N

N

Dynamical characteristics of magnetospheric energetic
ion time series: evidence for low dimensional chaos
M. A. Athanasiu, G. P. Pavlos, D. V. Sarafopoulos, E. T. Sarris

» To cite this version:

M. A. Athanasiu, G. P. Pavlos, D. V. Sarafopoulos, E. T. Sarris. Dynamical characteristics of mag-
netospheric energetic ion time series: evidence for low dimensional chaos. Annales Geophysicae, 2003,
21 (9), pp.1995-2010. hal-00317163

HAL Id: hal-00317163
https://hal.science/hal-00317163
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00317163
https://hal.archives-ouvertes.fr

Annales Geophysicae (2003) 21: 1995-20&0European Geosciences Union 2003 ~ "K

6\ Annales
\ 5 Geophysicae

Dynamical characteristics of magnetospheric energetic ion time
series: evidence for low dimensional chaos

M. A. Athanasiu, G. P. Pavlos, D. V. Sarafopoulos, and E. T. Sarris
Department of Electrical and Computer Engineering, Demokritos Univercity of Thrace, 67100 Xanthi, Greece

Received: 31 October 2002 — Revised: 8 April 2003 — Accepted: 6 May 2003

Abstract. This paper is a companion to the first work (Pav- b). In a recent series of papers by Pavlos et al. (19994, b,
los et al., 2003), which contains significant results concernc), Athanasiu and Pavlos (2001), the hypothesis of magne-
ing the dynamical characteristics of the magnetospheric entospheric chaos, supported by the analysis of the magneto-
ergetic ions’ time series. The low dimensional and non-sphericAE index, was reestablished. Moreover, the appli-
linear deterministic characteristics of the same time seriesation of chaotic analysis to signals observed by more than
were described in Pavlos et al. (2003). In this second workone spacecraft was examined for the first time by Pavlos et
we present significant results concerning the Lyapunov specal. (1999c). In this paper a more thorough study of the mag-
trum, the mutual information and prediction models. The dy- netospheric ion signals is presented. In the first work (Pavlos
namical characteristics of the magnetospheric ions’ signal®t al., 2003) the correlation dimension and other geometri-
are compared with corresponding characteristics obtained focal quantities were estimated by using the magnetospheric
the stochastic Lorenz system when a coloured noise pertuiions’ time series, observed during days 7-8 December 1994
bation is present. In addition, the null hypothesis is testedat the dawn magnetosheath of the Earth’s magnetosphere,
for the dynamical characteristics of the magnetospheric ionsand they were used as discriminating statistics between non-
signal by using nonlinear surrogate data. The results of thdinear dynamics and linear stochastic signals. The null hy-
above comparisons provide significant evidence for the expothesis which was tested, concerns the observed time series
istence of low dimensional chaotic dynamics underlying thethat arises by a static nonlinear distortion of a Gaussian signal
energetic ions’ time series. x(t) = h(s(t)), whereh is a monotonic nonlinear function.
(Theiler 1992a, b; Schreiber and Schmitz, 1996; Schreiber,
1998). Statistics of geometrical characteristics showed that
the magnetospheric ions’ time series was clearly distinguish-
able from a Gaussian, linear stochastic signal that had the
same power spectrum and amplitude distribution. We must
1 Introduction point out here that the geometric characteristics are measures

) _ .of the spatial distribution of the sample points along a system
The hypothesis of the chaotic nature of the magnetospherig i in the reconstructed phase space of the system. In this

behaviour has been supported in the last def:ade by a large;se there is no information about the dynamic evolution of
number of theoretical studies (Pavios, 1988; Baker et al.yho system in the phase space. Dynamic characteristics that

1990; Klimas et al., 1991, 1996; Pavlos et al., 1994). Thesgqnnact current and future states of the system are the Lya-

results were further supported by a series of studies 'nCIUd'punov exponents, the average mutual information, the local

ing chaotic analysis of ground measured magnetospheric Sigy,qar prediction and nonlinear modeling. The results pre-
nals with AE index data (Vassiliadis et al., 1990, 1992; qoniaq in Pavios et al. (2003) indicate clearly the existence
Roberts et al.,, 1991; Shan et al., 1991; Pavlos et al., 19923y 5 nyonlinear, low-dimensional dynamical process underly-
b, 1994; Klimas et al., 1996). A series of significant stud- j,4 the magnetospheric energetic ions’ time series. In order
ies (Price and Prichard, 1993; Price et al.,, 1994; Prichardy (et this hypothesis here we use dynamical characteristics

1995) showed the weakness of the nonlinear analysis of theg giseriminating statistics between the magnetospheric ions’

magnetospheriel £ index time serigs, espegially in relation time series and stochastic (surrogate) data. The results ob-
to the strong null hypothesis of Theiler (Theiler et al., 19924, 5ine indicate the existence of low-dimensional chaotic dy-

Correspondence taWl. A. Athanasiu namics underlying the energetic ions’ time series.
(mathanas@ee.duth.gr) It is important to note here that the prediction models
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are used only as indicators of the nonlinear and chaotic befound by repeating this process for Allreconstructed points

haviour of the magnetospheric dynamics. Moreover, inasex(i),i = 1, ..., N, thatis

ries of previous papers, prediction methods have been ap- N

plied for understandln'g the physical process of solar Wll’ld-)tj _ Z log | Aief, I, j=212 .4, ©)
magnetosphere coupling (Bargatze et al., 1985; Goertz et al., =

1993; Vassiliadis et al., 1995; Vassiliadis and Klimas, 1995; o
Klimas et al., 1996, 1997; Vassiliadis et al., 2000). where{e’ } is a new set of orthogonal vectors produced by
In Sect. 2, the theoretical part of our study is presented inP"thonormalization of the vectors at timen order to retain

relation to the dynamical characteristics of the energetic ionsthe local orthogonal spanning of the state space (Sano and
time series. In Sect. 3 a comparison between the energetiedwada, 1985; Eckman etal., 1986; Holzfus and Lauterborn,

ions’ time series and the surrogate data is carried out base988; Karadonis and Pagitsas, 1995). For the estimation of
on the dynamical characteristics, i.e. spectrum of Lyapunoyh® maximum Lyapunov exponetimax) we use the equa-
exponents, mutual information, local linear prediction andton

global linear and nonlinear polynomial fitting. Finally, in 1 [d@o
Sect. 4 a summary is given and the results of this work arebmax=lim —In 40 |’ 4)
discussed. -0

whered(t) = |x2(t) — x1(¢)| measures the distance between
neighbouring points in the reconstructed phase space (Wolf
2 Theoretical framework et al., 1985). It follows, for finite data, that the initi&(0) is
limited by the distance of the closest neighbors and the time
In this section we present some theoretical concepts concern-is limited by the time period of the observation.
ing the spectrum of the Lyapunov exponents, the mutual in-
formation, the modeling and prediction, which constitute the2.2 Dynamics and mutual information

main tools of our analysis. i ] . )
Chaotic or stochastic dynamical systems can be described by

2.1 Spectrum of the Lyapunov exponents using the concept of information. For this scope we suppose
that the random behaviour of the system is a realization of
The spectrum of Lyapunov exponents measures the rate gghannon’s concept of an ergodic information source (Shaw
convergence or divergence of close trajectories id direc- 1981, 1984; Abarbanel et al., 1993). Sfis some property
tions of the phase space. A positive Lyapunov exponent in0f the dynamical system angl i = 1,2, ... possible values
dicates divergence of trajectories in one direction, or alterna®f S, then the average amount of information gained from a
tively, expansion of an initial volume in this direction, and a Measurement that specifigss given by the entropy ()
negative Lyapunov exponent indicates convergence of trajecz; o) _ ™ P(si) log P(s), 5)
tories or contraction of volume along another direction. For ,
flows, there is always a zero Lyapunov exponent correspond- ] .
ing to the direction of the flow. The Lyapunov exponents canWhere P (s;) is the probability thats equalss; and the loga-
thus be ordered dg >, ..., > A4, and a positive.; indicates thm is taken with respect to b.ase 2. An estlmat(.?(lfi) is
the existence of chaos for a dissipative deterministic system@iven byn(s;)/nr, wheren(s;) is the number of times that

The spectrum of the Lyapunov exponents can be estimated® Values; is observed, andr is the total number of mea-
from a time series by following the evolution of small pertur- surements. The same concept can be used to identify how

bations of the reconstructed orbit, making use of a linearized"Uch information we obtain about a measurement of an ob-

approximation. The evolution of the displacement vector be-Servable S quantity from measurement of another observable

tween the neighboring points(i) and x(i) + w() in the 0 quan_tlty. Thl_s concept is the b_aS|s for the_deflnltlon of

reconstructed phase space is given by the equation mutual information. For a time series, we consider a general
coupled systendS, Q) with 0 = {x(i)} andS = {x(i + 1)},

w(i +1) = DF(x () w(i), (1)  Wherex(i), x(i+7) corresponds to scalar samples from a dy-
namical system at discrete timesndz; .. The conditional

whereDF denotes the derivative matrix &. A local ap-  uncertainty ofS given thatQ = ¢; is defined as

roximation of the matriXDF can be found by minimizin
b Y 9 H(S/0=aq) == P(sj/a)log P(s;/q).
J

1

the following expression

minS  minS 1< ) ) where P(s;/q;) is the conditional probability of§ = s;
A T Ak Z lwjG+1) —Aiw;@) 1, (@) given thatQ = ¢;. Thus, we define the conditional uncer-
j=1 tainty of S given Q as a weighted average of the uncertainties
wherek is the number of the neighbours tei) regardinge ~ 11(5/Q = 4i), thatis
different perturbations;, j = 1, ..., k, whichareusedtoes- g (5/0) = Z P(s;/qi)10g P(s;/qi).
timateA; = DF at the pointx (i). The Lyapunov spectrum is T ’
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Using the fact thaP (¢;, s;) = P(q;) P(s;/Q;) we have FT(x(i), @) may be approximated with different functional
forms of the global, local or semi-local type (Lillekjendlie et
H(S/Q) ==Y P(gis))0g P(s;/qi) al., 1994). For any functional form, the parameters involved
a5 are estimated directly from the data. In the case of modeling
— H(Q,S) — H(Q). the whole set of available data is used in fitting, while in the

case of prediction a subset of the data is used initially for fit-

The amount by which a measurement@freduces the un- ting an appropriate model (training set) and the rest is used
certainty ofS (average mutual information) is given by the for testing the predictability of the proposed model (test set).
relation To verify the performance of the model, two measures of
the modeling or prediction error are often computed. The
Isg =H(S)— H(S/Q) = H(S)+ H(Q) — H(Q.5). (6) first is the normalized root mean square error (NRMSE),
For more details about the definitions of the above quantitie/NiCh IS defined as the root of the mean square differences

refer to Ash (1990) and Papoulis (1991). If this relation is of the modeled (or predicted) values from the actual values,
applied to time series leads to normalized by dividing by the standard deviation of the data.

If NRMSE = 0, perfect model performance is achieved and

I(z) =— Z P(x(i))log, P(x(i)) if NRMSE > 1, the modeling or prediction is worse than
x(0) this obtained using the mean value as a model. The other
measure is the correlation coefficigdtC), which gives the
- Z P(x(i —1))logy P(x(i — 7)) correlation between the modeled (or predicted) data and the
(x@i=1)) actual data. An estimate 6fC is obtained from the ratio of

) ) ) ) ] the covariance over the root of the product of the variance

+D ) (= DP@(),x( = 1))10gy P(x(D).x( = )(T)  of the two data sets. It is known thelC takes values in

@) [-1, 1]. WhenCC = 1 best correlations are obtained, i.e. the
The mutual information between the two samples performance of the model_ is excellent, while fqr values of
(x()}, x(i + 1)) takes values in the rang€0, Imay, CC glose to zero or negative, the pgrformance is very poor.
where Imax = 1(0) is equal to the entropyd (x). If the Ir? this work, FT' is approxmateq with global polynomials
samples{Q = x(i)} and{S = (i + 1)} are statistically ~ (linear and nonlinear) and local linear models.
independent, then the mutual information will vanish for
this value ofz, i.e. knowledge for the second sample can 2-3:1 Local models
not be gained by knowing the first. On the other hand, if the
first sample uniquely determines the second sample, the
I (1) = Imax Which is most likely to be true when= 0. In

Ip the case of local models which describe deterministic sys-
tems, nearby trajectories evolve similarly, at least for a short

this paper, we follow the work of Fraser and Swinney (1986) time if the system ?s ch'aotic. Thus, on the reco_nstructTed at-
for the estimation of the mutual information (according (ractor, for any pointe (i) we can locally approximaté
to EqQ. 7) of an experimental time series, which is used agVhich leads to the estimation afii + 7), taking into ac-

discriminating statistics between the surrogate data and th§0unt thek nearestneighbours e{i), {x(i(1)), ..., x (i (k))}.
ions' time series. It should be noted that for each target poiiit) and time step

T a different model is computed.
2.3 Modeling and prediction The local approximation of T may be done with a lin-
ear map of the fornk(i + T) = ag + a” x(i). Assuming

The observable informatiom(zi) = x(i) on the temporal that this model is good enough for the neighborhoos @7,
evolution of the orbit in the reconstructed phase space can bge. the above equation also applies to the mapping of the
used for prediction or modeling purposes, building the mapk neighbours, wheré > m, we can solve a system a&f
F(x(i)). The estimation of the map, for experimental data  equations withn + 1 unknown parametefgo, a} using the
and for T time steps ahead;’” is reduced to determine a ordinary least squares (OLS). The values of the estimated pa-
group of parameters, given a class of functional forms for rameters are then used to find the mapgitg+ 7') (Farmer
FT(x(i), a). When the functional form of 7 is known, then  and Sidorowich, 1987; Casdagli et al., 1992).
the parametera are chosen by using some form of a cost
function which measures the matching of the observed futur€.3.2  Global polynomial models
samplex (i + T) with the predictect (i + T) = FT (x(i), a)
(see Abarbanel et al., 1993). A simple approximation o7 is a polynomial, which may

Our purpose is to construct both linear and nonlinear mapsinvolve only linear terms (this is actually the autoregressive
as well as local or global maps by looking for the best ap-(AR) model) or linear terms plus nonlinear terms of a de-
proximation of F7. Modeling and prediction make use of greeq as well. Certainly, a polynomial of a small degige
phase space reconstruction, implicitly (like the autoregresin m delay variables, call ipg, cannot model complicated
sive (AR) models) or explicitly (like the local linear maps) dynamics and for pure chaotic systems is more likely to be
(see Weigend and Gershenfeld, 1993). Moreover, the mamsufficient. However, when we are dealing with real data,
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The general form of;qT, wherex; , r = qu(xi), x eR™,
is given by the Volterra-Wiener series of degreand mem-
ory m

N
o

o

xG+T)=ap=a1x(i)+ax(i—1)+...

o
)

Famx (i — (m — D7) + ... + amy1x(i)?

Fampox(Dx(i —7) + .. +ayxi — (m — D)%, (8)

»
o

whereM = (m + ¢)!/(m!q!). In our case we usg = 2
because we are only interested in investigating the existence
of nonlinearity in the data. Moreover, we construct &l
polynomials, starting with the simplest which contains the

g
o

Lyapunov Exponents
\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

P
o

0 2 4 6 8 10 12 14 first linear term and go on by adding one term of the Volterra
Embedding dimension series at a time.
2 — T T T T T T
1 Reconstructed time series (b) 3 Data analysis and results

In the following we present the results about the dynamical
characteristics of magnetospheric ions’ time series and the
corresponding discriminating statistics which involve surro-
gate data. The energetic ions’ time series (35-46.8 keV) was
observed by the experiment EPIC/ICS during the days 7-8
December (days 341-342) 1994 at the dawn magnetosheath
of the Earth’s magnetosphere. As was explained in the first
paper of this study (Pavlos et al., 2003), it is reasonable to
suppose that these particles were accelerated in the inner

' '
L w

Lyapunov Exponents
HH‘H\\‘HH‘\\H‘HH‘HHJHH‘HH

6 T ] L magnetosphere during periods with strong coupling of the
0 2 4 6 8 10 12 14 magnetospheric system and the solar wind, simultaneously
Embedding dimension with strong bursts of electrons and"@nd a clear enhance-
ment of theA E index. Therefore, it can be supposed that the
2 ‘ L dynamics of the energetic ions mirror the internal magneto-
- _V1- Component © | spheric dynamics, similar to the E index during periods

with a strong coupling of the magnetosphere and the solar
wind (Pavlos et al., 1999c). The energetic particle differ-
ential fluxes are provided via the Energetic Particle and lon
Composition (EPIC) instrument of the GEOTAIL spacecraft
and essentially remained close to the ecliptic plane (Williams
et al., 1994). The sampling time for the energetic ions ana-
lyzed here was 6 s.

Moreover, in order to understand the underlying dynam-
ical process of the energetic ions’ time series, we study
the first componentW;-component) and the reconstructed
0 ) . 6 8 0 12 W time series V2_10 component), according to the theoreti-

Embedding dimension cal concepts of singular value decomposition (SVD) analysis
(Broomhead and King, 1986; Pavlos et al., 2003).
As it is shown in Athanasiu and Pavlos (2001) the original

Fig. 1. (a) The spectrum of the first six Lyapunov exponents es- > . )
timated for the energetic ions, as a function of the embedding di-iMe Seriesx(r) can be reconstructed by usingnew time

mensionm. (b, ¢) The same with (a) but for the reconstructed and SeriesV; (t) according to the relation
V1-component time series of the energetic ions’ time series. n
x(t) =) V(o).
i=1

this may turn out to be an advantage, because the evidentheren is the embedding dimension angl(z),i = 1, ....,n
dynamics (linear or nonlinear) are only modeled and the hid-are given by the first column of the matr()‘((ci)cf, X is
den are not modeled, as they may be covered by noise as welhe trajectory matrix constructed by the observed time series
(Barahona and Chi-Sang Poon, 1996). and¢; are the eigenvectors of the covariance maxixx

Lyapunov Exponents
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(Broomhead and King, 1986). The reconstructed time series 44,

corresponds to the componént_ 10 = Y Vi(¢),i = 2—10. 011 m=6
It was shown in Pavlos et al. (2003) that tiecomponent of o1 ——8— Energetic lons
the ion time series corresponds to a coloured noise external 4 | —a— V1- Component

component of the magnetospheric dynamics, whildthag
component corresponds to the internal magnetospheric.

3.1 Lyapunov exponents

Figure 1 shows the first 6 Lyapunov exponents estimated ac-
cording to Egs. (1)—(3) of Sect. 2.1, for the energetic ions,
and the reconstructed ard-component time series as a
function of embedding dimension. Figure la clearly shows
that the first Lyapunov exponent of the energetic ions’ time
. . . . . . . 0 2000 4000 6000 8000 10000 12000
series is positive~{0.26 bit/s), while the second is marginally Time (x6min)
positive, the third is marginally negative and the others are
negative. The spectrum of Lyapunov exponents for the re+ig. 2. The largest Lyapunov exponehinax as a function of the
constructed time series (see Fig. 1b) also presents one posvolution time, for the energetic ions its reconstructed andrjts
itive Lyapunov exponent~0.27 bit/s), one zero exponent, componenttime series.
while the others are negative. This observed profile of the
spectrum of the Lyapunov exponents corresponding to the
reconstructed time series is in good agreement with the speaould correspond to the underlying deterministic dynamics.
trum of a strange attractor, where positive exponents signifyin order to verify the validity of this statement, we estimate
mechanisms of instability, negative exponents correspond téhe Ly, for the surrogate data according to the null hypoth-
mechanisms of convergence, while at least one zero expaesis that the energetic ions’ time series belongs to a family
nent must exist corresponding to the expansion along the traef linear stochastic signals transformed by a nonlinear static
jectory. Figure 1c shows the spectrum of the Lyapunov ex-distortion. As in Pavlos et al. (1999a), we use in the follow-
ponents corresponding to thg-component. In this case the ing the surrogate data, as described in Schreiber et al. (1996),
first Lyapunov exponent is much smaller than the first Lya- which mimic the time series in relation to the amplitude dis-
punov exponent obtained from the original ions’ time seriestribution and the autocorrelation function. In order to obtain
and theV,_1g reconstructed time series. The observed pro-convincing results, we created a rich sample including 40 sur-
file of the Vi-component is similar to the profile which is rogate data. The results of this comparison between the en-
expected for a coloured noise signal. ergetic ions’ time series and the surrogate data are shown in
In addition, the maximum Lyapunov exponehtax has  Fig. 3a. The discrimination between the original time series
been estimated independently according to Eqg. (4). Fig-and the surrogate data fémax iS possible, because the sig-
ure 2 shows thé max for the energetic ions, the reconstructed nificance of the statistical test remains higher than two sig-
and V;-component time series as the state space trajectorynas, fluctuating at the value & 4 sigmas (see Fig. 3d).
evolves. In this case thiemax Was found to be approximately These results for thEmax as a discriminating statistic clearly
the same{0.075 bits/s) for both the energetic ions and the permit the rejection of the null hypothesis with a confidence
reconstructed time series, and many times higher than thgreater than 95%.
Lmax of V1-component, which tends to a zero value. These Figure 3b presents the maximum Lyapunov exponent for
results provide further evidence for the existence of chaoticthe reconstructed time series and the surrogate data, while
behaviour in the energetic ions and the reconstructed time seFig. 3d shows the significance of the statistical test which ap-
ries, and suggest that tl/g-component corresponds to dif- proaches the value20 sigmas, much greater than the origi-
ferent, possibly linear, contamination with noise dynamics. nal one of~4 sigmas. This result rejects the null hypothesis
For a purely deterministic system the existence of posi-with high confidence. Figure 3c is similar to Fig. 3b but it
tive L-exponents implies chaotic dynamics, but for a signal shows the.nax for the Vi-component and the surrogate data.
contaminated by noise it is possible for somexponents In this case the discrimination between thig-component
to be positive due to the stochastic perturbation. It is knownand the surrogate data is impossible because the significance
that stochastic data often give positizeexponents without  of the statistical test remains lower than 2 sigmas, as seen in
the underlying dynamics necessarily being chaotic (Osborné-ig. 3d. The above results suggest that the reconstructed
et al., 1986; Provenzale et al., 1991; Argyris et al., 1998).time series is nonlinear in a more evident way than the origi-
When the embedding dimension is larger than the degreesal time series of the energetic ions, including the main mag-
of freedom of the underlying system, spurious exponents ochetospheric dynamics, in contrast ¥@-component, which
cur as an artifact of the embedding, but the existence of moreorresponds to external dynamics of a coloured noise. The
than one positivé.-exponents for the energetic ions’ time se- low value of L max for the Vi-component, as well as the previ-
ries constitutes significant evidence that at least one of thenous resultsrelated to the high correlation dimension, the long
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Fig. 3. (a) The largest Lyapunov exponeritgay) for the surrogate data and the energetic ions’ time series as a function of the evolution time
estimated for delay time = 30 and embedding dimensien= 6. (b, c) The same with (a) but for the reconstructed anditfeomponent

time series of the energetic ions’ time series with embedding dimensieré and corresponding delay time= 7, 70. (d) The significance

of the discriminating statistic of the largest Lyapunov exponent as a function of the evolution time, for the energetic ions its reconstructed
and itsV,-component time series.

decorrelation time and the nonstationarity, set more clearlycoloured noise influence (Argyris et al., 1998). Nevertheless,
the question of whether thg;-component could be a form as shown in the same figure, the valuelgfax = 10 for the

of coloured noise (Athanasiu and Pavlos, 2001). In ordersurrogate data is about two times that of the original time se-
to support further this argument about fiecomponent, we  ries. Figure 5b—c are similar to Fig. 5a but correspond to re-
estimated thé.,ax for thex (¢) variable of the Lorenz chaotic  constructed and;-component time series of the noisy vari-
system, as well as for it¥>_19 reconstructed component ablex(z). For the reconstructed time series, thgax takes

and itsVi-component. In this case the Lorenz system wasthe value of~4, while for the surrogate datianax takes the
perturbed by external coloured noise of low dimensionality value of~15. On the other hand, for thHé-component and
(Provenzale et al., 1992). the surrogate data no difference was found, as the value of

Figure 4 shows the maximum Lyapunov exponent for the Lmax is ~1 for both of them. Finally, the significance of the
x(¢) variable, its reconstructed arid-component time se- Statistical tests of thémax for the noisy, its reconstructed,
ries. It is observed that thEmax of the reconstructed and @ndVi-component time series are shown in Fig. 5d. We ob-
V1-component approximately equals the.ay of the origi- serve that the discriminating statistics approaches the value
nal time series, which stabilizes at the value~gf2, as it is of ~50 sigmas for the reconstructed time series, obtaining
known. This result is expected because the reconstructed arl@ger values than those of the noisy variable), which is
V1-component time series are a linear transformation of thefluctuated in the region of 20 sigmas. These results permit

original time series according to SVD analysis (AthanasiuYS to reject the null hypothesis with a confidence larger than
and Pavlos, 2001). 95% for both cases, while for tHg -component it is not pos-

Figure 5a presents thanay for the variablex (1), contam- sible, as the quantity takes values smaller than 2 sigmas.

inated with 110% observable colored noise, as well as for Studying the previous results, related to the estimation
the surrogate data. The value bf,ax for the noisy time se- of Lmax and the test for the surrogate data, it turns out
ries was estimated to be4.5, larger than the corresponding that for a chaotic system perturbed with coloured noise the
value of~2.2 of the original Lorenz times series, due to the reconstructed time series preserves its main characteristics,
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while the Vi-component exhibits the characteristics of the ¢ — B I
external coloured noise perturbation. Similar results were m=6 (a)
found from the estimation of geometrical characFerlstlcs of s o Lorenz

the Lorenz system (Pavlos et al., 2003; Athanasiu and Pav- s Reconstructed time series

los, 2001). At this point we must emphasize the strong sim- 4 Il 5 v1- Component

ilarity between the results obtained from thgax estima- y f

tion for the energetic ions’ time series and the Lorenz noisy i‘g" 3
variablex(z), as well as for the reconstructétl_1o and the
Vi-component, as shown in Figs. 3 and 5. These results
are in agreement with similar results related to thg in-

dex (Athanasiu and Pavlos, 2001) and support the theoreti-
cal concept that different data reveal two different physical
processes: the one process which shows low dimensional
and chaotic behavior corresponding to the internal magne- 0 1000 2000 3000 4000 5000 6000
tospheric dynamics and the other which looks like a linear

stochastk_: process corresponds to an_external coloured noiﬁg' 4. The largest Lyapunov exponebinay as a function of the
perturbation of magnetosperic dynamics. evolution time, for the variable () of the Lorenz dynamical sys-
tem, its reconstructed and it§ -component time series estimated
for embedding dimensiom = 6 and the best delay time.

N

o
HH‘\\H‘\\H‘\

3.1.1 Mutual information

Mutual information for the energetic ions time series and the Eventually, the study of mutual information exhibits weak

surrogate data has been estimated by implementing the aljonjinearity in the original time series of energetic ions, pos-

gorithm of Eq. () in Sect. 2.2. Figure 6a shows the mutualgijyly pecause of the existence of a strong linear component
information estimated for the energetic ions’ time series a”d(see Figs. 6b, ). On the other hand, the reconstructed time
the surrogate data as a function of the lag timeThe mu-  geries after the removal of the first component, reveals non-
tual information for the energetic ions time series is slightly |inear behaviour. as shown in Fig. 6d. The above results sug-
larger than that for the surrogate data. This difference is Sig'gest that the SVD method can be a very useful tool in the

nificant enough for the discrimination between the energeticmtering and detection of nonlinearity in observable data.
ions time series and the surrogate data (Fig. 6b). In particu-

lar, for smallz, e.g. the first 1_5 I_ags, with the e>_(ce_p_ti0n o_f 3.2 Modelling and prediction
t = 1, the values of the statistical test were significant in
the range of 2-4.5 sigmas. For larger lags the significancg > 1  parametric local linear prediction
remains smaller than two sigmas. The above results permit
us to reject the null hypothesis and support the nonlinearityi, the following we present the results of the hypothesis
of the energetic ions time series. test using the prediction and modeling methods described in
Figure 6¢ shows the mutual information for the recon- Sect. 2.3. In particular, we use the local linear prediction
structed time series that has smaller values than those L.LP) model, as well as global linear and nonlinear polyno-
the energetic ions’ time series for the same lag time. How-mial fitting. In the first case we estimate the local linear maps
ever, the difference with the surrogate data is large enoughysing ordinary least-square fitting (OLS). Figure 7a presents
as shown in Fig. 6d, where the significance of statistics apthe results of LLP with the surrogate data. The correlation
proaches the value of40 sigmas for 12 lags~2.5 min), coefficient (CC) forT = 1 — 50 step ahead predictions ob-
permitting the rejection of the null hypothesis at a level of tained iteratively for the energetic particles’ time series and
confidence larger than 95%. Figure 6e is similar to Fig. 6athe 40 surrogate data are presented. In order to reduce the
but corresponds to thé -component and the surrogate data. noise of the estimations we used a low embedding dimen-
The values of mutual information for tHé -component de- sionm = 6, the best reconstruction delay time= 30, and
cay slower than those of the energetic ions and the reconk = 2(m + 1) = 16 neighbours (Farmer and Sidorowich,
structed time series. This result is expected if we take into ac1987). The training set consisted of the first 18 000 values
count the high linear autocorrelations of thg-component.  and the test set consisted of 1800 values, which is 10% of the
The significance of the statistical test for the mutual infor- training set, of the time series. The significance of the above
mation of theVi-component remains lower than two sigmas statistics is shown in Fig. 7b. The small values of the signifi-
(see Fig. 6f), except in a narrow region of 2—7 lags, where itcance(0.0 — 1.4) show that there is no significant difference
approaches the value of4 sigmas. This result is in contrast between the original time series and the surrogate data. This
to several results coming from the other tests of chaotic analresult is in agreement with the observation of Theiler and
ysis for theVi-component, suggesting that a part of the Prichard, that the prediction error generally has a large vari-
component is partially explained by nonlinear terms, some-ance and provides a poor discriminating statistic (Theiler and
thing which is not excluded by the method of its construction. Prichard, 1997).
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Fig. 5. (a) The largest Lyapunov exponentfay) for the variablex () of the stochastic Lorenz dynamical system and its surrogate data
as a function of the evolution time estimated for delay time- 30 and embedding dimensiam = 5. (b, c) The same with (a) but for

the reconstructed and tHé-component time series of the stochastic Lorenz time series, estimated for embedding dimension m =5 and
corresponding delay time = 30, 50. (d) The significance of the discriminating statistic of the largest Lyapunov exponent as a function of
the evolution time, for the stochastic Lorenz time series, its reconstructed dnddtsmponent time series.

It is known for a chaotic time series that the predictability predicted values is shown as a function of prediction time
depends on the width of the training set. The prediction errowhen the training set has the first 3000, 9000, 18 000 data
is decreased when the width of the training set is increaseghoints of the time series. In every case the width of the test
(Farmer and Sidorowich, 1987; Smith, 1992). If the ener-setis chosen to be equal to 10% of the corresponding training
getic ions’ time series includes chaotic determinism, then weset. In addition, the parameters of the prediction, embedding
expect an improvement of the predictability with the increasedimension, delay time, and number of neighbour state vec-
of state vectors in the training set. Also, a similar behaviourtors are equal to those of Fig. 7a. As we can see, the values
is expected for the surrogate data because of their reconstruof the correlation coefficient are increased when the num-
tion (they have the same autocorrelation function and ampli-ber of data in the training set is increased. Figure 8b is the
tude distribution with the original time series). However, this same as Fig. 8a but corresponds to the mean value of corre-
improvement must be smaller than that of the original timelation coefficient for the surrogate data. Comparing the two
series, because of the stochastic character of the surrogafigures, we observe that the mean predictability of the surro-
data by construction (in this case the phases have been degate data is better than the original when the training region
stroyed). In the following paragraph we are going to checkis the first 3000 points. Surprisingly, in the case of the orig-
this crucial hypothesis on the energetic ions’ time series andnal time series the difference between the correlation coef-
the surrogate data. The correlation coefficient between redicients corresponding to 3000 and 18 000 data points of the
and predicted values has been used as a prediction estimatdraining set is approximately twice that of the surrogate data.

This result by itself constitutes evidence of determinism and

In Fig. 8a the correlation coefficient between the real andchaaticity in the energetic ions’ time series. In order to es-
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Fig. 6. (a) Mutual information estimated for the energetic ions’ time series and its surrogate data as a function of the |4)tithe.
significance of the discriminating statistic of the mutual information as a function of the lag time shown (o, @)The same with (a, b)
but for the reconstructed time seriés, f) The same with (a, b) but for th& -component time series.

timate the significance of the alteration as the width of thequantity S shown in Fig. 8d tends to be significant in the re-
training set is increased, we calculated the absolute differgion of 2-5 prediction steps as it obtains values larger than
ence between the correlation coefficients corresponding to &wo sigmas. Figure 8e is similar to Fig. 8c but with a training
training set of 3000 and 18 000 data points for the energeticet of the first 3000 and 9000 data points. The correspond-
ions’ time series and the surrogate data (see Fig. 8c). Thang significance of the statistics is shown in Fig. 8f. In this
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relation coefficient shown in (a).
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case the small values of the significance indicate that thereonstantip) and the rest are nonlinear interactions of the 30
is no significant difference between the original time seriesdelays. The existence of noticeable nonlinearity for the en-
and the surrogate data. The above results concerning the prergetic ions’ time series is proved by the abrupt reduction of
dictability in relation to the width of the training set support the energetic ions’ error, as we pass from the linear to the
further the existence of nonlinearity and determinism in thenonlinear fitting. This significant result is clearly depicted

magnetosperic dynamics. in Fig. 9b, that shows the significance of the reduction error
_ _ S statistic corresponding to the difference of the polynomial
3.2.2 Global linear and nonlinear polynomial fitting fitting of the first seven linear terms from the polynomial fit-

] . . ] ~_ ting containing all the possible linear-nonlinear terms. For
The modeling with global polynomials gives good discrim- e gifference corresponding to linear terms, the significance
ination between the original and surrogate data, especiallyy the statistic reveals values lower than 2 sigmas, while for

when we define the discrimination statistic to be the changgonjinear terms the significance varies at higher values in the
in the modeling error as we go from linear to nonlinear poly- range of 40 — 5.0 sigmas. Figure 9¢ shows the discrimi-

nomial terms. Here, we use the NRMSE to quantify the mod-nating statistic of the reduction error for the energetic ions
eling error as .presented in Sect. 2.3.2. In Fig. 9a the NRMSEq,| line) and the surrogate data (short line) corresponding
for energetic ions and 40 surrogate data is shown as a fungy, the difference of the polynomial fitting of the first seven
tion of the polynomial terms of the Volterra-Wiener series, |inear terms from the polynomial fitting containing all the
usingm = 6 andg = 2 and 5 steps ahead mappings for |inear-nonlinear terms. This figure shows that the difference

all the polynomials of the Volterra-Wiener series (see Eq. 8).is clearly significant permitting the rejection of the null hy-
The first 7 polynomial terms are linear (the first term is the
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Fig. 8. (a) Correlation coefficient between predicted and real values for the energetic ions’ time series as a function of prediction time,
increasing the width of the training set, estimated for embedding dimemsioer6, delay timer = 30 andk = 16 neighbours(b) The same

with (a) but for the mean value of 40 surrogate data sejsThe absolute difference between the correlation coefficients corresponding to
training set of 3000 and 18 000 data points for the energetic ions’ time series and its surrogate) &itmificance of statistics shown in

Fig. 8c. (e) Figure 8e is similar to Fig. 8c but for training set the first 3000 and 9000 data p@insBignificance of the statistic shown in

Fig. 8e.

pothesis with a confidence larger than 95%. remains lower than two sigmas for linear models, while it is
increased with respect to the number of the nonlinear terms
In Fig. 10a, the NRMSE for the reconstructed time seriesincluded in the model approaching the value of 5.25 sigmas.
of energetic ions and 40 surrogate data is shown as a funavioreover, in Fig. 10a, a reduction of NRMSE is observed for
tion of the polynomial terms of the Volterra-Wiener series, the reconstructed time series as nonlinear terms are added in
using parameterss = 6,g = 2,7 = 7, and7 = 1step  \polterra-Wiener series. This result means that for the recon-
ahead. As in the case of the energetic ions’ time series, agtructed time series, nonlinearity does not only appear in the
abrupt decay is observed again for the NRMSE as we pasfirst nonlinear terms as in the case of the original time series
from linear (the first seven polynomial terms) to the nonlin- (see Fig. 9a). On the other hand, the NRMSE of the surrogate

ear fitting. Figure 10b is similar to Fig. 9b but corresponds data remains unchanged when the first nonlinear polynomial
to a reconstructed time series. The significance of statistics
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term is included in the model. This result is quantified in
Fig. 10c, which shows the significance of the reduction error
statistics for the difference between the polynomial fitting of

0.28
7\\H‘H\\‘\\\\‘\H\‘\\H‘H\\‘\\H‘HH‘HH‘HH‘\HL

] the first 8 terms from the polynomial fitting containing all the
3 —— Energetic lons (a)

Surrogates

possible linear-nonlinear terms of polynomial fitting. For the
difference corresponding to linear terms, the significance of
the statistics reveals values with almost zero sigmas, while
for nonlinear terms, the significance is increased, approach-
ing a saturation value of10 sigmas. The discriminating
statistic of the reduction error of the polynomial fitting with
the first 8 terms from the polynomial fitting with all 28 terms

is shown in Fig. 10d, using tall lines for the reconstructed
time series and short lines for the surrogate data.

048 T T T T T T T T[T T T[T Finally, Fig. 11 presents the NRMSE for th&;-

0 5 b o1|0y nome1ferms (ﬁg) 2 compongnt and the 40 surrogatel data as a funption of the
SRR RN E RN polynomial terms of the Volterra-Wiener series, using- 6,

T = 70,9 = 2 andT = 10 steps ahead. Obviously, the
addition of nonlinear terms does not cause a reduction of
NRMSE, as it does in the original and reconstructed time se-
ries. This result is depicted in Fig. 11b, which shows the sig-
nificance of the reduction error statistic corresponding to the
difference between the polynomial fitting of the first seven
linear terms from the polynomial fitting containing all the
possible linear-nonlinear terms. As is expected from the pre-
vious tests, the significance obtains values lower than 2 sig-
mas and thus, the null hypothesis cannot be rejected.

. . M - " ” The above results obtained by using a polynomial fitting,
Polynome terms especially for the reconstructed time series reject the null

hypothesis and strongly support the nonlinearity of internal

magnetospher a dynamics with a confidence larger than 95%.
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y . 4 Summary and discussion

y i The dynamical characteristics of the magnetospheric ions’
time series that were studied in this work reveal strong non-

1 |

i | linear and chaotic characteristics of the underlying magneto-

o B spheric dynamics which produces the energetic ions’ signal.
I L A N L B

The null hypothesis was tested for the original time series,
as well as for the first SVD component and the reconstructed
signal by adding the other SVD components. This test was
0.001 0.002 0.003 0.004 0.005 0.006 0.007 . .

Range of dif. for lin-nlin NRMSE term applied for the largest Lyapunov exponent, the mutual in-

_ _ formation, the local linear prediction and the Voltera-Wiener
Fig. 9. (a)Normal root mean squares error (NRMSE) estimated by modeling. For the application of the test we have used sur-
using a polynomial fitting for the energetic ions’ time series and its rogate data constructed according to Schreiber’s algorithm,
surrogate data, as a function of the polynomial terms, of the VoItera-In order to mimic the amplitude distribution and the power

Wiener model estlmgted for parameters- 6= 30’.q = 2and s);gectrum of the magnetosperic signal and its SVD compo-
5 steps ahead mappings. The first seven terms are linear and the ne Lnts

terms are nonlinear(b) Significance of the reduction error statis- ) L )
tic corresponding to the difference between the polynomial fiting /" Table 1 we summarize the significance of the esti-
of the first seven linear terms from the polynomial fitting contain- Mated statistics for the case of the largest Lyapunov expo-
ing all the possible linear-nonlinear term&) The discriminating ~ nent, the mutual information, the local linear prediction and
statistic of the reduction error for the energetic ions (tall line) and the Voltera-Wiener modeling, for the ion time series, the first
the surrogate data (short line) corresponding to the difference beSVD component and the reconstructed signal. The signifi-
tween the polynomial fitting of the first seven linear terms from the cance of the statistics for the original signal obtains values
polynomial fitting containing all the linear-nonlinear terms. slightly higher than two sigmas, except in the case of the lo-
cal linear prediction, while the significance of the first SVD
component reveal values lower than two sigmas, except in

0 —
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Fig. 10. (a)Normal root mean squares error (NRMSE) estimated by using a polynomial fitting for the reconstructed time series and its
surrogate data, as a function of the polynomial terms, of the Voltera-Wiener estimated for parameteés: = 7, = 2 and 1 step

ahead mappinggb) Significance of the reduction error statistic corresponding to the difference between the polynomial fitting of the first
seven linear terms from the polynomial fitting containing all the possible linear-nonlinear téeinSignificance of the reduction error
statistic between the polynomial fitting including the first nonlinear term (8th term) and the polynomial fitting containing all the possible
linear-nonlinear terms(d) The discriminating statistic of the reduction error for the energetic ions (tall line) and the surrogate data (short
line), corresponding to the difference between the polynomial fitting including the first nonlinear term (8th term) from the polynomial fitting
containing all the linear-nonlinear terms.

Table 1. This table shows the significance of the estimated sttistics for the case of the largest Lyapunov exponent, the mutual information,
the local linear prediction and the Voltera-Wiener modeling, for the ion time series, the first SVD component and the reconstructed signal

Significance of statistics (sigmas)

Lmax Mutual Information  Local Linear Prediction Prediction in NRMSE
relation to training  for polynomial fitting
set width Linear Non Linear
Energeticions ~4 ~4 <2 ~4 <2 ~4
time series
Reconstructed ~20 ~40 <2 - <1 ~12
time series
Vi-Component ~1 ~4 <2 - <1 <1

time series
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0.07 R RARRSRERRERERRREEY series are quite similgr tq the results of the chaotic analysis
- 8 of the magnetospheri¢ E index (Pavlos et al., 1999a, b, c).
a —@— V1- Component (a) As we know the magnetospheric energetic ions are observed
il — Surrogates i during periods of strong substorms of the Earth’s magneto-
0.06 — \1 — sphere (Pavlos et al., 1985, 1989). Therefore, it is accept-
able from the physical point of view to assume that for both
time series thed E index and the energetic ions correspond
to the same dynamical system. This hypothesis is strongly
supported by the new results of chaotic analysis obtained for
the AE index and the energetic ions signal, and for both time
series the chaotic analysis reveals a low dimensional process.
8 s As we have shown in Pavlos et al. (2003) the correlation di-
S B L B L IR I R mension for the energetic ions was found to 985 and
0 5 10 15 20 25 30 the independent dynamical degrees of freedom estimated by
Polynome terms (m) false nearest neighbours and singular spectrum analysis was
found to be~7. Finally, the low dimensional chaotic dynam-
6 L ics of the magnetospheric system is now better proved to be
il V1- Component (b) | two different magnetospheric signals,. one measured at the
i _ 4 Earth (A E index) and the other at the distant magnetosphere,
—&—— Linear terms R . . .
@ Nonlinear terms | exhibiting common geometrical and dynamical characteris-
4 S | o ) . :
tics in accordance with the low dimensional chaos hypoth-
esis. This concept of low dimensional chaotic dynamics of
_ | the magnetospheric system is also supported strongly by the
- - similar behaviour of the Lorenz dynamic system perturbed
I e — by external noise.
In the previous analysis the low dimensional chaotic be-
i A\(/(A i haviour of energetic ions’ time series was mainly supported
i i by the SVD reconstructed signal after rejection of the first
e I B B B I L R SVD component. The comparison of the results of the mag-
0 5 10 15 20 25 30 netospheric signals with the results produced by the Lorenz
Polynome terms (m) system after its perturbation with a strong colored noise, in-
dicates that the internal low dimensional chaotic dynamic
Fig. 11. (a)Normal root mean squares error (NRMSE) estimated by Of the magnetospheric system is perturbed by an external
using a polynomial fitting for thé’;-component time series and its  coloured noise signal that could be related to the stochastic
surrogate data, as a function of the polynomial terms of the Voltera-dynamics of the solar wind system. From this point of view,
Wiener model estimated for parameteis= 6,7 = 70,g = 2 in order to test the above hypothesis concerning the coloured
and 10 steps ahead mappings) Significance of the reduction er- noise, the extended chaotic analysis used in this paper must

ror statistic corresponding to the difference between the polynomiabe applied simultaneously to the solar wind and magneto-
fitting of the first seven linear terms from the polynomial fitting con- gpheric system.

taining all the possible linear-nonlinear terms.
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