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Abstract. The temporal and spatial behaviour of the iono-
spheric parametersfoF2 andh′F during isolated substorms
are examined using data from ionospheric stations distributed
across Europe and western Asia. The main purpose is find-
ing the forerunners of the substorm disturbances and a pos-
sible prediction of these disturbances. During the period
from March 1998 to March 1999, 41 isolated substorms with
intensitiesI = 60 − 400 nT were identified and studied.
The study separated occasions when the local magnetometers
were affected by the eastward electrojet (positive substorms)
from those influenced by the westward electrojet (negative
substorms). The deviations of the ionospheric parameters
from their monthly medians (1foF2 and1h′F) have been
used to determine the variations through the substorm. Sub-
storm effects occurred simultaneously (< 1 h) across the en-
tire observatory network. For negative substorms,1foF2-
values increase> 6 h before substorm onset,To, reaching a
maximum 2–3 h beforeTo. A second maximum occurs 1–2 h
after the end of the substorm. The1h′F values 3–4 h before
To have a small minimum but then increase to a maximum at
To. There is a second maximum at the end of the expansion
phase beforeδh′F drops to a minimum 2–3 h after ending
the expansion phase. For positive substorms, the timing of
the first maximum of theδfoF2 andδh′F values depends on
the substorm length – if it is longer, the position is closer to
To. The effects on the ionosphere are significant:1foF2 and
1h′F reach 2–3 MHz (δfoF2 = 50–70% from median value)
and 50–70 km (δ h′F = 20–30% from median value), respec-
tively. Regular patterns of occurrence ahead of the first sub-
storm signature on the magnetometer offer an excellent pos-
sibility to improve short-term forecasting of radio wave prop-
agation conditions.

Key words. Ionosphere (ionospheric disturbances) – Mag-
netospheric physics (storms and substorms) Radio science
(ionospheric physics)

Correspondence to:D. V. Blagoveshchensky
(dvb@aanet.ru)

1 Introduction

Reconnection at the dayside magnetopause results in open
flux being transported into the geomagnetic tail. When there
is a significant accumulation of open flux, instability occurs
and there is major reconfiguration of the tail. The latter part
of the cycle is known as the substorm that begins at 6–10RE

(Lui, 1991). It is preceded by a growth phase, which can last
∼1–2 h. A dramatic brightening of the aurora, the establish-
ment of the substorm current wedge and a Pi2 pulsation mark
the beginning of the expansion phase. The third and final el-
ement of the substorm is the recovery phase that begins after
the maximum deviation of the magnetometers near midnight
in the auroral oval. Despite the substorm being described first
nearly 40 years ago (Akasofu, 1968), detailed understanding
of the physical processes and their ionospheric consequences
are not well understood. This is certainly due in part to the
fact that no two substorms are identical, and many substorms
are actually the superposition of several expansion phases,
making interpretation complex.

Early in the papers (Blagoveshchensky et al., 1992, 1996;
Blagoveshchensky and Borisova, 2000) the effect of the max-
imum useable frequency (MUF) variations on the HF radio
paths during substorms was revealed. Effect essence is in-
creasing the MUF values some hours before the momentTo,
decreasing those during the substorm expansive phase and in-
creasing the MUF values again within some hours during the
recovery phase. The purpose of this paper is to examine the
temporal and spatial behaviour offoF2, the maximum plasma
frequency of the F2-layer, andh′F, the virtual height of the F-
layer (Piggott and Rawer, 1978), during isolated substorm in-
tervals, to identity consistent features that could be used for
ionospheric modelling and for radio-wave propagation cal-
culations. Special attention will be given to the ionospheric
parameter behaviour before substorm.

2 Data used and substorm parameters

Hourly values of foF2 and h′F derived from ionosonde
data from Ionospheric Despatch Centre in Europe (IDCE)
(Stanislavska el al., 1998) and some Finnish observatories
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Table 1. Parameters of substorms by Sodankyla observatory

Date Substorm IntensityI (nT) Durationτ (h) Absorption
onset,To (UT) SOD OUL JYV

17–18.03.98 22 –160 3 0,9 0,2 0
09–10.04.98 20 –200 5 0,2 0,1 0
14–15.04.98 15 +80 3,5 1 0,3 0

17.04.98 13 +250 3 0,2 0,05 0
19–20.04.98 20 –120 2,5 0,15 0 0

20.04.98 13 +300 2 0,9 0,6 0
28–29.04.98 20 –100 2,5 0,2 0 0
29–30.04.98 21 –100 2 0,2 0 0
15–16.05.98 21 –140 1,5 0,4 – 0
16–17.05.98 20 –180 2 1,1 – 0
24–25.05.98 20 –160 3 0,4 – 0
02–03.06.98 23 –100 1 0,3 0,02 0,01

10.06.98 12 +200 3 0,3 0,01 –
10–11.06.98 23 –400 4 1,9 0,05 0,03
13–14.06.98 23 –210 2 0,4 0 0

15.06.98 12 +150 5,5 0,15 0,2 0,5
16–17.06.98 14 +190 3 0,4 0,2 0,35
01–02.07.98 23 –270 2,5 1,4 0,3 0,4
03–04.07.98 22 –380 3,5 1,5 0,2 0
18–19.07.98 21 –180 2 0,4 – –
28–29.07.98 21 –200 6 1 0,2 0

10.08.98 02 –120 2 1,5 0,3 –
11–12.08.98 23 –400 2,5 0,7 0,01 –
12–13.08.98 23 –300 2 1,8 0,2 –
14–15.09.98 21 –250 1 0,4 0 –
15–16.09.98 14 +70 5 0 0 0
22–23.09.98 20 –180 2 0,3 0 0,1
28–29.09.98 20 –150 1,5 0,25 0 –
29–30.09.98 20 –350 1,5 1,7 0,2 –
06–07.10.98 23 –190 2 0,8 0,2 –
20–21.02.99 20 –90 2 0,15 0 0
23–24.02.99 17 +220 1 0,2 0,15 0

25.02.99 04 –60 2 0,8 0,2 0
25.02.99 16 +60 1,5 0,1 0,05 0

27–28.02.99 20 –80 1,5 0,1 0 0
05–06.03.99 16 +220 1,5 0 0 0

13.03.99 12 +90 3 0,2 0,2 0,2
20–21.03.99 17 +130 3,5 0,7 0 0,1
23–24.03.99 21 –90 2 0,2 0 0
25–26.03.99 19 –400 4 0,7 0,2 0
27–28.03.99 22 –110 1,5 0,8 0,15 0

are used. The former includes data from 19 stations in Eu-
rope and from western Asia.

The northward (X) components of the magnetic field
from Sodankyla (67.4◦ N), Oulujarvi (64.5◦ N), Hankasalmi
(62.3◦ N) and Nurmijarvi (60.5◦ N) are used to determine the
onset time of the expansion phase,To, determined to an accu-
racy of 0.25 h. Isolated substorms are those where no other
substorm has been identified for> 6 h prior to, or follow-
ing the one selected. The identification of the substorm was
checked by examining other data sets. These included pre-
liminary AE-indices from the Kyoto WDC-C2,PC-indexes

from Thule and Vostok stations (Troshichev et al., 1988),
and riometer data from Sodankyla (f = 30 MHz), Oulujarvi
(f = 30 MHz) and Jyvaskyla (f = 32.4 MHz). During the
interval March 1998 to March 1999, 41 isolated substorms of
moderate intensity were identified. Their intensity,I , varied
between 60–400 nT, whereI is the magnetic field value in
the maximum of bay. There were 12 positive and 29 nega-
tive substorms. Positive and negative indicate when the mag-
netic observatories were under the influence of the eastward
and westward electrojet, respectively. The duration of the
substorm is defined as the time betweenTo andTe, the time
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Fig. 1. The average variations of1foF2 and1h′F separated by duration into 4 classes:τ = 1 − 1.5 h, τ = 2 − 2.5 h, τ = 3 − 3.5 h, and
τ = 4 − 6 h. The vertical lines mark substorm onset,To, and the average end of the substorm.Te. Asterisks areδfoF2 (%) andδh′F(%)
values.

when the magnetic disturbance level has returned to the pre-
substorm level. TheTo values and duration of the substorm
expansion phase are listed in Table 1. Key findings from the
table are:

– For positive substorms,To occurs uniformly between
12:00 UT and 17:00 UT.

– For negative substorms,To values occur over a wider
interval (19:00–04:00 UT), but the probability distribu-
tion has two maxima, at 20:00 UT (ProbabilityP =

0.35) and 23:00 UT (P = 0.25).

– The duration of the expansion phase of positive sub-
storms (τ ) ranges between 1 and 5.5 h, and 1–6 h for
negative substorms.

– The values of1foF2 and1h′F during a substorm can
reach the sizes|1foF2| = 2 − 3 MHz (i.e. δfoF2 = 50–
70% from median value) and|1 h′F| = 50−70 km (i.e.
δ h′F = 20–30% from median value).

– The average intensity of positive substorms has maxi-
mum at 13:00 UT and at 23:00 UT for negative storms,
both withI = 275 nT.

For positive substorms, the intensity of absorption bays is
generally lower than for negative ones with the same mag-
netic intensity. Also for positive substorms, the absorption
bay is delayed relative to the magnetic field bay by about 1 h,
a time consistent with injected energetic electrons at mid-
night drifting eastwards under the actions of gradient and cur-
vature drift. Absorption usually diminishes with decreasing
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Fig. 2. The variations of1foF2,MHz and1h′F, km (only solid lines) for two negative substorms, together with the corresponding variations
of theX-component and absorption measured at the Sodankyla observatory. The vertical lines mark substorm onset,To, and the end of the
substorm,Te. Asterisks areδfoF2 (%) andδh′F (%) reduced to the maximum value.

latitude in the range3 = 67.4◦
−62.3◦ for both positive and

negative substorms. Variations of the magnetic field compo-
nentsX, Y andZ during substorm-time change little with
latitude in the range3 = 67.4◦

− 60.5◦, i.e. the shape of
the bays remains approximately constant and the amplitude
diminishes only slightly from high to low latitudes.

3 Analysis of the ionospheric parameters

Most attention has been concentrated on the changes of two
ionospheric parametersfoF2 andh′F during substorms. Vari-
ations of these hourly parameters relative to the monthly me-
dians, namely1foF2 and1h′F, have been determined for 6 h
before the time of onset,To, to 6 h after the end of the sub-
storm (Te). Three approaches have been adopted. First data
from a single station (Sodankyla) are used to determine the

variations of1foF2 and1h′F during negative and positive
substorms. The second analysis addresses the variations of
the ionospheric parameters with latitude using data from one
chain of 5 stations. The third analysis examines the spatial
and temporal effects using data from three chains of stations.

The Sodankyla data were considered for negative and pos-
itive substorms separately. The negative substorms selected
are considered in four groups based on their duration, (τ ) (Ta-
ble 1). These groups are (1)τ = 1− 1.5 h (7 substorms); (2)
τ = 2−2.5 h, (15); (3)τ = 3−3.5 h, (3), and (4)τ = 4−6 h
(4). For the 12 positive storms only three groups were cre-
ated – (1)τ = 1 − 2 h (4 substorms); (2)τ = 3 − 3.5 h (6),
and (3)τ = 5 − 5.5 h (2). According to these data, the neg-
ative substorms ofτ = 2 − 2.5 h duration and the positive
substorms ofτ = 3 − 3.5 h duration have the highest proba-
bility (P = 0.5). This analysis did not include any data from
the winter months (November–February). This is because
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Fig. 3. The average variations of1foF2 and1h′F separated by duration into 3 classes:τ = 1 − 2 h,τ = 3 − 3.5 h, andτ = 5 − 5.5 h. The
vertical lines mark substorm onset,To and the average end of the substorm,Te. Asterisks areδfoF2 (%) andδh′F(%) values.

the data were largely absent owing to blackout or screening
by sporadic-E.

The average variations of parameters1foF2 and1h′F
during negative substorms of the four duration groups are
shown in Fig. 1. Vertical lines mark the onset time of the ex-
pansion,To, andTe. From 6–8 h beforeTo, the1foF2 values
increase up to maximum 2–3 h beforeTo for all four groups.
Then up toTo there is a sharp decline in1foF2 to a minimum
nearTo, with a further rise taking place during the expansion
phase. The second maximum occurs< 2 h afterTe. There-
after, 1foF2 become more irregular. The existence of two
maxima beforeTo and afterTe and the minimum nearTo is a

clear substorm effect.

Changes in1h′F have a different character. There is a
small minimum 3–4 h beforeTo, and a first maximum about
To, in most cases. Then1h′F values drop to a minimum
within the expansion phase and increase to the end of this
phase again. The second maximum occurs nearTe, then
1h′F falls to a second minimum 2–3 h afterTe.

Figure 2 gives the1foF2 and1h′F values for two specific
substorms that occurred on 12 August 1998 and on 20 Febru-
ary 1999; these are examples from the most probable class of
substorm withτ = 2 − 2.5 h. These data demonstrate that
individual substorm patterns of1foF2 and1h′F conform to
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Fig. 4. The variations of1foF2, MHz and1h′F, km (only solid lines) for two positive substorms, together with the corresponding variations
of theX-component and absorption measured at the Sodankyla observatory. The vertical lines mark substorm onset,To, and the end of the
substorm,Te. Asterisks areδfoF2 (%) andδh′F (%) reduced to the maximum value.

the general pattern shown in Fig. 1. The lower part of Fig. 2
shows theX-components of geomagnetic field variations and
the riometer absorption curves from the Sodankyla observa-
tory.

The average variations of parameters1foF2 and1h′F
during positive substorms separated by durationτ are shown
in Fig. 3. They show some differences from the negative
substorms illustrated in Figs. 1 and 2. Here, the timing of the
maximum1foF2 that occurs beforeTo depends on substorm
duration; the longer the duration of the substorm, the closer
the maximum occurs toTo. 1foF2 reaches a minimum close
to the end of the expansion phase,Te. For the shortest du-
ration substorms, the minimum1foF2 is 2–3 h afterTe. All
1foF2 show signs of recovery∼5 hours afterTe.

There is a small maximum of1h′F beforeTo, that occurs
closer toTo if the substorm is longer. By far the most signif-
icant and consistent feature is a peak of1h′F close toTe.

Figure 4 illustrates two positive substorms (for 17 April
1998 and 16 June 1998). The variations of1foF2 and1h′F
values of these substorms agree with the average curves
presented in Fig. 3 for disturbances with duration ofτ =

3 − 3.5 h. The lower part of Fig. 4 shows theX-component
of geomagnetic field variations and the riometer absorption
curves from Sodankyla. Here there is a delay of the absorp-
tion bay onset by 1–1.5 h relative toTo. No such delay is
present for negative substorms (Fig. 2). As mentioned earlier,
the delay can be attributed to the effects of energetic elec-
trons injected near midnight, gradient and curvature drifting
eastwards into the afternoon sector.

To determine the latitude variations of the parameter
1foF2 during substorms, data from a chain of stations com-
prising Kiruna, Lycksele, Uppsala, Warsaw and Sofia were
examined. Much1h′F data were absent from these observa-
tories and, therefore, its latitude response could not be deter-
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Fig. 5. The variations of theX-component magnetometer data from Sodankyla observatory for a positive and negative substorm that occurred
on 25 February 1998, together with variations of1foF2 from Kiruna, Lycksele, Uppsala, Warsaw and Sofia (LT = UT + 2). The vertical
lines mark substorm onset,To, and the end of the substorm,Te. Asterisks areδfoF2 (%) values.

mined. Two positive and three negative substorms for Febru-
ary 1999 have been analysed in detail.

On 25 February 1999, two isolated substorms took place
and are illustrated in Fig. 5.To of the negative substorm was
at 04:00 UT (06:00 LT) withTe at 06:00 UT (08:00 LT), thus
its duration,τ , was 2 h. The intensityI was−60 nT. The
second substorm was positive with durationτ = 1.5 h and
intensityI = +60 nT, withTo = 16:00 UT (18:00 LT) andTe

= 18:00 UT (20:00 LT). Data in Fig. 5 are typical; they de-
scribe the general regularities obtained by the five substorms
studied. Basic results are as follows:

– Although the intensities of the substorms are small,
1foF2 variations are observed at all stations considered
from 6 h beforeTo and∼ 8 h afterTe.

The1foF2 variations for the negative substorm differ from
the positive substorm most at high latitudes (3 > 50◦). At

middle and low latitudes (3 < 50◦) differences are small.
For the northernmost ionospheric station, Kiruna, the1foF2
variations repeat the average statistical regularities of So-
dankyla presented in Fig. 1 forτ = 2 − 2.5 h, and Fig. 3 for
τ = 1 − 2 h. This is hardly surprising given that the stations
are close to each other but does confirm again the reliability
of the averaged data. At high latitudes (> 60◦) for negative
and positive substorms,1foF2 rises and falls, occuring both
1–3 h beforeTo and 1–3 h afterTe.

– At middle and low latitudes ionospheric responses to
negative and positive substorms are similar to each
other. A small rise in1foF2 starts beforeTo, and
reaches a maximum near or slightly afterTe before
falling steadily towards the pre-substorm values.

– The1foF2 values reach their maximum deviation (∼2–
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Fig. 6. The variations of1foF2 values for the negative substorm
that occurred on 27 March 1999 (To = 22:00 UT or 00:00 LT,I =

−110 nT,τ = 1.5 h) through the first (northern) longitudinal chain
of stations of the IDCE, LT = UT + 2. The vertical lines mark
substorm onset,To, and the end of the substorm,Te. Asterisks are
δfoF2 (%) values.

3 MHz) at the latitude3 = 55◦. Moreover, at high lat-
itudes, the1foF2 values can be both positive and nega-
tive but at middle and low latitudes they are all positive.

To determine the spatial and temporal effects, individual
substorms from March 1999 (see Table 1) were examined.
The data from the network of ionosonde stations are con-
sidered in three groups. The first includes 7 stations over
an extended latitude range but within longitudinal interval
±5◦, stretching from Kiruna (67.8◦ N), through Lycksele,
Uppsala, Juliusruh, Warsaw, Pruhonice to Sofia (42.7◦ N).
A second latitude chain, but at lower latitudes and∼15◦ fur-
ther east includes Slough (51.5◦ N), Lannion, Tortosa and El
Arenosillo (37.1◦ N). A third chain were at a fixed latitude
(±3◦) and extended in longitude from Uppsala (17.6◦ E),
through St. Petersburg, Sverdlovsk, Novosibirsk to Podka-
mennaya (90◦ E). In addition, data from Salekhard (66.5◦;
66.5◦) and Taoywan (25◦; 121◦) were examined. Occasion-
ally, data from a few stations were not available. These net-
works cover most of Europe and western Asia.

The 1foF2 variations for two illustrative substorms –
a negative one on 27 March 1999 (To = 22:00 UT, I =

Fig. 7. The variations of1foF2 values for the negative substorm
that occurred on 27 March 1999 (To = 22:00 UT or 22:00 LT,I =

−110 nT, τ = 1.5 h) through the second (southern) longitudinal
chain of stations of the IDCE, LT = UT. The vertical lines mark
substorm onset,To, and the end of the substorm,Te. Asterisks are
δfoF2 (%) values.

−110 nT andτ = 1.5 h), and a positive one on 5 March 1999
(To = 16:00 UT,I = +220 nT,τ = 1.5 h) are presented in
Figs. 6–8, and Figs. 9–11, respectively for the three chains of
stations. The key results are summarised below as follows.

The character of the1foF2 variations with latitude
(Fig. 6–10) during negative and positive substorms is approx-
imately the same. The important features are the increase in
1foF2 6–8 h beforeTo, then dropping to a minimum near
Te, thereafter increasing again to a maximum1foF2∼4–5 h
later. This illustrates the large latitudinal spread of substorm
effects.

Substorm effects are clearer and more pronounced for neg-
ative substorms than for positive ones, even though the inten-
sity of the positive substorm is twice that of the negative one.
Also for positive substorms,1foF2 values are mainly neg-
ative at latitudes> 50◦. At low latitudes (< 50◦) they are
both negative and positive (Figs. 9 and 10).

Analysis of all the March substorms reveals that at a sin-
gle station some differences in the1foF2 variations which
occur from one substorm to another are probably associated
with their different intensities,To andτ values, and whether
the substorm is positive or negative. However, for latitudes
< 50◦, the1foF2 variations are remarkably similar and sta-
ble, both between themselves for a single substorm and for
substorms of different intensity and sign (e.g. Figs. 7 and
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Fig. 8. The variations of1foF2 values for the negative substorm
that occurred on 27 March 1999 (To = 22:00 UT,I = −110 nT,
τ = 1.5 h) through the latitudinal chain of stations of the IDCE,
Upp.: LT = UT + 2, St. P.: LT = UT + 3, Pod.: LT = UT + 8. The
vertical lines mark substorm onset,To, and the end of the substorm,
Te. Asterisks areδfoF2 (%) values.

10). Therefore, the latitude3 ≈ 50◦ can be considered as
a boundary between the less stable area to the north and a
more stable area to the south of 50◦ N. Hence, these differ-
ences with latitude may be important for developing accurate
forecasting of substorm effects.

The variations of1foF2 with longitude are remarkably
small (Figs. 8 and 11), illustrating, that the effects can extend
over 70◦ in longitude. The1foF2 variations from Salekhard
are similar to the variations on the longitude chain but results
from Taoywan are very different in character. This may be
due to the fact that the substorm effects do not extend this far
east, or the tilted auroral oval with respect to magnetic local
time means that the station lies too far from oval at the time
of the substorm for effects to be detected.

Data of the IMAGE magnetometer network were used in
addition to analysis of the March substorms. These data al-
low one to determine a location of electrojet during any sub-
storm. The location of the electrojet center can be defined
from the examination of the peculiarities in the behavior of
theX andZ magnetic components. Maximal negative values
of theX component andZ = 0 (reversal of theZ component

Fig. 9. The variations of1foF2 values for the positive substorm
that occurred on 05 March 1999 (To = 16:00 UT or 18:00 LT,I =

+220 nT,τ = 1.5 h) through the first (northern) longitudinal chain
of stations of the IDCE, LT = UT + 2. The vertical lines mark
substorm onset,To, and the end of the substorm,Te. Asterisks are
δfoF2 (%) values.

from positive to negative values) are indicative for the cen-
ter’s westward electrojet location. Results of studies for the
events considered here are as follows.

– The westward electrojet was centered at the invariant
latitude8L = 65◦ (or geographic latitudeϕ = 69◦) for
the substorm event on 27 March 1999. Southward from
this latitude, the direction of electrojet remains west-
ward but its intensity decreases.

– The westward electrojet has its maximal value at the
invariant latitude8L = 72◦ (or geographic latitude
ϕ = 76◦) for the substorm event on 5 March 1999.
However, to south from this latitude its direction be-
comes eastward. There are positive values of theX

component on the contrary to the event on 27 March
1999.

It is worth mentioning that for examined substorm events,
the onsets of auroral activation from the IMAGE data and
from theAE-index, characterized by the global auroral ac-
tivity, are coincided. Therefore, the auroral substorms started
at the meridian of the IMAGE magnetometer network.
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Fig. 10. The variations of1foF2 values for the positive substorm
that occurred on 05 March 1999 (To = 16:00 UT or 16:00 LT,I =

+220 nT, τ = 1.5 h) through the second (southern) longitudinal
chain of stations of the IDCE, LT = UT. The vertical lines mark
substorm onset,To, and the end of the substorm,Te. Asterisks are
δfoF2 (%) values.

4 Possible physical mechanism for the explanation of
observations

Here, the physical mechanisms that may cause the observed
features are briefly discussed. One of the main results is that
positive1foF2 variations are observed for many hours be-
fore substorm onset. This is difficult to understand as the
time between a southward turning after a period of geomag-
netic quiescence and a substorm is typically 1–2 h. However,
it must be recalled that1foF2 variations are determined by
subtracting the median ionospheric conditions, and this may
not be appropriate for such quiet conditions. Future studies
will assess the validity of using medians.

The probability of substorms with about 5 h between any
two separated substorms is low and there are the maximum
20 “clear” isolated substorms in a year (Borovsky et al.,
1993). In our case we have 41 isolated substorms in the year.
Therefore, these observations may have some residuals ef-
fects from previous disturbances. Development of isolated
substorms could be controlled by the behaviour of theε-
parameter (Akasofu, 1968) which begins to grow some hours
beforeTo (Freeman et al., 1993; Kerns and Gussenhoven,

Fig. 11. The variations of1foF2 values for the positive substorm
that occurred on 05 March 1999 (To = 16:00 UT,I = +220 nT,
τ = 1.5 h) through the latitudinal chain of stations of the IDCE,
Upp.: LT = UT + 2, St. P.: LT = UT + 3, Sv.: LT = UT + 6, Now.:
LT = UT + 7. The vertical lines mark substorm onset,To, and the
end of the substorm,Te. Asterisks areδfoF2 (%) values.

1990) but analysis of the IMF data for these substorms has
not yet been undertaken.

The observed variations of1foF2 may be associated with
the effects of the energy and momentum transfer from the so-
lar wind to the magnetosphere and ionosphere. In particular,
increased fluxes of soft particle precipitation in the midday
cusp, and Joule heating may affect thermospheric composi-
tion and circulation. The changes in the ratio [0]/[N2] can
be transported to lower latitudes and across the polar cap by
the neutral wind (Danilov and Belik, 1991). This effect can
precede the onset of a substorm by several hours. However,
more observations will be required to determine the physical
processes responsible for the pre-onset disturbances. After
To, the variations of1foF2 and1h′F obey the traditional
transfer scheme corresponding to the tail modification, au-
roral precipitation, heating, TIDs propagation, ring current
and so on, as described by several authors (see, for example,
Fuller-Rowell et al., 1994).
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5 Conclusions

Using the data from 19 ionospheric and some geomagnetic
observatories, the spatial variations of the height and max-
imum plasma frequency of the F2-layer have been deter-
mined for 41 isolated substorm intervals. The observatories
extend all over Europe and western Asia. The substorms
were selected because they had a sharp onset, lasted a few
hours and occurred during a several hour period of geomag-
netic quiet both before and after the study interval. The sub-
storms had intensities ofI ≥ 50 nT. Very intense substorms
(I > 500 nT) are not included in the analysis, due to the
effects of a strong absorption and sporadic Es-layers which
prevent F-region observations. The key findings are as fol-
lows:

1. Substorm effects in the ionosphere occur simultane-
ously (1 h resolution) almost all over Europe and the
western part of Asia.

2. Negative substorms. (i) The1foF2 values increase
> 6 h before substorm onset,To, with a maximum 2–
3 h beforeTo. 1foF2 falls during the expansion phase
which is then followed by a second maximum 1–2 h af-
ter the end of the expansion phase. (ii) The1h′F values
3–4 h beforeTo have a little minimum but then increase
to a maximum atTo. There is a second maximum at the
end of the expansion phase.

3. Positive substorms. The timing of the first maximum
of the1foF2 and1h′F values depends on the substorm
length – if it is longer, the peak is closer toTo.

4. The values of the ionospheric parameters1foF2 and
1h′F during a substorm-time can reach the sizes
|1foF2| = 2–3 MHz (δfoF2 = 50–70% from median
value) and|1h′F| = 50–70 km (δh′F = 20–30% from
median value). The additional final goal is to find the
physical mechanisms of the mentioned effect from the
point of view of the solar-magnetospheric-ionospheric
coupling.

5. The variations of1foF2 and1h′F can affect signifi-
cantly radio-wave propagation via the ionosphere and
explain the MUF variations obtained early on the HF
paths, but the regular pattern of occurrence with re-
spect to the time of the expansion phase onset offers
an excellent possibility to improve short-term forecast-
ing of radio-wave propagation conditions. Furthermore,
we are going to reveal some methods and algorithms of
forecasting the onset of the substorm expansion phase.
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