCI) andD(MCI)) en-
able us to more precisely use the information about the spa-

tial distribution of the auroral glow, rather than standard
methods.

In an application of the suggested technique to the auroral
physics we see two possible approaches. First, the dimension
of the most complex isoline,D(MCI), can be used as a struc-
ture index of the aurora. This index can be used to character-
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Table 1. Dimension of the most complex isoline for different auroral events

Event number 1 2 3 4 5

Diffuse bands - - 1.6–1.85 1.45-1.55 1.7-1.8
(1.55-1.72)

Diffuse spots - 1.73-1.88 - - -

Rayed arc 1.4-1.5 - - - 1.55-1.65

Arc without rays - - - 1.25-1.4 1.35-1.5

ize both separate structure, and the entire neighbourhood of
a view point (by all-sky image).

Second, in some cases it is possible to associate the
changes in theD(I) spectrum with some physical processes
happening in the magnetosphere-ionosphere system. An au-
rora is the manifestation of these processes, and it is assumed
that the auroral structure is connected with the structure of
the spatial region of these processes action. The dimension
may be used as a numerical characteristic of spatial irregular-
ity of the region. The dimension of MCI on theD(I) curve
would be connected with the main region of this irregular-
ity. When we see an increase in this dimension, this may
be a reason to talk about the development of the irregularity.
Therefore, we can suppose that the variation of the MCI di-
mension expresses the dynamics of the nonlinear dissipative
system which describes this irregularity developing. How-
ever, for the detailed study it is necessary to carry out a care-
ful selection of events, and also the engaging of the data of
other measurements and an appropriate physical model. The
most obvious phenomena requiring such an approach are: (1)
polar boundary of the discrete aurora, especially during the
transition from the growth phase to the explosive phase of
substorm; (2) pulsing spots and patches in the morning sec-
tor and their connection with VLF waves; (3) ray structures
of aurora. Some steps in this direction were made in our work
(Kozelov et al., 2002).

Also, we can note several numerical applications of frac-
tal features to TV image processing. First, using theD(I)

curve we can select better the intensity limits of digitizing.
Second, the results of the dimension calculation may be used
for the mapping of all-sky images to geographic map. The
generally used mapping algorithms produce non-realistic im-
ages, because the altitude distribution of the aurora emission
is mapped as ray-like spatial structures on the plane. The
MCI may be used as a limit to decrease this problem. Third,
the dimensions that correspond to MCI may give a theoret-
ical limit of the auroral image compression without the loss
of important information.
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