
HAL Id: hal-00317084
https://hal.science/hal-00317084

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The charge-exchange induced coupling between
plasma-gas counterflows in the heliosheath

H. J. Fahr

To cite this version:
H. J. Fahr. The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath.
Annales Geophysicae, 2003, 21 (6), pp.1289-1294. �hal-00317084�

https://hal.science/hal-00317084
https://hal.archives-ouvertes.fr


Annales Geophysicae (2003) 21: 1289–1294c© European Geosciences Union 2003
Annales

Geophysicae

The charge-exchange induced coupling between plasma-gas
counterflows in the heliosheath

H. J. Fahr

Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn, Auf dem Ḧugel 71, D-53121 Bonn, Germany
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Abstract. Many hydrodynamic models have been presented
which give similar views of the interaction of the solar wind
plasma bubble with the counterstreaming partially ionized
interstellar medium. In the more recent of these models
it is taken into account that the solar and interstellar hy-
drodynamic flows of neutral atoms and protons are coupled
by mass-, momentum-, and energy-exchange terms due to
charge exchange processes. We shall reinvestigate the theo-
retical basis of this coupling here by use of a simplified de-
scription of the heliospheric interface and describe the main
physics of the H-atom penetration through the more or less
standing well-known plasma wall ahead of the heliopause.
Thereby we can show that the type of charge exchange cou-
pling terms used in up-to-now hydrodynamic treatments un-
avoidably leads to an O-type critical point at the sonic point
of the H-atom flow, thus not allowing for a continuation of
the integration of the hydrodynamic set of differential equa-
tions. The remedy for this problem is given by a more accu-
rate formulation of the momentum exchange term for quasi-
and sub-sonic H-atom flows. With a refined momentum ex-
change term derived from basic kinetic Boltzmann princi-
ples, we instead arrive at a characteristic equation with an X-
type critical point, allowing for a continuous solution from
supersonic to subsonic flow conditions. This necessitates
that the often treated problem of the propagation of inter-
stellar H-atoms through the heliosheath has to be solved us-
ing these newly derived, differently effective plasma – gas
friction forces. Substantially different results are to be ex-
pected from this context for the filtration efficiency of the
heliospheric interface.

Key words. Interplanetary physics (heliopause and solar
wind termination; interstellar gas) – Ionosphere (plasma tem-
perature and density)
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1 Charge-exchange coupling of counterdrifting plasma
– gas media

In problems like the mutual interaction of plasma and H-
atom gas flows in the heliosheath due to the large local Knud-
sen numbers Kn, in principle, a kinetic treatment of charge-
exchange induced coupling processes is required, as was al-
ready emphasized by Osterbart and Fahr (1992) or Baranov
and Malama (1993). In kinetic approaches the distribution
function of the H-atom gas needs to be described by a Boltz-
mann-Vlasov integro-differential equation (see, e.g. Rip-
ken and Fahr, 1983; Osterbart and Fahr, 1992; Baranov and
Malama, 1993; Pauls and Zank, 1996; Fahr, 1996; McNutt
et al., 1998, 1999; Bzowski et al., 1997, 2000). Thus, one
would have to start from the following type of a Boltzmann
equation:

v
dfH (r, v)

ds
=

fp(r, v)

∫ 3

fH (r, v‘)vrel(v, v‘)σ (vrel)d
3v‘

− fH (r, v)

∫ 3

fp(r, v‘)vrel(v, v‘)σ (vrel)d
3v‘ , (1)

where fH (r, v) and fp(r, v) are the velocity distribution
functions of the H-atoms and the protons, respectively,r and
v are the relevant phase-space variables,ds is the increment
of the line element on the associated dynamical particle tra-
jectory, vrel denotes the relative velocity between collision
partners of velocitiesv andv‘ , andσ(vrel) is the velocity-
dependent charge exchange cross section.

Due to reasons connected with the fairly laborious mathe-
matical tractability of the Boltzmann equation, many authors
have preferred to change over from Eq. (1) to a set of hydro-
dynamic moment equations (for a review, see Zank, 1999).
Introducing the lowest moments80 = mp; 81 = mpv;

82 =
1
2mpv2, then leads to the conventionally used conser-

vation equations for mass, momentum, and energy flows.
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First, the following simple equation is obtained from
Eq. (1) for the average mass exchange:

〈80〉 = Q+

0 − Q−

0 = 0, (2)

whereQ+

0 andQ−

0 are the charge exchange – induced mass
gain – and mass loss – rates. Equation (2) simply states that
no net mass gains will result from pure charge exchange re-
actions between particles with identical atomic nuclei.

The exchange terms resulting for the higher moments
like, for example,81,2 can only be evaluated with some
knowledge of the distribution functionsfp andfH . Repre-
senting these distribution functions as functions of the low-
est hydrodynamic moments themselves, e.g. using shifted
Maxwellians with isotropic temperaturesTp andTH (as done
by Holzer, 1972; Ripken and Fahr, 1983; Fahr and Ripken,
1984; Isenberg, 1986; Pauls and Zank, 1996; Fahr, 1996;
Lee, 1997) permits one to present the above expressions in
the following forms:

〈81〉 = σrel 〈vrel〉 mpnpnH (V H − V p) (3)

and:

〈82〉 = σrel 〈vrel〉 mpnpnH ·[
1

γ − 1

(
Pp

ρp

−
PH

ρH

)
−

1

2

(
V H − V p

)2]
, (4)

wherenH , VH , PH andnp, Vp, Pp are density, bulk veloc-
ity, and pressure of the H-atoms and of the protons, respec-
tively, σrel = σ(〈vrel〉) is the actual charge exchange cross
section, and〈vrel〉 is the double-Maxwellian average of the
relative speed between protons and H-atoms as given, for ex-
ample, by Holzer (1972):

〈vrel〉 =

√
128

9π

(
Pp

ρp

+
PH

ρH

)
+ (V H − V p)2. (5)

2 The H-atom gas passage through the heliosheath

The problem at hand with treating the passage of neutral
interstellar gas (LISM H-atoms) through the plasma inter-
face ahead of the solar system essentially resembles that of
a passage of an H-atom gas flow through a predetermined
quasi-static plasma structure simulating the region down-
stream of the expected outer interstellar shock (see Baranov
and Malama, 1993; Zank, 1999; Fahr et al., 2000).

In a one-dimensional approach for the region along the
stagnation line (z-axis!) this LISM plasma ahead of the he-
liopause, due to its very low sonic Mach number, can be
taken as incompressible and nearly stagnating. One could
perhaps ask how this type of plasma structure with a con-
stant proton density and temperature extended over a limited
space volume in reality might be maintained in space. This
question, however, is not of relevance for this very funda-
mental study aimed at here. We more or less only want to
check whether or not we use the correct theoretical instru-
ments to describe the charge-exchange induced adaptation of

an H-atom fluid streaming with some initial relative drift ve-
locity into a plasma fluid and we want to describe this process
of adaptation in the reference system of the plasma bulk.

Thus, to describe the charge exchange influence of the pre-
heliopause plasma sheath on the H-atom flow, one can make
use of the following set of equations:

d

dz
(ρH VH ) = 0, (6)

ρH VH

d

dz
VH = −

d

dz
PH − σrelVrelnpρH VH , (7)

d

dz

[
VH

(
ρH V 2

H

2
+

γPH

γ − 1

)]

= σrelVrelnpρH

[
1

γ − 1

(
Pp

ρp

−
PH

ρH

)
−

V 2
H

2

]
, (8)

whereγ is the polytropic index taken to be identical for both
protons and H-atoms,σrel = σ(Vrel) is the relevant charge
exchange cross section for protons and H-atoms interacting
with an average relative speedVrel which forVp = 0 is given
by:

Vrel =

√
128

9π

(
Pp

ρp

+
PH

ρH

)
+ V 2

H . (9)

Equation (6) can be integrated to yield the constant mass
flow:

C0 = ρ0VH0 = ρH VH . (10)

In addition, it is suggested to introduce the normalized co-
ordinateξ defined byz = ξD and the quantity3 = D/λ =

Dσrelnp (ξ = 0 andξ = 1 mark the two borders of the
plasma wall with the extentD). With these conventions we
then obtain the following so-calledcharacteristic equation:

d

dξ
VH =

Vrel3
(
1ρPp − PH +

1
2C0VH (γ + 1)

)
γPH − CoVH

. (11)

In the above equation the following denotation was used:
1ρ = ρp/ρH . From Eq. (7) with Eq. (11) one derives the
differential equation for the pressure:

d

dξ
PH = −Vrel3C0 − C0

d

dξ
VH . (12)

Starting the integration atξ = 0 with supersonic H-
atom inflow velocities, i.e. withV 2

H0 ≥ γPH0/ρH0, one
at first with increasing, but small values ofξ , obtains rea-
sonable and physically meaningfull results forVH andPH ,
as shown in Fig. 1. However, proceding with the integration
to some critical pointξ = ξc ≥ 0, where locally the equal-
ity γPHc = C0VHc is reached, the integration of the upper
system of differential equations can no longer be continued.

The resulting singularity atξ = ξc within the frame of
this set of equations hereby cannot be avoided as usual, by
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Fig. 1. Shown as a function of the plasma wall coordinatex = z/D,
D = 50 AU being the linear extent of the plasma wall, is the H-
atom bulk velocityVH in units of [km/s] (left ordinate) and the

H-atom pressurePH in units of
[
10−13dyne/cm2

]
(right ordinate)

calculated for various values of the parameter3 = Dσrelnp. The
H-atom flow in all cases enters the plasma wall atx = 0 with a
velocity of VH (0) = 25 km/s. Curves reaching the singular point
xc whereγPH,c = C0VH,c stop at this point.

taking care that atξc both the numerator and the denomina-
tor of Eq. (11) vanish. This becomes evident when inserting
γPHc = C0VHc into the numerator, since then one is led to
the following requirement:

VHc =

√
γ

Pp

ρp

(
2

2 − γ (γ + 1)

)
. (13)

This requirement, however, evidently cannot be fulfilled by
real values ofVHc.

3 Reinvestigation of the charge-exchange induced plas-
ma-gas friction

Due to the local conversion of protons into H-atoms, and
vice-versa, a net exchange of momentum per unit of volume
and time results for either of the two fluids. The net momen-
tum change suffered by one fluid species can be summed
from two contributions, one is the momentum loss due to
losses of particles of this species, and the other is a momen-
tum gain due to gains of particles of this species. As derived
in detail by Fahr (2002), the charge-exchange induced mo-
mentum loss rate is calculated from the following expression:〈
Q−

1 (vH )
〉
=

−2
2
√

π
npnH mp(

2KTp

mp

)·∫
∞

o

∫ π

0
x cosϑσ(vrel)·√

x2
H + x2 − 2xH x cosϑ exp(−x2)x2dx sinϑdϑ. (14)

On the other hand, the charge-exchange induced momen-
tum gain rate describing the production of new H-atom mo-

mentum per unit of time and unit of volume, due to newly
decharged protons, has to be evaluated from the following
expression:

〈
Q+

1 (vH )
〉
=

2
√

π
npnH mp

√
2KTp

mp

vH ·∫ π

0

∫
∞

0
σ(vrel)·√

x2
H + x2 − 2xH x cosϑH exp(−x2)x2dx sinϑH dϑH .(15)

The integrands of the double-integrals in Eqs. (14) and
(15) contain as a factor function the charge exchange cross
sectionσ(vrel), which itself is a function of the velocity co-
ordinatesx andϑH . In view of its weak velocity-dependence
we can fairly well Taylor-expand this charge exchange cross
sectionσ(vrel) and obtain the expression:

σ(vrel) = σrel +

∣∣∣∣dσ

dx

∣∣∣∣
rel

(xrel − Xrel), (16)

whereσrel = σ(Vrel), and whereXrel andxrel are the ther-
mally normalized velocitiesVrel andvrel given by:

xrel = vrel/
√

2KTp/mp and:

Xrel =

√
64

9π
(1 +

TH

Tp

) + M2
p ,

with M2
p =

mpV 2
H

2KTp

representing the Mach number of the proton flow. Based on
the well-known formula given by Maher and Tinsley (1977)
for the charge exchange cross section in the form

σ(v) =
(
A + B log(v/v0)

)2
, (17)

with A andB being constants, one then explicitly obtains the
expression (16) in the following explicit form:

σ(vrel) = σrel

[
1 +

2B
√

σrel

(
1 −

xrel

Xrel

)]
, (18)

where velocity normalizations, for example, as inxrel =

vrel/cp, are carried out with the thermal proton velocity

cp =

√
2KTp

mp
.

The net momentum exchange rate resulting from summing
up the two above expressions given in Eqs. (14) and (15) with
this above representation then evaluates to (for details, see
Fahr, 2002):〈
Q+

1 (xH )
〉
H

+
〈
Q−

1 (xH )
〉
H

= 5
[
C(MH )−

√
πMH (−9g1 − 2g2 + 5αg1 + 2αg1M

2
H )
]
, (19)

with 5 being defined as:

5 = (2/
√

π)npnH σ(Xrel)
√

2KTp/m
√

2KTH /m. (20)
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Fig. 2. Shown as a function of the H-atom flow Mach numberMH

are both the net momentum exchange ratesQsuperandQsub , in
units of the quantity5 defined in the text, for various values of the
temperature ratioα = TH /Tp.

Here, the functionC(MH ) is defined by:

C(MH ) =
π

8M2
H

∫
∞

0
6(x) exp

(
−

(
x2

+ M2
H

))
·[

2xMH cosh(2xMH ) − sinh(2xMH )
]
dx. (21)

In the above expressions the following notations have been
used:

α = TH /Tp ; M2
H =

ρH VH

γPH

;

g1 =
1

15

(
1 +

B
√

σrel

)
; g2 = g1 −

√
π

2B
√

σrel

1

Xrel

In addition, it can be proven that expression (19), which is
valid for moderate and small Mach numbersMH for its us-
age in successsive numerical integration procedures, can be
simplified into an algebraic representation yielding the fol-
lowing mathematically better managable form:

Qsub = 5MH

[7

3
g1−

√
π
(
− 9g1 − 2g2 + 5αg1 + 2αg1M

2
H

)]
. (22)

Here, the quantity5 was introduced in Eq. (20)
It should be noted that, compared to the above expression

which is valid for small and moderate Mach numbersMH ,
the analogous simplified expression, which, in principle and
rigorously taken, is only justified for the case that high Mach
numbersMH prevail, but which is always applied in the up-
to-now literature, attains, when written in the above intro-
duced quantities, the following form:

Qsuper= −5MH

√
4π

9
(1 + α) + αM2

H . (23)
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Fig. 3. Shown as a function of the H-atom flow Mach numberMH

is the ratioR = Qsub/Qsuperof the net momentum exchange rates
QsuperandQsub, for various values of the temperature ratioα =

TH /Tp.

In Figs. 2 and 3 we show the two different representations
of the momentum transfer rate between H-atoms and pro-
tons, Qsub and Qsuper, and the ratioR = (Qsub/Qsuper),
respectively, as a function of the Mach numberMH . As is
becoming evident from the comparisons given in these two
figures, it clearly turns out that, at very low Mach numbers
MH , the revised, improved ratesQsub tend to be smaller than
thoseQsupertaken in the up-to-now hydrodynamical conven-
tional theories, whereas in contrast at moderate Mach num-
bersMH ≥ 1 the improved rateQsub tends to become larger.

This evidently means that at moderate and small Mach
numbersMH , the plasma-gas friction force was up to now
depending on the Mach numberMH either substantially
over- or underestimated in published hydrodynamical theo-
ries treating the problem of the interstellar H-atom penetra-
tion through the heliosheath plasma wall ahead of the he-
liopause. One should, however, also mention here that the-
oretical treatments that use a kinetic description for the H-
atom fluid, like those presented by Baranov and Malama
(1993, 1995) or Izmodenov, Lallement, and Geiss (1999),
may perhaps not suffer so much from this fact, since with
their Monte Carlo code, used to kinetically treat the H-atoms
which are involved in this charge exchange business, the mo-
mentum exchange should be treated as correctly as possible
within the framework of Monte-Carlo-induced numerical er-
rors.

4 Revised form of the characteristic equation

With the newly derived expression given by Eq. (22) we now
analogously also obtain, instead of Eq. (20), the new char-
acteristic equation derived from the hydrodynamical set of
differential equations (i.e. Eqs. 6, 7, and 8) in the following
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form:

dVH

dξ
=

3Vrel

(
1ρPp − PH −

1
2C0VH (γ − 1)

)
+ γDVH Qsub

γPH − C0VH

. (24)

Now, however, the critical point condition for a simulta-
neous vanishing of the numerator and the denominator of
Eq. (24) leads to the new requirement:

1 +
1

2
γ (γ − 1) ≥

γ 2 2
π
[

7
3g1 −

√
π(−9g1 − 2g2 + 5αg1 + αg1

γ 2

2 )]√
64
9π

(1 + α) + M2
p

. (25)

As an explicit example we may adopt numerical values for
the above parameters as those extracted from Fahr (2000),
namely adopting forTP = 20 000 K, forα = 0.4 and for
VH = 26 km s−1. In addition, withγ = 5/3, one then
findsVrel = 41.5 km s−1 yielding σrel = 6.4 · 10−15 cm−2

andMp = 1.43. When inserting values forg1 andg2 and
for the cross-sectional constantsA andB, as given for the
charge exchange reaction between H-atoms and protons by
Maher and Tinsley (1977), one finally obtains from Eq. (24)
the algebraic request:

14

9
= 1.56 ≥ 1.39.

As is evident, this clearly means that the above require-
ment can be fulfilled and that a continuous integration of the
set of differential equations is now enabled.

This fact is clearly demonstrated in Fig. 4, where we have
shown solutions which should be compared with the analo-
gous solutions shown for identical sets of data in Fig. 1, but
now calculated with the newly derived momentum coupling
term given in Eq. (22), instead of that one given by Eq. (23).
Integrating the newly derived characteristic Eq. (24) towards
the left and the right direction from the critical point, one
now obtains solutions for the LISM H-atom gas penetration
through a plasma wall, which are different from those shown
in Fig. 1, but in our view are the more correct representations
of the gas properties at the passage through the prescribed
plasma structure.

5 Conclusions

It is clearly manifest from the study of works by Baranov and
Malama (1993) Baranov et al. (1998), Fahr (2000) or Fahr et
al. (2000) that the Mach numbersMH of the relative flows
between the LISM proton plasma and the LISM H-atom fluid
in the heliosheath region (i.e. post-bow-shock Mach num-
bersMH ), in all cases considered so far, are smaller than
MH = 2. Consequently and strictly speaking, in this Mach
number range the specific momentum exchange term for hy-
drodynamic approaches needs to be given in the newly de-
rived form given by Eq. (22), instead of the conventionally
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Fig. 4. Shown as a function of the plasma wall coordinatex =

z/D, with D = 100 AU being the linear extent of the plasma wall,
is the H-atom bulk velocityVH in units of [km/s] (left ordinate)

and the H-atom pressurePH in units of
[
10−13dyne/cm2

]
(right

ordinate) calculated on the basis of the characteristic Eq. (24) for
various values of the parameter3 = Dσrelnp. The H-atom flow in
all cases enters the plasma wall atx = 0 with a velocity ofVH (0) =

25 km/s. The valueα = TH /Tp in all cases is set equal to 1.

used form given by Eq. (23). Since the effective momentum
exchange rate described by this new expression at identical
thermodynamical conditions is different from that described
by the conventionally used term, one can presume that the
adaptation of the LISM H-atom flow to the nearly stagnat-
ing LISM proton plasma in this interface region ahead of the
heliopause is now operating differently, i.e. partly less and
partly more effectively decelerating the LISM H-atoms down
to the nearly vanishing LISM proton flow velocities ahead of
the heliopause.

The use of an inadequate momentum exchange term in hy-
drodynamic approaches may thus lead to the erroneous claim
for higher LISM proton or H-atom densities to reach the
same amount of reduced LISM H-atom bulk flow velocity.
Hence, more reliable quantitative interpretations of the H-
atom flow through the heliosphere in terms of needed LISM
parameters (see papers by Scherer and Fahr, 1996; Scherer et
al., 1997, 1999; Izmodenov et al., 1997; Izmodenov, 2000)
should be obtained with the application of the new term given
in Eq. (22). LISM parameters claimed on the basis of these
earlier interpretations may thus need substantial revisions.
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