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Abstract. We propose a cellular automata model (CAM)
to describe the substorm activity of the magnetospheric-
ionospheric system. The state of each cell in the model is
described by two numbers that correspond to the energy con-
tent in a region of the current sheet in the magnetospheric
tail and to the conductivity of the ionospheric domain that is
magnetically connected with this region.

The driving force of the system is supposed to be provided
by the solar wind that is convected along the two boundaries
of the system. The energy flux inside is ensured by the pen-
etration of the energy from the solar wind into the array of
cells (magnetospheric tail) with a finite velocity. The third
boundary (near to the Earth) is closed and the fourth bound-
ary is opened, thereby modeling the flux far away from the
tail. The energy dissipation in the system is quite similar to
other CAM models, when the energy in a particular cell ex-
ceeds some pre-defined threshold, and the part of the energy
excess is redistributed between the neighbouring cells. The
second number attributed to each cell mimics ionospheric
conductivity that can allow for a part of the energy to be
shed on field-aligned currents. The feedback between “iono-
sphere” and “magnetospheric tail” is provided by the change
in a part of the energy, which is redistributed in the tail when
the threshold is surpassed.

The control parameter of the model is the z-component of
the interplanetary magnetic field (Bz IMF), “frozen” into the
solar wind. To study the internal dynamics of the system at
the beginning, this control parameter is taken to be constant.
The dynamics of the system undergoes several bifurcations,
when the constant varies from−0.6 to−6.0. TheBz IMF in-
put results in the periodic transients (activation regions) and
the inter-transient period decreases with the decrease ofBz.
At the same time the onset of activations in the array shifts
towards the “Earth”. When the modulus of theBz IMF ex-
ceeds some threshold value, the transition takes place from
periodic to chaotic dynamics.

Correspondence to:B. V. Kozelov
(kozelov@pgi.kolasc.net.ru)

In the second part of the work we have chosen as the
source the real values of thez-component of the interplan-
etary magnetic field taken from satellite observations. We
have shown that in this case the statistical properties of the
transients reproduce the characteristic features observed by
Lui et al. (2000).

Key words. Magnetospheric physics (magnetosphere-
ionosphere interactions) – Space plasma physics (nonlinear
phenomena)

1 Introduction

The Earth’s magnetosphere is immersed in the solar wind. It
can be considered as an open dynamic system driven by ex-
ternal and internal sources. These sources are provided by
the solar wind and ionosphere that can be treated as a part
of the magnetospheric system. In general, considered as the
dynamic system it is far from equilibrium, and one would
assume that the dynamics of such a system can be quite
complex. However, when the external forcing is station-
ary, such a system can possess non-equilibrium stationary
states, as it was shown by Prigogin (1955) and Klimontovich
(1995). If the system belongs to such a class, its dynam-
ics can be characterized by a small number of parameters; in
other words, the trajectory of the system can be placed on the
low-dimensional manifold by means of choosing the appro-
priate set of variables and coordinates. To characterise this
property of complex dynamical systems the notion of self-
organization is conventionally used. Many different charac-
teristics of the magnetospheric system have been studied in
a number of papers using the dynamic system approach. In-
deed, it was unambiguously shown that the magnetospheric-
ionospheric system interacting with the solar wind as an ex-
ternal driving force has a low correlation dimension during
substorm activity (V̈orös, 1991; Takalo et al., 1993; Klimas
et al., 1996; Sharma et al., 1997). For a low-dimensional
chaotic system the correlation dimension is an estimation of
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Fig. 1. Scheme of the “magnetospheric” array and boundary condi-
tions.

the dimension of the trajectory attractor. However, in the
case of the colored noise produced by a stochastic system
the low correlation dimension is also possible (Osborne and
Provenzale, 1989). Then, the correlation dimension is only
a measure of the fractal dimension of the system trajectory.
Another important question related to the dynamics of the
magnetosphere is does it behave as a self-organized critical
system?

The notion of self-organized criticality (SOC) was pro-
posed by Bak et al. (1988). It was introduced as a uni-
versal feature of complex systems in which the interaction
has quite a complex character and there are no characteristic
scales. All scales interact with each other, and the behaviour
of the system on different spatial scales is self-similar. In
such a case the correlation length is infinite. In real sys-
tems it is supposed to be of the same order or larger than
the characteristic length of the system itself. Such systems
can be also characterized by a small number of parameters,
and many characteristics of the systems of such a class were
studied using “sand-pile” type models. An excellent review
on this topic was written by Jensen (1998). This approach
has found multiple applications, from forest fires to earth-
quakes. However, for some applications the relevance be-
tween such a simple sand-pile model and a description of
physical processes is not established (For more details, see
the reviews by Vespignani and Zapperi, 1998; and by Jensen,
1998). For magnetospheric-ionospheric system (MIS) there
are several indications that it can behave similarly to SOC
systems (Consolini, 1997). Mainly, these indications are the
power law spectra of fluctuations (Vörös, 1991; Milovanov
et al., 1996; Sharma, 1997; Uritsky and Pudovkin, 1998;
Takalo et al., 1999; Uritsky et al., 2002). Moreover, Chang
(1992, 1998) has pointed out that a SOC system may exhibit
a low-dimensional behaviour. The simplest avalanche model
of magnetospheric dynamics based on SOC paradigm was
presented by Chapman et al. (1998).

However, the problem of whether the magnetospheric-
ionospheric system belongs to the SOC-type systems or not,
is not so simple. First of all, the driving force for the con-

ventional SOC models is supposed to be random and acting
in an arbitrarily chosen spatial part of the system. For the
MIS the external forcing is ensured by the solar wind. Fluc-
tuations of the solar wind magnetic field and velocity are tur-
bulent, and their statistical properties are far from Gaussian
(Burlaga, 1991; Tu and Marsch, 1995). So there is a question
of whether the dynamics of the system is determined by its
internal rules or whether it is imposed and mainly reflects the
statistical properties of the external driver. For instance, ac-
cording to Klimas et al. (1998), the dynamic behaviour of the
Dst index is linearly related with certain characteristics of the
parameters of the solar wind. Recently, the low-dimensional
global dynamics of the magnetosphere and the multi-scale
features of the solar wind-magnetosphere coupling during
substorms have been combined in the non-equilibrium phase
transition model (Sitnov et al., 2000, 2001).

Another important feature of the MIS related to the solar
wind is that the driver operates at the systems’ boundaries;
thus, the internal dynamics can strongly depend on the way
of penetration of the energy from the source to the system.
Thus, the question of whether the non-equilibrium station-
ary states can exist in the MIS seem to be more academic
than practical. However, the complex dynamic system can
be properly identified by making use of its quasi-periodic tra-
jectories while varying its control parameters. Therefore, the
study of such classes of trajectories and bifurcations of the
dynamic system allows one to better establish the relevance
between the model and real system, though it does not allow
one to describe properly real observations.

In previous papers (Kozelov and Kozelova, 2000, 2002a)
we considered the classification of spontaneous and stimu-
lated transients in the SOC-like system modelled by cellular
automata controlled byBz IMF. Developing this model, in
papers (Kozelov and Kozelova, 2002b, 2002c) we included
in the model the positive feedback as an analogy of the feed-
back between the Earth’s magnetosphere and ionosphere,
which is activated during an explosive phase of substorm and
does not work in quiet time. Such a model has allowed us to
explain the obtained (Lui et al., 2000) differences of distribu-
tion functions of power dissipated by auroral spots for quiet
time and during substorms.

Hereby, we make the following step from the qualitative
model of a sand pile to the physically more real model. Sav-
ing internal local connections from our previous model (see
detailed description below), we organize an external influ-
ence on the model as a flow of the magnetospheric tail by
the solar wind. We consider that the effect from solar wind
penetrates inside the system with finite velocity. In addition,
now the internal rules in the model are strictly deterministic.

The control parameter of the model is theBz IMF “frozen”
into the solar wind. To study the internal dynamics of the
system, it is taken to be constant. We have found that the
dynamics of the system undergoes several bifurcations when
the constant varies from−0.6 to −6.0. At the control by
experimental sequence ofBz IMF values, the statistical dis-
tributions of the characteristics of transients in the model
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resemble the features of similar distributions observed by Lui
et al. (2000) for auroral spots.

2 Model

The model described below develops the approach used by
Kozelov and Kozelova (Kozelov and Kozelova, 2000, 2002a,
b, c). The principal element of the model is a sand-pile type
cellular automata with special boundary conditions. The cur-
rent sheet of the magnetospheric tail is represented as a rect-
angular array that consists of 50× 100 cells (see Fig. 1).
One short boundary is closed, it corresponds to the bound-
ary of the current sheet closest to the Earth; the opposite
boundary (tailward) is opened, and the energy and the mag-
netic field can be transported through it outside the system
towards the interplanetary space. Two other boundaries rep-
resent the boundaries of the magnetosphere flown around by
the solar wind that carries along them the interplanetary mag-
netic field. This field can penetrate through these last bound-
aries into the current sheet. The source is described as the
convection of the external magnetic field with finite veloc-
ity, which is supposed to correspond to the velocity of waves
that carry these perturbations inside. This means that the pro-
cess considered corresponds to the transport of the magnetic
field flux into the system by magneto-hydrodynamic (MHD)
waves. The “state” of a cell with coordinates (i, j ) at each
moment of timet is characterized by two numbers. One is
Et (i, j), which is considered as the energy stored by the cell
at a momentt , another number attributed to each cell, and
Ct (i, j) is assumed to describe the conductivity in the iono-
spheric region associated with the same magnetic tube as a
cell of the “current sheet” in the “magnetospheric tail”.

As is usual in cellular automata models the time is discrete,
but it will be presented in conditional units that will be called
seconds and minutes. At every step in time in each cell of
the array the small portion of energydE(i, j) is added. As
long as the value of the stored energyEt (i, j) does not ex-
ceed some critical levelEmax(i, j), the cell remains steady.
Here, we setdE(i, j) = 0.02Emax(i, j) for Emax(i, j) > 0.
In contrast to the models discussed in Kozelov and Kozelova
(2002a, b), now we suppose that the threshold value in each
cell is individual and depends on an external control param-
eter which influences the long boundaries of the rectangular
array. The values at the boundaries of the arrayEmax(1, j)

andEmax(50, j) were determined by the value of (−Bz) IMF
and were shifted along the boundaries with a velocity of
1 cell/min. The velocity of propagation of the disturbance
inside of the array was also assumed to be 1 cell/min, and
the value of the disturbance decreased proportionally to the
distance from the boundary.

When the threshold levelEmax(i, j) is exceeded the cell
passes into an active state, and a certain part of the stored
energy,1E = Et (i, j) − Emin(i, j), is distributed between
four adjacent cells:

Et+1(i, j) = Emin(i, j),

Et+1(i + 1, j) = Et (i + 1, j) + 0.251E,

Et+1(i − 1, j) = Et (i − 1, j) + 0.251E,

Et+1(i, j + 1) = Et (i, j + 1) + 0.41E,

Et+1(i, j − 1) = Et (i, j − 1) + 0.11E. (1)

Here, the choice of the coefficients reflects the nonsymmetry
in the direction from the closed to opposite boundary.

After that, the energy of the adjacent cells can exceed
Emax. Then these cells at the following time-step transmit,
in turn, the energy to their neighbours. It is supposed that the
speed of internal transients in a current sheet is higher than
the speed of propagation of an external disturbance. In our
calculations 1 time-step for internal processes of reallocation
in the system was 10 s.

Observational studies of magnetospheric activity suggest
that the magnetospheric-ionospheric coupling plays a critical
role in the physical processes leading up to a substorm on-
set. The local redistribution of energy in the magnetosphere
causes a local change in the conductivity of the ionosphere
in the same magnetic tube: the particles, diffused by pitch-
angle, are precipitated in the loss-cone along the magnetic
field, and ionise atmospheric gases. Let us take into account
that the ionosphere conductivity is proportional to the elec-
tron densityne, and the differential equation for electron den-
sity in a simple “thin” ionosphere is

dne

dt
= Q − αeffn

p
e ,

whereQ is ionisation rate,αeff is an effective recombina-
tion coefficient. The power index isp = 2 for the E-region
ionosphere, which is the most effective for disturbed condi-
tions (bright auroral forms). For the F-regionp ≈ 1, and
this case corresponds to quiet conditions (soft diffuse pre-
cipitation). In our model we want to describe the transition
between these situations; therefore, we will usep = 1. Then
for conductivity in discrete form we have a rule:

Ct+1(i, j) = aCt (i, j) + b. (2)

Here, (1−a) means a “recombination coefficient”; therefore,
conductivity of the ionospheric part of a cell depends on the
cell history. Selection ofa = 0.2 gives us the characteris-
tic time for recombination ofτ ∼ 5 s, because during one
time step (10 s), without source termb, the conductivity de-
creases to a 0.2 part of initial value. Taking into account that
Q ∼ 1E, the second term is determined as

b =

{
0, for Et (i, j) < Emax(i, j)

1E, for Et (i, j) ≥ Emax(i, j).
(3)

In turn, if the ionospheric conductivity exceeds some level
Cmax, then the conditions of energy redistribution in the
current sheet are changed (at the expense of the forma-
tion of field-aligned currents). In the model we shall take
into account this influence as the relation ofEmin(i, j) from
Ct (i, j). ThisEmin(i, j) value determines which part of the
energy may be reallocated in an active cell with the following
time step:

Emin,t+1(i, j) =

{
k Emax(i, j), for Ct (i, j) < Cmax
0, for Ct (i, j) ≥ Cmax.

(4)
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Fig. 2. Scheme of the local positive feedback between “magneto-
spheric” and “ionospheric” parts of a cell:Et (i, j)-stored energy,
Ct (i, j)-ionospheric conductivity.

Here,k < 1(k = 0.75) andCmax = 5 are parameters. The
positive feedback arising between magnetospheric and iono-
spheric parts of a cell is shown schematically in Fig. 2. Each
cell (except the boundary cells) has four adjacent cells; there-
fore, the occurrence of the chain response of energy trans-
mission is possible, and it proceeds as long as there are no
active cells in the array. Such a chain response is usually
named an “avalanche” by analogy, with the formation of a
slope for a sand pile (Bak et al., 1988). In our calculations
we consider that for one time-step each cell can change its
state only once, so the avalanche may have different dura-
tions (“running” avalanches). In addition in the considered
model there is no additional internal source of stochastic-
ity (random variable); therefore, in this sense the model is
strictly deterministic.

One can see that rules defined by Eqs. (1)–(4) have several
numerical parameters. The values of these internal parame-
ters reflect our view on the magnetosphere-ionosphere pro-
cesses. However, their change in rather broad limits does not
change qualitatively the considered dynamics of the model
system.

3 Model dynamics for the constant external parameter

The dynamics of the model system at the varied external
control parameter is rather complex. Therefore, for detailed
study of the internal dynamics of the system we shall con-
sider a more simple situation, when the control parameter
does not vary during a long time. It is found that the follow-
ing modes are possible in the model at the constant external
parameter.

1. At Bz > 0 the energy in the system is not accumulated,
the processes of energy redistribution in the “magneto-

spheric” part do not occur, the conductivity of the “iono-
sphere” is equal to zero.

2. At 0 > Bz > −0.6 the energy in a system can be
accumulated, but processes of energy redistribution in
the “magnetospheric” part balance the excess of energy.
The dynamical stationary state is established. However,
the activity in the “magnetospheric” part is not sufficient
for the excess of the threshold of ionospheric activation.
Therefore, the positive “magnetospheric-ionospheric”
feedback is not working.

3. At −0.6 > Bz > −4.0 in some moments the threshold
of ionospheric activation is exceeded, after which the re-
distribution in the “magnetospheric” part becomes more
intensive, that leads to the increase of energy which
flows out, then the activity is falling, etc. This is a mode
of (pseudo-) periodical generation.

The origin and motion of transients may be tracked in
keograms that are constructed by the method used in the
analysis of television data of aurora registration. For
this purpose, from each frame (in our case this is the
array of cell state) one row (or column) is selected. A
sequence of such rows (columns) for a series of instants
gives us a keogram. Several keograms, constructed for
the analysis of dynamics of transients in our model at
Bz = −3 nT, are shown in Fig. 3. The rows and columns
in the array used for construction of the keograms are
shown in the left panel. The grey scale shows the energy
redistributed by cells, for which the threshold of activa-
tion of feedback is exceeded. In this sense the keograms
are the analogy of the keograms of polar auroras.

In the upper keogram of Fig. 3 one can see that the tran-
sient starts at some distance from the closed boundary of
the array, and extends and moves in the direction oppo-
site to the closed boundary of the array. It is possible to
obtain two obvious characteristics of the periodic mode
observed in the system: the mean period and distance of
the onset point from the closed boundary (see Fig. 3).
Figure 4 shows the dependence of these characteristics
on the parameterBz. The smaller periods between tran-
sients (activations) correspond to a smallerBz, in addi-
tion to the onset of activations approaching the closed
boundary (to the “Earth”).

The position of the onset point of transient depending
on Bz in the range of−0.6 > Bz > −6.0 may be ap-
proximated by the relation

d = −[63/Bz], (5)

where the square brackets mean the integer part of the
number,Bz is expressed in nT. The discrepancy of ap-
proximation does not exceed±1.

4. At Bz < −4.0 the periodicity of generation is obviously
broken, which leads to a sharp decrease in the average
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Fig. 3. Keograms of transients in
periodical regime atBz = −3 nT.
Cross sections ofEt (i, j) array used for
keograms shown in left panel.

Fig. 4. Pseudo-periodical regime characteristics as a function of the parameterBz: (a) the inter-onset interval (dots) and the average transient
period (squares);(b) the distance from the closed boundary to the onset point (triangles) and the approximation of this function using the
Eq. (5) (solid line).

period at−5.0 > Bz > −4.0. The numerical estima-
tion of the maximum Lyapunov exponent by the method
of Rosenstein et al. (1993) has shown that it is positive.
This is a chaotic mode (Fig. 5), passing atBz < −10.0
in a “turbulent” mode, at which the feedback will be ac-
tivated at one time step from energy redistribution from
one cell.

Thus, the dynamics of the system at the constant control
parameter depends strongly on the value of the control pa-
rameter. It is possible to consider the series of transitions
from the absence of transients to a periodic and, further-
more, to a chaotic mode of generation as a typical series of
bifurcations. It is obvious that the collective, large-scale tran-

sients in the model are self-organized; however, they are not
scale-free (especially for periodic mode). This is not a self-
organized critical state.

4 Statistics for driving by Bz IMF

First, we shall show that the dynamics of the suggested
model really have common properties with the dynamics of
the magnetospheric-ionospheric system. For this purpose we
compare the statistical properties of transients in the model
with properties of auroral blobs, which were obtained by Lui
et al. (2000). We used theBz values measured by the IMP-8
satellite during 1974 as a control parameter of the model. To
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Fig. 5. Keograms of transients in
pseudo-periodical regime atBz =

−6 nT. Cross sections are the same as
for Fig. 3.

obtain the statistical characteristics, the array of the stored
energy was checked for the presence of active cells at each
time step. Let us note that the cell is considered active, if the
threshold valueEmax is exceeded. The set of active cells was
broken into linked clusters. Each cluster was considered as
a separate transient. The size (square) and distributed power
of each cluster was determined. The distributed power was
determined as the sum of energy1E distributed in all cells
of the given cluster (transient) at the given time step.

The ionosphere activity was used for the relation of each
time step to perturbed (substorm) or quiet conditions. If, in
the system, there were cells with conductivity above the crit-
ical levelCmax, this moment was considered to be perturbed.
If, for all cells of the system, the critical level of conductivity
was not exceeded, this moment was considered quiet. As in
Lui et al. (2000), we sort the distributions into five bins per
decade. The total number of transients is∼2 × 107 for quiet
time and∼107 for the perturbed time.

The distributions of the size (square) and power of tran-
sients for quiet and perturbed time are shown in Fig. 6. One
can see that in all cases in the distributions it is possible to
select a region of the power law falling with slope≈ 1. In
addition, the distributions for the perturbed time differ from
similar distributions for the quiet time by the presence of a
maximum at large values of the size and power. Thus, the
distributions of the transient parameters in our model have a
number of common distinctive features with the distributions
obtained by Lui et al. (2000) for auroral blobs.

5 Discussion

In spite of the fact that the long periods of constantBz are
rather rare, there are some indirect experimental confirma-
tions of relations obtained in the previous section. In partic-
ular, Zverev et al. (1979) found the minimum latitude, up to
which the auroral oval is spread, as a function ofBz IMF.
The oval is descended at lower latitudes with the increase of
|Bz|. This is qualitatively in agreement with Eq. (5).

The transients considered in the previous section are spon-
taneous (see further discussion). For spontaneous substorms
(Dmitrieva and Sergeev, 1983) it was shown that the duration
of the preliminary phase of the substorm decreased with the
increase of|Bz|. This is also qualitatively in agreement with
the relation from Fig. 4b.

The periods of constantBz value are usually connected to
periods of steady magnetospheric convection, during which
substorms are not observed or are extremely rare (Sergeev
et al., 1996). The steady magnetospheric convection events
arise at rather large|Bz| values (Bz < −3); the active
mesoscale transients are observed in the magnetosphere, but
large-scale transients (substorms) do not develop. In our
model such a condition has no direct analogy because we
have no real convection. However, the chaotic mode in the
model has some qualitatively similar features. In reality, it
arises atBz values, when instead, large-scale periodic activa-
tions appear like more small-scale chaotic ones.

Note that the main goal of this paper is to study the in-
fluence of the external parameter (Bz IMF) on the model
dynamics. However, the characteristics of the pseudo-
periodical regime also depend on internal parameters.

Now we want to discuss once again the spontaneous and
stimulated (triggered) transients. In the presented model at
the constant negativeBz, all transients obviously are sponta-
neous, as they are not triggered by any changes in external
conditions. As we noted in Kozelov and Kozelova (2000,
2002a) the beginning of such transients is simply the corol-
lary of the finite energetic volume of the system. Varied val-
ues ofBz can lead to the condition, then the accumulated
energy in some cell becomes higher than the threshold value
because of the downturn of this threshold. It is natural to
name such transients as triggered ones. However, the capa-
bility of trigger detection, even within the framework of our
simple model, becomes problematic without detailed state
information of the system near the position of transient on-
set. The types of transients and transient triggering in the
model will be considered in more detail in a future paper.

6 Conclusions

An new cellular automata model as an analogy of the dynam-
ical magnetospheric-ionospheric system related to the sub-
storm activity is presented. Saving the internal local connec-
tions from our previous model, we suppose that the driving
force of the system is provided by the solar wind that is con-
vected along the boundaries of the system. The energy flux
inside is ensured by the penetration of the energy from the
solar wind into the system with a finite velocity. In addition
in the model, we avoid using an additional internal source of
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Fig. 6. Probability distribution of size (square) of individual transient:(a) during time when feedback is not active;(b) there are cells with
active feedback. Probability distribution of power of individual transient:(c) during time when feedback is not active;(d) there are cells with
active feedback.

stochasticity (random variable); therefore, in this sense the
model is strictly deterministic.

The control parameter of the model is thez-component of
the interplanetary magnetic field (Bz IMF) “frozen” into the
solar wind. At a constant control parameter the internal dy-
namics of the model system is determined by the parameter
value. The collective dynamics of the system leads to large-
scale transients and undergoes several bifurcations when the
constant varies from−6.0 to 0. The periodic transients (acti-
vation) occur in the system at values of−4.0 < Bz < −0.6.
Smaller periods correspond to smallerBz; in addition, the po-
sition of activation onset in the array is shifting to the “Earth”
with the fallingBz value. When the modulus of theBz IMF
exceeds some threshold value, the transition takes place from
periodic to chaotic dynamics.

It was found that for the model driven by the experimental
sequence ofBz IMF, the probability distributions of the size
and power of transients look like the distributions obtained
by Lui et al. (2000) for auroral blobs. All distributions have
a power law segment at small values of size and power. Dur-
ing the periods of the active feedback (substorm time for au-

roral blobs), the distributions have a characteristic maximum
at large values of size and power. The distributions for the
moments, when the feedback in all the cells of the system is
not active (quiet time), have no maximum at large values of
size and power. Thus, the transients in the magnetosphere-
ionosphere system have analogies within the framework of
the deterministic model with complicated external driving.
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