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Abstract. Experimental findings have shown that travel-
ling planetary waves modulate the occurrence of midlatitude
sporadic-E-layers. Using a simple quantitative model, we
analyse the effects of the linear interaction between tides and
planetary waves on ion motion. Besides an expected varia-
tion of the dumping height, it is found that the boundaries of
the oscillations induced by the descending semidiurnal tide
are significantly modified by the presence of the planetary
wave. The height variations of the ionisation cause plan-
etary wave modulations of the metallic ion content in the
background plasma density. This could explain the long-
term variation found in the occurrence of strongEs layers.
The fact that the dumping height variations are strongly in-
fluenced by the tidal phase velocity and amplitude, together
with the variability of the metallic ion content, could con-
tribute to the understanding of the sporadic nature of the E-
layers.

Key words. Ionosphere (Ionosphere-atmosphere interac-
tions; Mid-latitude ionosphere)

1 Introduction

Evidence of a strong link between thermospheric dynamics
and sporadic-E phenomena have been recently supplemented
by the finding that planetary waves (PW) could play a role
in the large period wave-like variations found to exist in the
occurrence of coherent backscatter echoes (Tsunoda et al.,
1998; Voiculescu et al., 1999) and strong sporadic-E occur-
rence (Voiculescu et al., 1999). In their paper, Voiculescu
et al. (2000) tested this postulation and found a fairly good
agreement in the long-term periodicities of strongEs and
backscatter echo occurrence in conjunction with simultane-
ously measured neutral wind. A physical explanation of
the relationship between the large-scale neutral waves and
the formation of intense sporadic-E was first proposed by
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Shalimov et al. (1999) and developed by Shalimov and Hal-
doupis (2002). They presented a model of ion accumula-
tion in the centre of a cyclonic vortex, which, according to
Holton (1982), accompanies a travelling planetary wave. In
a very recent paper, Haldoupis and Pancheva (2002) proved
without any doubt thatEs parameters are strongly related to
planetary waves. They found that the critical frequency of
sporadic-E-layers, observed by a large number of ionosonde
stations, exhibits a strong 7-days periodicity, occurring con-
currently with a large amplitude 7 day westward propagating
planetary wave.

The role played by these large-scale neutral waves in the
ionospheric plasma was recognized by earlier studies, which
related them to the measured long-term periodicities in the
D, E andF electron density (Pancheva et al., 1994; Apos-
tolov et al., 1995; Fraser, 1977; Zhou, 1998). In their study,
Mathews et al. (1993) noticed a 2–5 day period variation ex-
isting in the lower height reached by the ionisation layers at
Arecibo and suggested that it might be associated with the ac-
tion of multiday waves acting on the dumping height. The 2-
day modulation found in the electron density by Zhou (1998)
was attributed to the transportation of metallic ions under the
action of the Lorentz force associated to the PW.

Along these lines, we propose in this paper that the PW
modulation, found in the occurrence of denseEs (ftEs >

5 MHz) and their top frequency, could be explained by tak-
ing into account the modification induced by the action of
the alternating eastward and westward direction of the zonal
component of this wave on the enhanced ionisation motion.
Sporadic E-layers are most likely formed by tides with down-
ward phase velocity (Whitehead, 1961). Due to the increas-
ing collision frequency at low altitudes, the ions cannot fol-
low the descending wind profile and they are dumped at 80–
90 km altitude (Chimonas and Axford, 1968; Mathews and
Bekeny, 1979). In the absence of other dynamical or chem-
ical factors, the metallic ions are dumped at altitudes of 85–
95 km, where they oscillate with decreasing amplitude. In
their numerical computations, Chimonas and Axford (1968)
showed that the corkscrew effect of the semidiurnal tide re-
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sults primarily in a layer descent almost at the phase velocity
of the wind profile, while Mathews and Bekeny (1979) found
that the ion trajectories are consistent with the vertical mo-
tions of the layers experimentally observed. MacDougall et
al. (2000) found that the lifetime of the metallic ions varies
between 10 h at 100 km and 10 min at 90 km, depending also
on the electron density. Consequently, a variation of several
km of the dumping height should lead to important variations
of the metallic ion density in this height range. For the dura-
tion of a semidiurnal period, the PW can roughly be seen as a
mean background wind which will either lift or pull down the
metallic ions depending on its direction. Therefore, the mo-
tion of the ions and the height where they would have been
deposited solely by the tide will change. Using a simple theo-
retical model, we investigate how significant is this variation
and what are the implications of this effect on the metallic
ion content. To find how the ions are affected by the PW we
solve the equation of motion for the ions in the presence of
both semidiurnal and planetary wave. The equations and the
modelling issues are presented in Sects. 2 and 3, while the
results are summarized in Sect. 4. The last two sections are
devoted to the discussions and conclusions.

2 Equations

The wind shear theory (Whitehead, 1961; Axford, 1963) pre-
dicts that a vertical gradient of the horizontal wind provided
by a neutral tide leads to convergent vertical ion drifts. The
ions gather and form thin layers of enhanced ionisation at the
nodes of the wind profile.

The steady-state equation of motion for ions (where the
gravitational term is ignored and where only one species of
ion is assumed) gives for the velocity vector the well-known
formula (e.g. Kelley, 1989):

V i =
1

1 + β2

{
Vn + β(Vn × b) + β2b · (Vn · b)

−
kBTi

mi�i

β

[
∇N

N
+ β

(
∇N

N
× b

)
+ β2b ·

(
∇N

N
· b

)]
+

e

mi�i

β
[
E + β(E × b) + β2b · (E · b

] }
, (1)

whereβ =
�i

vin
, b = B/B is the geomagnetic unit vector,

Vn is the neutral wind,E is the total electric field (polariza-
tion plus external field),N is the plasma density and�i , vin,
mi andTi are the ion gyrofrequency, the ion-neutral colli-
sion frequency, the ion mass and the ion temperature, respec-
tively. In the following we consider only the combined ac-
tion of the neutral waves, neglecting the effects of diffusion
or electric fields. The diffusion contributes less to the vertical
ion velocity and more to the width, peak and lifetime of the
layer (Mathews and Bekeny, 1979), while a typical midlati-
tude zonal electric field of 0.5 mV/m would modify the ion
vertical velocity with less than 1 m/s.

In a geographical coordinate system, with thex-axis point-
ing east,y-axis to north andz positive vertically upwards, a

wind Vn will force the ions to move vertically with the ve-
locity:

Viz =
1

1 + β2[(
1 + β2 sin2 I

)
Vnz + βVnE cosI − β2VnN sinI cosI

]
, (2)

whereVnE andVnN are the zonal and the meridional compo-
nent of the neutral velocity,Vnz the vertical component and
I the inclination of the geomagnetic field, considered to be
50◦ in our calculations.

Sporadic-E layers are formed by a wind shear associated
with the semidiurnal tide, while gravity waves with smaller
periods contribute to the structuring of the layer (Whitehead,
1989; Mathews, 1998). Since our interest is confined to the
influence of planetary waves on the formation of a layer, we
will consider the case of a semidiurnal tide,U, of period
Ts = 12 h, whose components can be approximated with si-
nusoidal waves:

UE, N (z, t) = U0E,N (z) sin

(
2πz

λz(z)
+

2πt

Ts

+ ϕE, N

)
, (3)

where the wavelengthλz and the amplitudesU0E , U0N of
the zonal and meridional components vary with the altitude
(Forbes, 1994) and whereϕE andϕN are the initial phases of
the two tidal components. Experimental and theoretical in-
vestigations show that the vertical component of the tide is at
the most one order of magnitude smaller than the horizontal
ones and is not considered in our model.

The other wave acting on the ions is the travelling PW.
These waves are interpreted as corresponding to the evanes-
cent solution of the tidal equation of Laplace. They propa-
gate horizontally in a westward direction, but their vertical
propagation is forbidden and there is noz variation of am-
plitude in the lower thermosphere (Forbes, 1994). For the
one-dimensional (vertical) model that we use, the waves are
seen as time dependent oscillations of the neutral velocity
with the periodTW . The horizontal components of the PW,
whose amplitudes and phases areW0E,N andθE, N , are de-
scribed by:

WE,N (t) = W0E, N sin

(
2πt

TW

+ θE, N

)
. (4)

The effect of the two waves acting simultaneously on the
ions in the E-region will sum up to give:

Viz = VizU + VizW , (5)

whereVizU (z, t) andVizW (z, t) are respectively the tidal in-
duced and the PW contribution to the vertical ion velocity,
obtained by replacingVn with U andW , into Eq. (2). After
introducing Eqs. (3) and (4) in the Eq. (5), the vertical motion
of the ionisation can be determined by solving the equation:

Viz =
dz

dt
=

β(z) cosI

1 + β2(z)[
U0E(z) sin

(
2πz

λz(z)
+
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)
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(
2πt

TW

+ θE
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+
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+
β2(z) sinI cosI

1 + β2(z)[
U0N (z) sin
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2πz

λz(z)
+

2pit

Ts

+ ϕN

)
+ W0N sin

(
2πt

TW
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)]
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3 Modelling issues

Although Eq. (6) can be solved, several simplifying assump-
tions are utilized, mostly to avoid computational instabilities.

3.1 The tide

To conserve the wave energy density,w = ρU2, the tidal
amplitude must increase with altitude to compensate the de-
creasing density (e.g. Kelley, 1989):

U0E, N (z) = U95
0E, N

√
ρ95

ρ(z)
, (7)

where U95
0E,N and ρ95 are the amplitude and the neutral

density at 95 km. Theoretically, this is important in the E-
region, but several studies show that this variation is severely
reduced by dissipation (Forbes, 1982; Zhou et al., 1997).
Moreover, the height where the dumping occurs is relatively
low so that the possible variations of the velocity should not
affect the final result significantly. Therefore, the amplitude
of the wave will be considered constant,U = 50 m/s. Ac-
cording to the theory of tides, the wavelength is function of
altitude (Forbes, 1994):

λz(z) =
2πH√

H
h

(
γ−1
γ

+
dH
dz

)
−

1
4

, (8)

whereH is the scale height,H =
kBT
Mg

, h the equivalent
depth andγ is the adiabatic constant. The variation of the
wavelength is relatively small in this altitude range if the
temperature variation with the altitude is considered, and, for
the same reasons outlined above, we will consider the wave-
length to be constant.

Akchurin et al. (1998) found that theEs parameters are
mostly influenced by the (2, 6) and (2, 4) harmonics of the
semidiurnal wave and to a lesser extent, by the (2, 2) tide. In
the lower thermosphere the first two tides have wavelengths
of 30 km and 50 km, while the (2, 2) harmonic has a value
of more than 100 km (Williams, 1996, Forbes, 1994). A
medium wavelength of 40 km will be used to model the ef-
fect of both (2, 4) and (2, 6) modes and the value of 100 km
is attributed to the third wave.

The zonal phase is chosen so that at the initial moment the
wind has a node between 110–115 km altitude, where theEs

formation is more efficient. The most propitious structure
of the wind for the vertical accumulation of ions has a south-
eastward component below and a north-westward component
above the location of the layer, which means that the zonal
and meridional components are opposed in phase. Even if
this were an ideal situation, the meridional component is not
very effective at low altitudes so that any variation induced

by a different meridional phase would be very small. The
values of the zonal and meridional phases for the slow de-
scending tides are then:

ϕE = −2π/3 and ϕN = π/3,

while for the faster (2, 2) tide, they are:

ϕE = −π and ϕN = 0.

3.2 The PW

Strong and long lastingEs have been found to be present
in connection with the quasi two-day wave (QTDW)
(Voiculescu et al., 1999, 2000). In addition, the maximum
energy in the PW spectrum comes from the short period
waves (Jacobi et al., 1998). For this reason the period of the
PW is set to 48 h. The PW is elliptically polarized, with the
meridional component larger than the zonal one, especially
for low latitudes. As previously stated, when discussing the
tide characteristics, any change in the meridional direction
leads to negligible effects at altitudes below 110 km. The
amplitudesWN and WE are considered equal. Given that
experimental measurements have found that usual velocities
accompanying a QTDW are between 15 and 25 m/s (Clark
et al., 1994), we selected the smallest value in order to show
that even if the PW amplitude is not large, the mechanism
still operates. As for the phase of the PW, the maximum
of the zonal component is attained at the noon of odd days
(Meek et al., 1996), which means thatθE,N = 0.

3.3 The collision frequency

Finally, the ion-neutral collision frequency, which is the most
important factor in the dumping mechanism, can be ex-
pressed using the relation of Banks and Kockarts (1973):

νin =[
1.80

√
A(A + 28)

· nN2 +
1.83

√
A(A + 32)

· nO2

0.91
√

A(A + 16)
· n0

]
· 10−14. (9)

This relation can be approximated by an analytical expres-
sion, considering the fact that neutral densities are exponen-
tially decreasing with increasing altitude:

νin(z) =

3∑
j=1

ν0j exp

(
z0 − z

Hj (z)

)
, (10)

whereHj is the scale height of the each neutral species,
Hj =

kBT
Mj g

, andν0j are the ion-neutral collision frequencies
of the ions with each neutral species at the reference height
z0. A realistic approach should consider the altitude depen-
dence of the scale heights due to the important variation of
the neutral temperature. As a matter of fact, it is not the colli-
sion frequency that is the relevant quantity but its ratio to the
ion gyrofrequency,β =

�i

νin
. A simpler analytical description

of the altitude dependence of this coefficient is:

β(z) = β0 exp

(
−

z0 − z

H

)
, (11)
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Fig. 1. Altitude dependence ofβ = �i/νi for two cases: 1. col-
lision frequency given by Banks and Kockarts, 1973 (circles), with
MSIS-90 (15 July) used for the neutral densities; 2. the same quan-
tity expressed using an exponential law with a constantH (line).

where, for small altitude ranges like those associated with
the E-region, thez-variableH has been replaced with a fixed
one and whereβ0 =

�i

ν0
, all the contributions of the neutral

species being summed up in the valueν0. Using a simple
interpolation program we found that the scale height value
giving the best approximation for the altitude dependence of
β is H = 6.4 km. This can be seen in Fig. 1 where, for
Eq. (9), the neutral densities have been taken from the MSIS-
90 (Hedin, 1991) atmospheric model, run for 15 July.

4 Results

The ion trajectories obtained by solving Eq. (6), for an initial
position at 120 km, are depicted in Fig. 2, for the duration of
a half period of the PW (24 h). The plot in Fig. 2a illustrates
the effect of the PW action when the tide descends slower,
with Vph

∼= 1 m/s, while Fig. 2b is the result for the faster
wave, whoseVph is 2.3 m/s. Both figures are produced in
the same manner, using the same values forW andU . The
continuous line is the trajectory of the enhanced ionisation
carried by the semidiurnal tide alone. The other two curves,
marked with triangles, are the trajectories of the same ioni-
sation points under the action of the same tide together with
the longer-period wave, during the first half of a PW period
(right triangles) and during the second half of a PW period
(left triangles). We note, in the beginning, that the dumping
heights are slightly higher than those found by Chimonas and
Axford (1968). This result is a consequence of the fact that
they used a vertical wavelength 3 times larger than the scale
height, while this factor is, in our model, 6 and, respectively,
15. This implies a larger phase velocity for “our” tides.

A quick look at the two figures, where equal amplitudes
of the tides were used, shows that the faster wave dumps its
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Fig. 2. Ionization trajectories under the action of the tide (thick
line), tide + eastward component of the PW (right triangles), tide
+ westward component (left triangles) forU = 50 m/s andW =

15 m/s.(a) Wavelength (λ) of 40 km;(b) wavelength (λ) of 100 km.

ionisation at higher heights than the slower one, no matter if
the PW component is included or not. This is to be expected,
since the ions remain trapped in the nodes of the tide for a
longer time when they are carried by a slow moving wave,
thus reaching lower heights (Whitehead, 1989; Mathews et
al., 1993). It is visible, from all our plots, that the inclusion
of the PW is seen mostly in the lower part of the E-region,
where the zonal wind controls the motion of the ions. This
is in accord with Voiculescu et al. (2000), who found that the
long-term periodicities ofEs occurrence are associated with
those observed in the zonal component of simultaneous wind
data.

The height where the ions stop their downward motion is
higher when the PW is eastward directed and lower when it
overturns. The difference between the two heights seems to
be more or less the same, regardless of the wavelength of
the tidal wave. In the first plots the two dumping heights
are separated by approximately 5 km after about 12 h from
the beginning of the analysed time interval. The separation
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Fig. 3. The same as for Fig. 2 but for tidal amplitudes,U , of
100 m/s.

is larger, attaining 7 km, for the (2, 2) tide. The uppermost
heights, where the eastward oriented PW velocity brings the
ionisation, depends on the value of the wavelength, thus on
the phase velocity. The faster the wave, the higher are the
altitudes to which the ions are lifted.

The heights where the ions are carried by the tide de-
pend also on the ratio of the amplitude to the phase velocity,
U/Vph. When amplitudes of 100 m/s were used, the pic-
ture changed giving an overall lowering of the heights where
the ions stop their vertical descending. This can be seen in
Figs. 3a and b where, besides the tidal amplitude, all the other
characteristics of the tidal and planetary wave are kept un-
changed. An augmentation of the tidal amplitude lowers the
dumping height and reduces the PW separation between the
uppermost and the lowest altitude. In the case of the (2, 2)
tide this effect is less dramatic, since the phase velocity of
the wave is large when compared with the amplitude.
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Fig. 4. (a) Lifetime of metallic ions function of altitude for three
different electron densities.(b) Detail of plot (a), for lifetimes of
0–30 h.

5 Discussion

The modification of the dumping height resulting from the
inclusion of other neutral waves was to be expected since,
for short time intervals, the long-period wave acts upon the
ionisation almost in the same way that a mean wind would
do. The eastward component pushes the positive ions up,
counteracting the corkscrew effect of the tidal wave, while
the opposite one drives the ions to lower heights. It is not
only the dumping height variation that is important but also
the implications for the metallic ion content.

When the ions reach altitudes close to and below 100 km,
the increased neutral density and the low temperature accel-
erates their transformation into neutral particles. The neu-
tralization of the Fe+ ions is governed essentially by the re-
actions listed in Table 1 (MacDougall et al., 2000 and ref.
therein). Figure 4 shows how their lifetime,τ = 1/R,
whereR is the recombination rate given by MacDougall et
al. (2000), varies with the altitude in the low thermosphere
for three electron densities, which are considered to charac-



1526 M. Voiculescu and M. Ignat: Vertical motion of ionization

Table 1. Rate coefficients of reactions leading to the neutralization
of the Fe+ ions

Reaction Rate coefficient (m3/s, m67s)

Fe+ + e−
→ Fe +hν k1 = 10−18 m3/s

Fe+ + O2 + X →FeO+

2 + X k2 = 1.7 · 10−41(300/T )1.86m6/s
Fe+ + N2 + X → FeN+

2 + X k3 = 8.0 · 10−42(300/T )−1.52m6/s
FeO+

2 + e−
→ Fe + O2 k4 = 3 · 10−13(200/T )0.5 m3/s

FeN+

2 + e−
→ Fe + N2 k5 = 3 · 10−13(200/T )0.5 m3/s

FeO+

2 + O → FeO+ + O2 k6 = 10−16 m3/s
FeN+

2 + O → FeO+ + N2 k7 = 10−16 m3/s
Fe+ + O3 → FeO+ + O2 k8 = 7.6 · 10−16 exp(−241/T ) m3/s
FeO+ + O → Fe+ + O2 k9 = 7 · 10−18 m3/s
FeO+ + e−

→ Fe + O k10 = 10−13(200/T )0.5 m3/s

terize an very dense, a regular and a weakEs layer. The
neutral densities and temperature are given by the MSIS-90
model (Hedin, 1991) for 45◦ N and 15 July.

We refer to the days when the zonal PW is eastward as
“positive” and to the days when the zoanl PW is westward
as “negative”. The lowest height where the ions are brought
by the (2, 4) and (2, 6) tides during “positive” days is about
100 km where they have a lifetime of 1–10 h, depending on
the electron densities characterizing the ionisation layer. The
modelled trajectory shows that the sheet of enhanced ionisa-
tion stops at this height for about 1 h after which it goes up,
reaching an altitude of about 105 km after 4 h. For typical
electron densities (less than 1012 m−3), the lifetime of ions
is large enough; hence, during this time interval, the metallic
particles will be maintained in the ionised state. As a result,
their uplift will increase the metallic ion density. The max-
imum density of a stationary layer formed by a sinusoidal
neutral wave with amplitudeU and wavelengthλ, at a height
where the diffusion coefficient isD, is given by (Axford,
1968):

Nmax = N0

√
βU0λ sinI

D
. (12)

When the tide reaches the height where the PW has lifted
the ions during “positive” days, it will act on a denser plasma
generating denser layers. This is valid as long as the electron
density is not extremely high so that the lifetime of ions in
this height interval is longer than about 4 h. A density of
more than 1012 m−3, which does not often occur even during
times of highEs activity, will probably reduce the PW in-
fluence on the metallic ion content. The mean hourly values
of the foEs series seen in Fig. 2 of Haldoupis and Pancheva
(2002) show that peak frequencies of more than 10 MHz are
followed by significantly lowerfoEs, even at times when the
7 day-PW energy seems to be at its maximum. This means
that a PW modulation is less likely to be observed in the
long-term variation of the occurrence of very strong layers
(foEs > 10 MHz).

The faster semidiurnal wave will deposit the ionisation at
higher levels for both eastward and westward directions of
the PW although the difference between the two heights re-
mains the same. The ions will be lifted at higher altitudes,
where their lifetime increases to several days at 115 km, even
for the greatest electron density that we considered. The in-
crease of the metallic content of the plasma will be amplified
and will occur over a larger volume than in the previous case.
The ion motion is faster; the ions do not have enough time to
undergo the neutralization process.

The westward wind associated with the QTDW lowers the
dumping height to 95 km for both tides. There is a lift in this
case too, but the height variation is very small (1–2.5 km).
The altitude range where the ions reside is close to 95 km,
where the ion lifetime varies over a large range and it is
strongly influenced by the electron density. It is very diffi-
cult to say how much time the recombination would take, but
it is unlikely that the ion metallic density remains unchanged
for more than 24 h (until the velocity associated with the PW
changes again to east). Besides, at such low altitudes the
collisions are so numerous that the ions cannot be lifted by
the horizontal winds involved in our model. Further, at times
when the PW is directed westward, the “second” tide will
never reach the altitudes where the ions have been brought.
Irrespective of whether these ions have been neutralized or
not, the wind shear will act on a depleted plasma, providing
poorer conditions for a strong layer to form. During these
intervals, the ions are swept from the E-region by the com-
bined action of the downward propagating neutral waves and
the PW.

The 2-day modulation of the ionisation motion can be seen
in Fig. 5, where the ionisation trajectories under the action of
successive semidiurnal tides during a 4-day (2 cycles) pas-
sage of a QTDW are depicted. The two plots summarize the
results for the two selected tides havingU = 50 m/s. The
dotted rectangles mark the altitude ranges and time intervals
where the metallic ion density is enhanced. The density of
Es layers generated by the (2, 4) and (2, 6) tides increases
below, approximately, 105 km in the afternoons of the “pos-
itive days”. During the “negative” days theEs layer activ-
ity should be diminished. If the previous layers have been
extremely dense, the increased neutralization rate significant
reduces the amount of metallic ions to be lifted; hence the
effect is less likely to be observed. Nevertheless, since the
plasma density continues to decrease, the PW induced en-
hancement of the metallic ion content should occur the next
“positive” day. The effect seems to be more confined in time
when the tide descends faster but the altitude range is larger,
extending higher than 115 km. According to our results, the
“positive” peak densities of the layers should be larger when
formed by the latter tide because the dumping heights are
higher and the collection of the ions is more effective than
that formed by the former. Hence, the 2-day modulation in
theEs parameters should be stronger when the semidiurnal
tide has longer wavelengths. The results shown in Fig. 5 em-
phasize also a 2-day modulation in the lowest height reached
by the ions, marked with short dotted lines, which has been
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experimentally observed. Mathews et al. (1993) noticed the
existence of 3 km peak-to-peak wavelike variation with pe-
riods of the order of days in the lowest heights where tidal
ion layers can be observed. They attributed this effect to the
multiday wave modulation of the dumping height or to tem-
perature (and scale height) variation with similar periods.

The modulation of the metallic ion content and of the ion-
isation motion could explain both the PW modulations of
the occurrence ofEs layers with foEs > 5 MHz found by
Voiculescu et al. (1999, 2000) and the 7-day periodicity of
the Es critical frequency seen by Haldoupis and Pancheva,
(2002). Assuming that all the other factors are constant, since
the metallic ion density varies with a certain period, stronger
layers will form with the same period. Concomitantly, the
ionisation is “maintained” at higher altitudes, favouring an
increased occurrence of theEs layers with, again, the same
period.

The drop of the dumping heights caused by the increase of
the tidal amplitude, seen in Figs. 3a and b, has important ef-
fects, especially for the slower 12-h tides. The separation in-
duced by the opposite direction of the PW is still visible but it
is smaller and confined by an altitude range where sporadic-
E layer formation is not so common. The maximum height
reached by the metallic ions is less than 100 km; therefore at
higher altitudes the background plasma density is not modi-
fied so that the planetary waves cannot cause any modulation
of theEs activity. Nevertheless, the effect of the decrease of
the phase velocity relative to the tidal amplitude is less im-
portant for the faster tide. At 105 km, strong layers could still
form and the PW modulation should be observed but the in-
crease of the background density induced by the PW occurs
in a vertical region whose extent is smaller. On the other
hand, smaller amplitudes, which actually are closer to mea-
sured values for the semidiurnal tides, give way to the PW
control.

It is known that the E-region is characterized by the joint
presence of several tidal modes, with amplitudes and phases
varying over a large range (Forbes, 1994; Akchurin et al.,
1998). Our results show that both the ionisation motion and
the dumping height are modified when tidal parameters are
modified. Together with the variability of the metallic ion
lifetime at low altitudes, these factors could contribute to the
understanding of the sporadic nature of theEs layers.

In the present paper, we did not include other terms, like
mean vertical wind or electric field; our intention was to point
out the influence of the PW on the dynamics of the ions.
When any of those terms is considered, the PW effect on
the ion trajectories would presumably be altered. Neverthe-
less, this modification is strongly dependent on the relative
magnitude of the terms and a qualitative analysis cannot give
too many indications. A more detailed model, including the
altitude variation of the tidal parameters is the subject of a
future effort.
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Fig. 5. Ionization motion induced by the linear superposition of a
tide with 50 m/s amplitude and a PW with 15 m/s amplitude during
2 cycles of the long-period wave for two tidal wavelengths:(a) L =
40 km;(b) L = 100 km.

6 Conclusions

We showed that the variation of the trajectory of enhanced
ionisation, induced by the alternating zonal component of a
long-period wave, might explain the observed modulation of
the strongEs occurrence with periods corresponding to trav-
elling planetary waves. When the PW is eastward, the dump-
ing height is higher and the ions are raised up after a short
time. Therefore, the metallic particles are maintained in an
ionised state for a longer time, preventing the depletion of
the metallic ion density due to downward transportation. The
shorter-period waves will lead to the formation of a stronger
layer between 100 and 115 km, where the ions brought by
the PW have increased the background ionisation. The range
of altitude where this effect can be seen depends on the tidal
amplitudes and on their phase velocities. The westward di-
rected PW wind forces the ions at lower heights where they
recombine relatively fast and where they are kept for a long
time. The westward component of the PW enhances the de-
crease of density induced by the corkscrew effect of the tidal
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wave and the production of denseEs layers is hindered. Con-
sequently, successive 12 h waves will act on a plasma whose
density is modulated with planetary wave periods which, in
turn, will lead to a similar modulation of the density and oc-
currence of theEs layers. This effect is highly dependent on
the ratio of the tidal amplitude to the phase velocity.

The PW role in the E-region must be a very complicated
phenomenon, requiring more experimental investigations.
Theoretical models and experimental work show the pres-
ence of non-linear interactions (Teitelbaum and Vial, 1991),
which probably have an important contribution to the overall
picture of the ionosphere–atmosphere system.

When the model was applied for different phase velocities
and amplitudes of the tides, the numerical results showed that
the dumping height is greatly influenced by these quantities
and on their ratio. The linear interaction between different
tides and PW has also different results on the ions motion.
This means that in some cases the PW modulation can be
stronger than in others depending on what is the dominant
mode of the semidiurnal wave. Tides with large phase ve-
locities dump their ionisation at altitudes where the ions sur-
vive long enough to maintain the metallic content unchanged,
favouring the occurrence of stronger layers. The tides that
descend slowly will carry the ions at low altitudes, where,
due to the important increase of the recombination rate, they
will be rapidly transformed into neutral particles. The metal-
lic percentage of the positive ions will be poorer andEs will
be, accordingly, weak.

Our simple model proved also that the ionisation be-
haviour is significantly changed by any modification of the
parameters characterizing the semidiurnal tide. This, to-
gether with the large variability of the metallic ion lifetimes
could contribute to the understanding the sporadic nature of
the occurrence of E-region layers.
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