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Abstract. This paper is a companion to the first work (Pav-
los et al., 2003), which contains significant results concern-
ing the dynamical characteristics of the magnetospheric en-
ergetic ions’ time series. The low dimensional and non-
linear deterministic characteristics of the same time series
were described in Pavlos et al. (2003). In this second work
we present significant results concerning the Lyapunov spec-
trum, the mutual information and prediction models. The dy-
namical characteristics of the magnetospheric ions’ signals
are compared with corresponding characteristics obtained for
the stochastic Lorenz system when a coloured noise pertur-
bation is present. In addition, the null hypothesis is tested
for the dynamical characteristics of the magnetospheric ions’
signal by using nonlinear surrogate data. The results of the
above comparisons provide significant evidence for the ex-
istence of low dimensional chaotic dynamics underlying the
energetic ions’ time series.

Key words. Magnetospheric physics (energetic particles) –
Radio sciences (nonlinear phenomena)

1 Introduction

The hypothesis of the chaotic nature of the magnetospheric
behaviour has been supported in the last decade by a large
number of theoretical studies (Pavlos, 1988; Baker et al.,
1990; Klimas et al., 1991, 1996; Pavlos et al., 1994). These
results were further supported by a series of studies includ-
ing chaotic analysis of ground measured magnetospheric sig-
nals with AE index data (Vassiliadis et al., 1990, 1992;
Roberts et al., 1991; Shan et al., 1991; Pavlos et al., 1992a,
b, 1994; Klimas et al., 1996). A series of significant stud-
ies (Price and Prichard, 1993; Price et al., 1994; Prichard,
1995) showed the weakness of the nonlinear analysis of the
magnetosphericAE index time series, especially in relation
to the strong null hypothesis of Theiler (Theiler et al., 1992a,
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b). In a recent series of papers by Pavlos et al. (1999a, b,
c), Athanasiu and Pavlos (2001), the hypothesis of magne-
tospheric chaos, supported by the analysis of the magneto-
sphericAE index, was reestablished. Moreover, the appli-
cation of chaotic analysis to signals observed by more than
one spacecraft was examined for the first time by Pavlos et
al. (1999c). In this paper a more thorough study of the mag-
netospheric ion signals is presented. In the first work (Pavlos
et al., 2003) the correlation dimension and other geometri-
cal quantities were estimated by using the magnetospheric
ions’ time series, observed during days 7–8 December 1994
at the dawn magnetosheath of the Earth’s magnetosphere,
and they were used as discriminating statistics between non-
linear dynamics and linear stochastic signals. The null hy-
pothesis which was tested, concerns the observed time series
that arises by a static nonlinear distortion of a Gaussian signal
x(t) = h(s(t)), whereh is a monotonic nonlinear function.
(Theiler 1992a, b; Schreiber and Schmitz, 1996; Schreiber,
1998). Statistics of geometrical characteristics showed that
the magnetospheric ions’ time series was clearly distinguish-
able from a Gaussian, linear stochastic signal that had the
same power spectrum and amplitude distribution. We must
point out here that the geometric characteristics are measures
of the spatial distribution of the sample points along a system
orbit in the reconstructed phase space of the system. In this
case there is no information about the dynamic evolution of
the system in the phase space. Dynamic characteristics that
connect current and future states of the system are the Lya-
punov exponents, the average mutual information, the local
linear prediction and nonlinear modeling. The results pre-
sented in Pavlos et al. (2003) indicate clearly the existence
of a nonlinear, low-dimensional dynamical process underly-
ing the magnetospheric energetic ions’ time series. In order
to test this hypothesis here we use dynamical characteristics
as discriminating statistics between the magnetospheric ions’
time series and stochastic (surrogate) data. The results ob-
tained indicate the existence of low-dimensional chaotic dy-
namics underlying the energetic ions’ time series.

It is important to note here that the prediction models
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are used only as indicators of the nonlinear and chaotic be-
haviour of the magnetospheric dynamics. Moreover, in a se-
ries of previous papers, prediction methods have been ap-
plied for understanding the physical process of solar wind-
magnetosphere coupling (Bargatze et al., 1985; Goertz et al.,
1993; Vassiliadis et al., 1995; Vassiliadis and Klimas, 1995;
Klimas et al., 1996, 1997; Vassiliadis et al., 2000).

In Sect. 2, the theoretical part of our study is presented in
relation to the dynamical characteristics of the energetic ions’
time series. In Sect. 3 a comparison between the energetic
ions’ time series and the surrogate data is carried out based
on the dynamical characteristics, i.e. spectrum of Lyapunov
exponents, mutual information, local linear prediction and
global linear and nonlinear polynomial fitting. Finally, in
Sect. 4 a summary is given and the results of this work are
discussed.

2 Theoretical framework

In this section we present some theoretical concepts concern-
ing the spectrum of the Lyapunov exponents, the mutual in-
formation, the modeling and prediction, which constitute the
main tools of our analysis.

2.1 Spectrum of the Lyapunov exponents

The spectrum of Lyapunov exponents measures the rate of
convergence or divergence of close trajectories in alld direc-
tions of the phase space. A positive Lyapunov exponent in-
dicates divergence of trajectories in one direction, or alterna-
tively, expansion of an initial volume in this direction, and a
negative Lyapunov exponent indicates convergence of trajec-
tories or contraction of volume along another direction. For
flows, there is always a zero Lyapunov exponent correspond-
ing to the direction of the flow. The Lyapunov exponents can
thus be ordered asλ1 ≥, ...,≥ λd , and a positiveλ1 indicates
the existence of chaos for a dissipative deterministic system.

The spectrum of the Lyapunov exponents can be estimated
from a time series by following the evolution of small pertur-
bations of the reconstructed orbit, making use of a linearized
approximation. The evolution of the displacement vector be-
tween the neighboring pointsx(i) and x(i) + w(i) in the
reconstructed phase space is given by the equation

w(i + 1) = DF(x(i))w(i), (1)

whereDF denotes the derivative matrix ofF. A local ap-
proximation of the matrixDF can be found by minimizing
the following expression

minS

Ai
=

minS

Ai

1

k

k∑
j=1

‖ wj (i + 1) − Aiwj (i) ‖ , (2)

wherek is the number of the neighbours tox(i) regardingk
different perturbationswj , j = 1, ..., k, which are used to es-
timateAi ≡ DF at the pointx(i). The Lyapunov spectrum is

found by repeating this process for allN reconstructed points
x(i), i = 1, ..., N , that is

λj =

N∑
i=1

log ‖ Aie
i
j ‖, j = 1, 2, ...d, (3)

where{ei
j } is a new set of orthogonal vectors produced by

orthonormalization of the vectors at timei in order to retain
the local orthogonal spanning of the state space (Sano and
Sawada, 1985; Eckman et al., 1986; Holzfus and Lauterborn,
1988; Karadonis and Pagitsas, 1995). For the estimation of
the maximum Lyapunov exponent(Lmax) we use the equa-
tion

Lmax = lim
t→∞

d(t)→0

1

t
ln

[
d(t)

d(0)

]
, (4)

whered(t) = |x2(t) − x1(t)| measures the distance between
neighbouring points in the reconstructed phase space (Wolf
et al., 1985). It follows, for finite data, that the initiald(0) is
limited by the distance of the closest neighbors and the time
t is limited by the time period of the observation.

2.2 Dynamics and mutual information

Chaotic or stochastic dynamical systems can be described by
using the concept of information. For this scope we suppose
that the random behaviour of the system is a realization of
Shannon’s concept of an ergodic information source (Shaw
1981, 1984; Abarbanel et al., 1993). IfS is some property
of the dynamical system andsi, i = 1, 2, . . . possible values
of S, then the average amount of information gained from a
measurement that specifiesS is given by the entropyH(S)

H(S) = −

∑
i

P(si) logP(si), (5)

whereP(si) is the probability thatS equalssi and the loga-
rithm is taken with respect to base 2. An estimate ofP(si) is
given byn(si)/nT , wheren(si) is the number of times that
the valuesi is observed, andnT is the total number of mea-
surements. The same concept can be used to identify how
much information we obtain about a measurement of an ob-
servable S quantity from measurement of another observable
Q quantity. This concept is the basis for the definition of
mutual information. For a time series, we consider a general
coupled system(S, Q) with Q = {x(i)} andS = {x(i + τ)},
wherex(i), x(i+τ) corresponds to scalar samples from a dy-
namical system at discrete timesti andti+τ . The conditional
uncertainty ofS given thatQ = qi is defined as

H(S/Q = qi) = −

∑
j

P(sj/qi) logP (sj/qi),

whereP(sj/qi) is the conditional probability ofS = sJ
given thatQ = qi . Thus, we define the conditional uncer-
tainty ofS givenQ as a weighted average of the uncertainties
H(S/Q = qi), that is

H(S/Q) =

∑
qj

P(sj/qi) logP(sj/qi).
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Using the fact thatP (qi, sJ ) = P(qi)P (sj/Qi) we have

H(S/Q) = −

∑
qi

∑
sj

P(qi, sj ) logP(sj/qi)

= H(Q, S) − H(Q) .

The amount by which a measurement ofQ reduces the un-
certainty ofS (average mutual information) is given by the
relation

ISQ = H(S) − H(S/Q) = H(S) + H(Q) − H(Q, S). (6)

For more details about the definitions of the above quantities
refer to Ash (1990) and Papoulis (1991). If this relation is
applied to time series leads to

I (τ ) = −

∑
x(i)

P (x(i)) log2 P(x(i))

−

∑
(x(i−τ))

P(x(i − τ)) log2 P(x(i − τ))

+

∑
x(i)

∑
x

(i − τ)P (x(i), x(i − τ)) log2 P(x(i), x(i − τ))(7)

The mutual information between the two samples
{x(i)}, {x(i + τ)} takes values in the range(0, Imax),
where Imax = I (0) is equal to the entropyH(x). If the
samples{Q ≡ x(i)} and {S ≡ (i + τ)} are statistically
independent, then the mutual information will vanish for
this value ofτ , i.e. knowledge for the second sample can
not be gained by knowing the first. On the other hand, if the
first sample uniquely determines the second sample, then
I (τ ) = Imax, which is most likely to be true whenτ = 0. In
this paper, we follow the work of Fraser and Swinney (1986)
for the estimation of the mutual information (according
to Eq. 7) of an experimental time series, which is used as
discriminating statistics between the surrogate data and the
ions’ time series.

2.3 Modeling and prediction

The observable informationx(ti) ≡ x(i) on the temporal
evolution of the orbit in the reconstructed phase space can be
used for prediction or modeling purposes, building the map
F(x(i)). The estimation of the mapF , for experimental data
and forT time steps ahead,F T is reduced to determine a
group of parametersa, given a class of functional forms for
F T (x(i), a). When the functional form ofF T is known, then
the parametersa are chosen by using some form of a cost
function which measures the matching of the observed future
samplex(i + T ) with the predicted̂x(i + T ) = F T (x(i), a)

(see Abarbanel et al., 1993).
Our purpose is to construct both linear and nonlinear maps,

as well as local or global maps by looking for the best ap-
proximation ofF T . Modeling and prediction make use of
phase space reconstruction, implicitly (like the autoregres-
sive (AR) models) or explicitly (like the local linear maps)
(see Weigend and Gershenfeld, 1993). Moreover, the map

F T (x(i), a) may be approximated with different functional
forms of the global, local or semi-local type (Lillekjendlie et
al., 1994). For any functional form, the parameters involved
are estimated directly from the data. In the case of modeling
the whole set of available data is used in fitting, while in the
case of prediction a subset of the data is used initially for fit-
ting an appropriate model (training set) and the rest is used
for testing the predictability of the proposed model (test set).

To verify the performance of the model, two measures of
the modeling or prediction error are often computed. The
first is the normalized root mean square error (NRMSE),
which is defined as the root of the mean square differences
of the modeled (or predicted) values from the actual values,
normalized by dividing by the standard deviation of the data.
If NRMSE ∼= 0, perfect model performance is achieved and
if NRMSE > 1, the modeling or prediction is worse than
this obtained using the mean value as a model. The other
measure is the correlation coefficient(CC), which gives the
correlation between the modeled (or predicted) data and the
actual data. An estimate ofCC is obtained from the ratio of
the covariance over the root of the product of the variance
of the two data sets. It is known thatCC takes values in
[-1, 1]. WhenCC ∼= 1 best correlations are obtained, i.e. the
performance of the model is excellent, while for values of
CC close to zero or negative, the performance is very poor.
In this work, F T is approximated with global polynomials
(linear and nonlinear) and local linear models.

2.3.1 Local models

In the case of local models which describe deterministic sys-
tems, nearby trajectories evolve similarly, at least for a short
time if the system is chaotic. Thus, on the reconstructed at-
tractor, for any pointx(i) we can locally approximateF T

which leads to the estimation ofx(i + T ), taking into ac-
count thek nearest neighbours ofx(i), {x(i(1)), ..., x(i(k))}.
It should be noted that for each target pointx(i) and time step
T a different model is computed.

The local approximation ofF T may be done with a lin-
ear map of the form̂x(i + T ) = a0 + aT x(i). Assuming
that this model is good enough for the neighborhood ofx(i),
i.e. the above equation also applies to the mapping of the
k neighbours, wherek > m, we can solve a system ofk
equations withm + 1 unknown parameters{a0, a} using the
ordinary least squares (OLS). The values of the estimated pa-
rameters are then used to find the mappingx̂(i + T ) (Farmer
and Sidorowich, 1987; Casdagli et al., 1992).

2.3.2 Global polynomial models

A simple approximation ofF T is a polynomial, which may
involve only linear terms (this is actually the autoregressive
(AR) model) or linear terms plus nonlinear terms of a de-
greeq as well. Certainly, a polynomial of a small degreeq

in m delay variables, call itpT
q , cannot model complicated

dynamics and for pure chaotic systems is more likely to be
insufficient. However, when we are dealing with real data,
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Fig. 1. (a) The spectrum of the first six Lyapunov exponents es-
timated for the energetic ions, as a function of the embedding di-
mensionm. (b, c) The same with (a) but for the reconstructed and
V1-component time series of the energetic ions’ time series.

this may turn out to be an advantage, because the evident
dynamics (linear or nonlinear) are only modeled and the hid-
den are not modeled, as they may be covered by noise as well
(Barahona and Chi-Sang Poon, 1996).

The general form ofpT
q , wherex̂i+T = pT

q (xi), x ∈ Rm,
is given by the Volterra-Wiener series of degreeq and mem-
ory m

x(i + T ) = a0 = a1x(i) + a2x(i − τ) + ...

+amx(i − (m − 1)τ ) + ... + am+1x(i)2

+am+2x(i)x(i − τ) + ... + aMx(i − (m − 1)τ )2, (8)

whereM = (m + q)!/(m!q!). In our case we useq = 2
because we are only interested in investigating the existence
of nonlinearity in the data. Moreover, we construct allM

polynomials, starting with the simplest which contains the
first linear term and go on by adding one term of the Volterra
series at a time.

3 Data analysis and results

In the following we present the results about the dynamical
characteristics of magnetospheric ions’ time series and the
corresponding discriminating statistics which involve surro-
gate data. The energetic ions’ time series (35–46.8 keV) was
observed by the experiment EPIC/ICS during the days 7–8
December (days 341–342) 1994 at the dawn magnetosheath
of the Earth’s magnetosphere. As was explained in the first
paper of this study (Pavlos et al., 2003), it is reasonable to
suppose that these particles were accelerated in the inner
magnetosphere during periods with strong coupling of the
magnetospheric system and the solar wind, simultaneously
with strong bursts of electrons and O+ and a clear enhance-
ment of theAE index. Therefore, it can be supposed that the
dynamics of the energetic ions mirror the internal magneto-
spheric dynamics, similar to theAE index during periods
with a strong coupling of the magnetosphere and the solar
wind (Pavlos et al., 1999c). The energetic particle differ-
ential fluxes are provided via the Energetic Particle and Ion
Composition (EPIC) instrument of the GEOTAIL spacecraft
and essentially remained close to the ecliptic plane (Williams
et al., 1994). The sampling time for the energetic ions ana-
lyzed here was 6 s.

Moreover, in order to understand the underlying dynam-
ical process of the energetic ions’ time series, we study
the first component (V1-component) and the reconstructed
time series (V2−10 component), according to the theoreti-
cal concepts of singular value decomposition (SVD) analysis
(Broomhead and King, 1986; Pavlos et al., 2003).

As it is shown in Athanasiu and Pavlos (2001) the original
time seriesx(t) can be reconstructed by usingn new time
seriesVi(t) according to the relation

x(t) =

n∑
i=1

Vi(t),

wheren is the embedding dimension andVi(t), i = 1, ..., n

are given by the first column of the matrix(Xci)c
T
i , X is

the trajectory matrix constructed by the observed time series
and ci are the eigenvectors of the covariance matrixXT X
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(Broomhead and King, 1986). The reconstructed time series
corresponds to the componentV2−10 =

∑
Vi(t), i = 2−10.

It was shown in Pavlos et al. (2003) that theV1-component of
the ion time series corresponds to a coloured noise external
component of the magnetospheric dynamics, while theV2−10
component corresponds to the internal magnetospheric.

3.1 Lyapunov exponents

Figure 1 shows the first 6 Lyapunov exponents estimated ac-
cording to Eqs. (1)–(3) of Sect. 2.1, for the energetic ions,
and the reconstructed andV1-component time series as a
function of embedding dimension. Figure 1a clearly shows
that the first Lyapunov exponent of the energetic ions’ time
series is positive (∼0.26 bit/s), while the second is marginally
positive, the third is marginally negative and the others are
negative. The spectrum of Lyapunov exponents for the re-
constructed time series (see Fig. 1b) also presents one pos-
itive Lyapunov exponent (∼0.27 bit/s), one zero exponent,
while the others are negative. This observed profile of the
spectrum of the Lyapunov exponents corresponding to the
reconstructed time series is in good agreement with the spec-
trum of a strange attractor, where positive exponents signify
mechanisms of instability, negative exponents correspond to
mechanisms of convergence, while at least one zero expo-
nent must exist corresponding to the expansion along the tra-
jectory. Figure 1c shows the spectrum of the Lyapunov ex-
ponents corresponding to theV1-component. In this case the
first Lyapunov exponent is much smaller than the first Lya-
punov exponent obtained from the original ions’ time series
and theV2−10 reconstructed time series. The observed pro-
file of the V1-component is similar to the profile which is
expected for a coloured noise signal.

In addition, the maximum Lyapunov exponentLmax has
been estimated independently according to Eq. (4). Fig-
ure 2 shows theLmax for the energetic ions, the reconstructed
andV1-component time series as the state space trajectory
evolves. In this case theLmax was found to be approximately
the same (∼0.075 bits/s) for both the energetic ions and the
reconstructed time series, and many times higher than the
Lmax of V1-component, which tends to a zero value. These
results provide further evidence for the existence of chaotic
behaviour in the energetic ions and the reconstructed time se-
ries, and suggest that theV1-component corresponds to dif-
ferent, possibly linear, contamination with noise dynamics.

For a purely deterministic system the existence of posi-
tive L-exponents implies chaotic dynamics, but for a signal
contaminated by noise it is possible for someL-exponents
to be positive due to the stochastic perturbation. It is known
that stochastic data often give positiveL-exponents without
the underlying dynamics necessarily being chaotic (Osborne
et al., 1986; Provenzale et al., 1991; Argyris et al., 1998).
When the embedding dimension is larger than the degrees
of freedom of the underlying system, spurious exponents oc-
cur as an artifact of the embedding, but the existence of more
than one positiveL-exponents for the energetic ions’ time se-
ries constitutes significant evidence that at least one of them
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Fig. 2. The largest Lyapunov exponentLmax as a function of the
evolution time, for the energetic ions its reconstructed and itsV1-
component time series.

could correspond to the underlying deterministic dynamics.
In order to verify the validity of this statement, we estimate
theLmax for the surrogate data according to the null hypoth-
esis that the energetic ions’ time series belongs to a family
of linear stochastic signals transformed by a nonlinear static
distortion. As in Pavlos et al. (1999a), we use in the follow-
ing the surrogate data, as described in Schreiber et al. (1996),
which mimic the time series in relation to the amplitude dis-
tribution and the autocorrelation function. In order to obtain
convincing results, we created a rich sample including 40 sur-
rogate data. The results of this comparison between the en-
ergetic ions’ time series and the surrogate data are shown in
Fig. 3a. The discrimination between the original time series
and the surrogate data forLmax is possible, because the sig-
nificance of the statistical test remains higher than two sig-
mas, fluctuating at the value of∼= 4 sigmas (see Fig. 3d).
These results for theLmax as a discriminating statistic clearly
permit the rejection of the null hypothesis with a confidence
greater than 95%.

Figure 3b presents the maximum Lyapunov exponent for
the reconstructed time series and the surrogate data, while
Fig. 3d shows the significance of the statistical test which ap-
proaches the value∼20 sigmas, much greater than the origi-
nal one of∼4 sigmas. This result rejects the null hypothesis
with high confidence. Figure 3c is similar to Fig. 3b but it
shows theLmax for theV1-component and the surrogate data.
In this case the discrimination between theV1-component
and the surrogate data is impossible because the significance
of the statistical test remains lower than 2 sigmas, as seen in
Fig. 3d. The above results suggest that the reconstructed
time series is nonlinear in a more evident way than the origi-
nal time series of the energetic ions, including the main mag-
netospheric dynamics, in contrast toV1-component, which
corresponds to external dynamics of a coloured noise. The
low value ofLmax for theV1-component, as well as the previ-
ous resultsrelated to the high correlation dimension, the long
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Fig. 3. (a)The largest Lyapunov exponent (Lmax) for the surrogate data and the energetic ions’ time series as a function of the evolution time
estimated for delay timeτ = 30 and embedding dimensionm = 6. (b, c) The same with (a) but for the reconstructed and theV1-component
time series of the energetic ions’ time series with embedding dimensionm = 6 and corresponding delay timeτ = 7, 70. (d) The significance
of the discriminating statistic of the largest Lyapunov exponent as a function of the evolution time, for the energetic ions its reconstructed
and itsV1-component time series.

decorrelation time and the nonstationarity, set more clearly
the question of whether theV1-component could be a form
of coloured noise (Athanasiu and Pavlos, 2001). In order
to support further this argument about theV1-component, we
estimated theLmax for thex(t) variable of the Lorenz chaotic
system, as well as for itsV2−10 reconstructed component
and itsV1-component. In this case the Lorenz system was
perturbed by external coloured noise of low dimensionality
(Provenzale et al., 1992).

Figure 4 shows the maximum Lyapunov exponent for the
x(t) variable, its reconstructed andV1-component time se-
ries. It is observed that theLmax of the reconstructed and
V1-component approximately equals theLmax of the origi-
nal time series, which stabilizes at the value of∼2.2, as it is
known. This result is expected because the reconstructed and
V1-component time series are a linear transformation of the
original time series according to SVD analysis (Athanasiu
and Pavlos, 2001).

Figure 5a presents theLmax for the variablex(t), contam-
inated with 110% observable colored noise, as well as for
the surrogate data. The value ofLmax for the noisy time se-
ries was estimated to be∼4.5, larger than the corresponding
value of∼2.2 of the original Lorenz times series, due to the

coloured noise influence (Argyris et al., 1998). Nevertheless,
as shown in the same figure, the value ofLmax ∼= 10 for the
surrogate data is about two times that of the original time se-
ries. Figure 5b–c are similar to Fig. 5a but correspond to re-
constructed andV1-component time series of the noisy vari-
ablex(t). For the reconstructed time series, theLmax takes
the value of∼4, while for the surrogate dataLmax takes the
value of∼15. On the other hand, for theV1-component and
the surrogate data no difference was found, as the value of
Lmax is ∼1 for both of them. Finally, the significance of the
statistical tests of theLmax for the noisy, its reconstructed,
andV1-component time series are shown in Fig. 5d. We ob-
serve that the discriminating statistics approaches the value
of ∼50 sigmas for the reconstructed time series, obtaining
larger values than those of the noisy variablex(t), which is
fluctuated in the region of 20 sigmas. These results permit
us to reject the null hypothesis with a confidence larger than
95% for both cases, while for theV1-component it is not pos-
sible, as the quantityS takes values smaller than 2 sigmas.

Studying the previous results, related to the estimation
of Lmax and the test for the surrogate data, it turns out
that for a chaotic system perturbed with coloured noise the
reconstructed time series preserves its main characteristics,
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while the V1-component exhibits the characteristics of the
external coloured noise perturbation. Similar results were
found from the estimation of geometrical characteristics of
the Lorenz system (Pavlos et al., 2003; Athanasiu and Pav-
los, 2001). At this point we must emphasize the strong sim-
ilarity between the results obtained from theLmax estima-
tion for the energetic ions’ time series and the Lorenz noisy
variablex(t), as well as for the reconstructedV2−10 and the
V1-component, as shown in Figs. 3 and 5. These results
are in agreement with similar results related to theAE in-
dex (Athanasiu and Pavlos, 2001) and support the theoreti-
cal concept that different data reveal two different physical
processes: the one process which shows low dimensional
and chaotic behavior corresponding to the internal magne-
tospheric dynamics and the other which looks like a linear
stochastic process corresponds to an external coloured noise
perturbation of magnetosperic dynamics.

3.1.1 Mutual information

Mutual information for the energetic ions time series and the
surrogate data has been estimated by implementing the al-
gorithm of Eq. (7) in Sect. 2.2. Figure 6a shows the mutual
information estimated for the energetic ions’ time series and
the surrogate data as a function of the lag timeτ . The mu-
tual information for the energetic ions time series is slightly
larger than that for the surrogate data. This difference is sig-
nificant enough for the discrimination between the energetic
ions time series and the surrogate data (Fig. 6b). In particu-
lar, for smallτ , e.g. the first 15 lags, with the exception of
τ = 1, the values of the statistical test were significant in
the range of 2–4.5 sigmas. For larger lags the significance
remains smaller than two sigmas. The above results permit
us to reject the null hypothesis and support the nonlinearity
of the energetic ions time series.

Figure 6c shows the mutual information for the recon-
structed time series that has smaller values than those of
the energetic ions’ time series for the same lag time. How-
ever, the difference with the surrogate data is large enough,
as shown in Fig. 6d, where the significance of statistics ap-
proaches the value of∼40 sigmas for 12 lags (∼2.5 min),
permitting the rejection of the null hypothesis at a level of
confidence larger than 95%. Figure 6e is similar to Fig. 6a
but corresponds to theV1-component and the surrogate data.
The values of mutual information for theV1-component de-
cay slower than those of the energetic ions and the recon-
structed time series. This result is expected if we take into ac-
count the high linear autocorrelations of theV1-component.
The significance of the statistical test for the mutual infor-
mation of theV1-component remains lower than two sigmas
(see Fig. 6f), except in a narrow region of 2–7 lags, where it
approaches the value of∼4 sigmas. This result is in contrast
to several results coming from the other tests of chaotic anal-
ysis for theV1-component, suggesting that a part of theV1-
component is partially explained by nonlinear terms, some-
thing which is not excluded by the method of its construction.
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Fig. 4. The largest Lyapunov exponentLmax as a function of the
evolution time, for the variablex(t) of the Lorenz dynamical sys-
tem, its reconstructed and itsV1-component time series estimated
for embedding dimensionm = 6 and the best delay time.

Eventually, the study of mutual information exhibits weak
nonlinearity in the original time series of energetic ions, pos-
sibly because of the existence of a strong linear component
(see Figs. 6b, f). On the other hand, the reconstructed time
series after the removal of the first component, reveals non-
linear behaviour, as shown in Fig. 6d. The above results sug-
gest that the SVD method can be a very useful tool in the
filtering and detection of nonlinearity in observable data.

3.2 Modelling and prediction

3.2.1 Parametric local linear prediction

In the following we present the results of the hypothesis
test using the prediction and modeling methods described in
Sect. 2.3. In particular, we use the local linear prediction
(LLP) model, as well as global linear and nonlinear polyno-
mial fitting. In the first case we estimate the local linear maps
using ordinary least-square fitting (OLS). Figure 7a presents
the results of LLP with the surrogate data. The correlation
coefficient (CC) forT = 1 − 50 step ahead predictions ob-
tained iteratively for the energetic particles’ time series and
the 40 surrogate data are presented. In order to reduce the
noise of the estimations we used a low embedding dimen-
sionm = 6, the best reconstruction delay timeτ = 30, and
k = 2(m + 1) = 16 neighbours (Farmer and Sidorowich,
1987). The training set consisted of the first 18 000 values
and the test set consisted of 1800 values, which is 10% of the
training set, of the time series. The significance of the above
statistics is shown in Fig. 7b. The small values of the signifi-
cance(0.0− 1.4) show that there is no significant difference
between the original time series and the surrogate data. This
result is in agreement with the observation of Theiler and
Prichard, that the prediction error generally has a large vari-
ance and provides a poor discriminating statistic (Theiler and
Prichard, 1997).
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Fig. 5. (a) The largest Lyapunov exponent (Lmax) for the variablex(t) of the stochastic Lorenz dynamical system and its surrogate data
as a function of the evolution time estimated for delay timeτ = 30 and embedding dimensionm = 5. (b, c) The same with (a) but for
the reconstructed and theV1-component time series of the stochastic Lorenz time series, estimated for embedding dimension m =5 and
corresponding delay timeτ = 30, 50. (d) The significance of the discriminating statistic of the largest Lyapunov exponent as a function of
the evolution time, for the stochastic Lorenz time series, its reconstructed and itsV1-component time series.

It is known for a chaotic time series that the predictability
depends on the width of the training set. The prediction error
is decreased when the width of the training set is increased
(Farmer and Sidorowich, 1987; Smith, 1992). If the ener-
getic ions’ time series includes chaotic determinism, then we
expect an improvement of the predictability with the increase
of state vectors in the training set. Also, a similar behaviour
is expected for the surrogate data because of their reconstruc-
tion (they have the same autocorrelation function and ampli-
tude distribution with the original time series). However, this
improvement must be smaller than that of the original time
series, because of the stochastic character of the surrogate
data by construction (in this case the phases have been de-
stroyed). In the following paragraph we are going to check
this crucial hypothesis on the energetic ions’ time series and
the surrogate data. The correlation coefficient between real
and predicted values has been used as a prediction estimator.

In Fig. 8a the correlation coefficient between the real and

predicted values is shown as a function of prediction time
when the training set has the first 3000, 9000, 18 000 data
points of the time series. In every case the width of the test
set is chosen to be equal to 10% of the corresponding training
set. In addition, the parameters of the prediction, embedding
dimension, delay time, and number of neighbour state vec-
tors are equal to those of Fig. 7a. As we can see, the values
of the correlation coefficient are increased when the num-
ber of data in the training set is increased. Figure 8b is the
same as Fig. 8a but corresponds to the mean value of corre-
lation coefficient for the surrogate data. Comparing the two
figures, we observe that the mean predictability of the surro-
gate data is better than the original when the training region
is the first 3000 points. Surprisingly, in the case of the orig-
inal time series the difference between the correlation coef-
ficients corresponding to 3000 and 18 000 data points of the
training set is approximately twice that of the surrogate data.
This result by itself constitutes evidence of determinism and
chaoticity in the energetic ions’ time series. In order to es-
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Fig. 6. (a) Mutual information estimated for the energetic ions’ time series and its surrogate data as a function of the lag time.(b) The
significance of the discriminating statistic of the mutual information as a function of the lag time shown in (a).(c, d) The same with (a, b)
but for the reconstructed time series.(e, f) The same with (a, b) but for theV1-component time series.

timate the significance of the alteration as the width of the
training set is increased, we calculated the absolute differ-
ence between the correlation coefficients corresponding to a
training set of 3000 and 18 000 data points for the energetic
ions’ time series and the surrogate data (see Fig. 8c). The

quantity S shown in Fig. 8d tends to be significant in the re-
gion of 2–5 prediction steps as it obtains values larger than
two sigmas. Figure 8e is similar to Fig. 8c but with a training
set of the first 3000 and 9000 data points. The correspond-
ing significance of the statistics is shown in Fig. 8f. In this
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Fig. 7. (a) Correlation coefficient be-
tween predicted and real values for en-
ergetic ions’ time series and its surro-
gate data as a function of prediction
time, estimated for embedding dimen-
sion m = 6, delay timeτ = 30 and
k = 16 neighbors.(b) Significance of
the discriminating statistic for the cor-
relation coefficient shown in (a).

case the small values of the significance indicate that there
is no significant difference between the original time series
and the surrogate data. The above results concerning the pre-
dictability in relation to the width of the training set support
further the existence of nonlinearity and determinism in the
magnetosperic dynamics.

3.2.2 Global linear and nonlinear polynomial fitting

The modeling with global polynomials gives good discrim-
ination between the original and surrogate data, especially
when we define the discrimination statistic to be the change
in the modeling error as we go from linear to nonlinear poly-
nomial terms. Here, we use the NRMSE to quantify the mod-
eling error as presented in Sect. 2.3.2. In Fig. 9a the NRMSE
for energetic ions and 40 surrogate data is shown as a func-
tion of the polynomial terms of the Volterra-Wiener series,
usingm = 6 andq = 2 and 5 steps ahead mappings for
all the polynomials of the Volterra-Wiener series (see Eq. 8).
The first 7 polynomial terms are linear (the first term is the

constanta0) and the rest are nonlinear interactions of the 30
delays. The existence of noticeable nonlinearity for the en-
ergetic ions’ time series is proved by the abrupt reduction of
the energetic ions’ error, as we pass from the linear to the
nonlinear fitting. This significant result is clearly depicted
in Fig. 9b, that shows the significance of the reduction error
statistic corresponding to the difference of the polynomial
fitting of the first seven linear terms from the polynomial fit-
ting containing all the possible linear-nonlinear terms. For
the difference corresponding to linear terms, the significance
of the statistic reveals values lower than 2 sigmas, while for
nonlinear terms the significance varies at higher values in the
range of 4.0 − 5.0 sigmas. Figure 9c shows the discrimi-
nating statistic of the reduction error for the energetic ions
(tall line) and the surrogate data (short line) corresponding
to the difference of the polynomial fitting of the first seven
linear terms from the polynomial fitting containing all the
linear-nonlinear terms. This figure shows that the difference
is clearly significant permitting the rejection of the null hy-
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Fig. 8. (a) Correlation coefficient between predicted and real values for the energetic ions’ time series as a function of prediction time,
increasing the width of the training set, estimated for embedding dimensionm = 6, delay timeτ = 30 andk = 16 neighbours.(b) The same
with (a) but for the mean value of 40 surrogate data sets.(c) The absolute difference between the correlation coefficients corresponding to
training set of 3000 and 18 000 data points for the energetic ions’ time series and its surrogate data.(d) Significance of statistics shown in
Fig. 8c. (e) Figure 8e is similar to Fig. 8c but for training set the first 3000 and 9000 data points.(f) Significance of the statistic shown in
Fig. 8e.

pothesis with a confidence larger than 95%.

In Fig. 10a, the NRMSE for the reconstructed time series
of energetic ions and 40 surrogate data is shown as a func-
tion of the polynomial terms of the Volterra-Wiener series,
using parametersm = 6, q = 2, τ = 7, andT = 1 step
ahead. As in the case of the energetic ions’ time series, an
abrupt decay is observed again for the NRMSE as we pass
from linear (the first seven polynomial terms) to the nonlin-
ear fitting. Figure 10b is similar to Fig. 9b but corresponds
to a reconstructed time series. The significance of statistics

remains lower than two sigmas for linear models, while it is
increased with respect to the number of the nonlinear terms
included in the model approaching the value of 5.25 sigmas.
Moreover, in Fig. 10a, a reduction of NRMSE is observed for
the reconstructed time series as nonlinear terms are added in
Volterra-Wiener series. This result means that for the recon-
structed time series, nonlinearity does not only appear in the
first nonlinear terms as in the case of the original time series
(see Fig. 9a). On the other hand, the NRMSE of the surrogate
data remains unchanged when the first nonlinear polynomial
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Fig. 9. (a)Normal root mean squares error (NRMSE) estimated by
using a polynomial fitting for the energetic ions’ time series and its
surrogate data, as a function of the polynomial terms, of the Voltera-
Wiener model estimated for parametersm = 6, τ = 30, q = 2 and
5 steps ahead mappings. The first seven terms are linear and the next
terms are nonlinear.(b) Significance of the reduction error statis-
tic corresponding to the difference between the polynomial fitting
of the first seven linear terms from the polynomial fitting contain-
ing all the possible linear-nonlinear terms.(c) The discriminating
statistic of the reduction error for the energetic ions (tall line) and
the surrogate data (short line) corresponding to the difference be-
tween the polynomial fitting of the first seven linear terms from the
polynomial fitting containing all the linear-nonlinear terms.

term is included in the model. This result is quantified in
Fig. 10c, which shows the significance of the reduction error
statistics for the difference between the polynomial fitting of
the first 8 terms from the polynomial fitting containing all the
possible linear-nonlinear terms of polynomial fitting. For the
difference corresponding to linear terms, the significance of
the statistics reveals values with almost zero sigmas, while
for nonlinear terms, the significance is increased, approach-
ing a saturation value of∼10 sigmas. The discriminating
statistic of the reduction error of the polynomial fitting with
the first 8 terms from the polynomial fitting with all 28 terms
is shown in Fig. 10d, using tall lines for the reconstructed
time series and short lines for the surrogate data.

Finally, Fig. 11 presents the NRMSE for theV1-
component and the 40 surrogate data as a function of the
polynomial terms of the Volterra-Wiener series, usingm = 6,
τ = 70, q = 2 andT = 10 steps ahead. Obviously, the
addition of nonlinear terms does not cause a reduction of
NRMSE, as it does in the original and reconstructed time se-
ries. This result is depicted in Fig. 11b, which shows the sig-
nificance of the reduction error statistic corresponding to the
difference between the polynomial fitting of the first seven
linear terms from the polynomial fitting containing all the
possible linear-nonlinear terms. As is expected from the pre-
vious tests, the significance obtains values lower than 2 sig-
mas and thus, the null hypothesis cannot be rejected.

The above results obtained by using a polynomial fitting,
especially for the reconstructed time series reject the null
hypothesis and strongly support the nonlinearity of internal
magnetospher a dynamics with a confidence larger than 95%.

4 Summary and discussion

The dynamical characteristics of the magnetospheric ions’
time series that were studied in this work reveal strong non-
linear and chaotic characteristics of the underlying magneto-
spheric dynamics which produces the energetic ions’ signal.
The null hypothesis was tested for the original time series,
as well as for the first SVD component and the reconstructed
signal by adding the other SVD components. This test was
applied for the largest Lyapunov exponent, the mutual in-
formation, the local linear prediction and the Voltera-Wiener
modeling. For the application of the test we have used sur-
rogate data constructed according to Schreiber’s algorithm,
in order to mimic the amplitude distribution and the power
spectrum of the magnetosperic signal and its SVD compo-
nents.

In Table 1 we summarize the significance of the esti-
mated statistics for the case of the largest Lyapunov expo-
nent, the mutual information, the local linear prediction and
the Voltera-Wiener modeling, for the ion time series, the first
SVD component and the reconstructed signal. The signifi-
cance of the statistics for the original signal obtains values
slightly higher than two sigmas, except in the case of the lo-
cal linear prediction, while the significance of the first SVD
component reveal values lower than two sigmas, except in
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Fig. 10. (a)Normal root mean squares error (NRMSE) estimated by using a polynomial fitting for the reconstructed time series and its
surrogate data, as a function of the polynomial terms, of the Voltera-Wiener estimated for parametersm = 6, t = 7, q = 2 and 1 step
ahead mappings.(b) Significance of the reduction error statistic corresponding to the difference between the polynomial fitting of the first
seven linear terms from the polynomial fitting containing all the possible linear-nonlinear terms.(c) Significance of the reduction error
statistic between the polynomial fitting including the first nonlinear term (8th term) and the polynomial fitting containing all the possible
linear-nonlinear terms.(d) The discriminating statistic of the reduction error for the energetic ions (tall line) and the surrogate data (short
line), corresponding to the difference between the polynomial fitting including the first nonlinear term (8th term) from the polynomial fitting
containing all the linear-nonlinear terms.

Table 1. This table shows the significance of the estimated sttistics for the case of the largest Lyapunov exponent, the mutual information,
the local linear prediction and the Voltera-Wiener modeling, for the ion time series, the first SVD component and the reconstructed signal

Significance of statistics (sigmas)

Lmax Mutual Information Local Linear Prediction Prediction in NRMSE
relation to training for polynomial fitting

set width Linear Non Linear

Energetic ions ∼4 ∼4 < 2 ∼4 < 2 ∼4
time series

Reconstructed ∼20 ∼40 < 2 – < 1 ∼12
time series

V1-Component ∼1 ∼4 < 2 – < 1 < 1
time series
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Fig. 11. (a)Normal root mean squares error (NRMSE) estimated by
using a polynomial fitting for theV1-component time series and its
surrogate data, as a function of the polynomial terms of the Voltera-
Wiener model estimated for parametersm = 6, t = 70, q = 2
and 10 steps ahead mappings.(b) Significance of the reduction er-
ror statistic corresponding to the difference between the polynomial
fitting of the first seven linear terms from the polynomial fitting con-
taining all the possible linear-nonlinear terms.

the case of mutual information. On the other hand, the sig-
nificance of the statistics for the reconstructed signal by us-
ing the higher SVD components obtains values in the region
of 10–40 sigmas, except in the case of local linear predic-
tion and the Voltera-Wiener linear modeling. Moreover, the
largest Lyapunov exponent was found to be positive, with
values∼0.07 s−1 for the original and the reconstructed time
series, while for the first SVD component the value is signif-
icantly lower∼0.01 s−1.

These results concerning the dynamical characteristics of
the magnetospheric ions’ time series are in good agreement
with the results obtained in Pavlos et al. (2003), correspond-
ing to the geometrical characteristics (correlation dimension,
false nearest neighbors and singular values). Also, the results
of chaotic analysis applied for the magnetospheric ions’ time

series are quite similar to the results of the chaotic analysis
of the magnetosphericAE index (Pavlos et al., 1999a, b, c).
As we know the magnetospheric energetic ions are observed
during periods of strong substorms of the Earth’s magneto-
sphere (Pavlos et al., 1985, 1989). Therefore, it is accept-
able from the physical point of view to assume that for both
time series theAE index and the energetic ions correspond
to the same dynamical system. This hypothesis is strongly
supported by the new results of chaotic analysis obtained for
theAE index and the energetic ions signal, and for both time
series the chaotic analysis reveals a low dimensional process.
As we have shown in Pavlos et al. (2003) the correlation di-
mension for the energetic ions was found to be∼3.5 and
the independent dynamical degrees of freedom estimated by
false nearest neighbours and singular spectrum analysis was
found to be∼7. Finally, the low dimensional chaotic dynam-
ics of the magnetospheric system is now better proved to be
two different magnetospheric signals, one measured at the
Earth (AE index) and the other at the distant magnetosphere,
exhibiting common geometrical and dynamical characteris-
tics in accordance with the low dimensional chaos hypoth-
esis. This concept of low dimensional chaotic dynamics of
the magnetospheric system is also supported strongly by the
similar behaviour of the Lorenz dynamic system perturbed
by external noise.

In the previous analysis the low dimensional chaotic be-
haviour of energetic ions’ time series was mainly supported
by the SVD reconstructed signal after rejection of the first
SVD component. The comparison of the results of the mag-
netospheric signals with the results produced by the Lorenz
system after its perturbation with a strong colored noise, in-
dicates that the internal low dimensional chaotic dynamic
of the magnetospheric system is perturbed by an external
coloured noise signal that could be related to the stochastic
dynamics of the solar wind system. From this point of view,
in order to test the above hypothesis concerning the coloured
noise, the extended chaotic analysis used in this paper must
be applied simultaneously to the solar wind and magneto-
spheric system.
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