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Abstract. We present a detailed study of chorus emissions
in the magnetosphere detected on board Magion 5, when the
satellite was not far from the magnetic equator. We deter-
mine the frequency sweep rate of more than 8500 electro-
magnetic VLF chorus elements. These results are compared
with the backward wave oscillator (BWO) regime of cho-
rus generation. Comparison of the frequency sweep rate
with the BWO model shows: (i) There is a correlation be-
tween the frequency sweep rates and the chorus amplitudes.
The frequency sweep rate increases with chorus amplitude,
in accordance with expectations from the BWO model; (ii)
The chorus growth rate, estimated from the frequency sweep
rate, is in accord with that inferred from the BWO genera-
tion mechanism; (iii) The BWO regime of chorus generation
ensures the observed decrease in the frequency sweep rate of
the chorus elements with increasing L-shell.

Key words. Magnetospheric physics (VLF emissions, ener-
getic particles) – Space plasma physics (wave-particle inter-
actions)

1 Introduction

Generation of chorus emissions is one of the most puzzling
problems of VLF waves in the Earth’s magnetosphere. These
emissions are the most intense of all natural VLF waves in
the frequency range from a few hundred Hz to several kHz.
They are observed as a succession of repeating discrete el-
ements with rising frequency. It is generally accepted that
the chorus is generated in a near-equatorial region by the cy-
clotron instability of radiation belt electrons. The cyclotron
interaction of VLF waves and energetic particles can explain
many of the chorus features, such as the relation of chorus
frequency to the equatorial electron gyrofrequency, the max-
imum of chorus intensity in the equatorial cross section of
the magnetic flux tube, and the relationship of chorus with
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precipitation of energetic (10–100 keV) electrons. Helliwell
(1965, 1969) and Sazhin and Hayakawa (1992) reviewed
these and other characteristics of chorus.

However, mechanisms responsible for the origin of chorus
succession and formation of spectrum of separate chorus el-
ements are both still not clear. Helliwell (1967) was the first
to suggest the idea of how the frequency spectrum of discrete
elements is formed. The phenomenological model by Helli-
well (1967) is based on simultaneous fulfillment of the first-
and second-order cyclotron resonance conditions of whistler
wave interaction with energetic electrons. The model by Hel-
liwell (1967) was repeatedly applied for interpretation of a
spectrum of separate discrete elements, observed in the ex-
periment. However, application of the Helliwell’s model for
chorus elements was not successful and Skoug et al. (1996)
did not bring into accord the spectrum of chorus and the en-
ergy of the microburst electron precipitation detected simul-
taneously.

Further analytical and computational calculations (Nunn,
1974, Karpman, 1974) confirmed the idea of the second
order cyclotron resonance and showed that discrete ele-
ments with varying frequency may be triggered by a quasi-
monochromatic wave under the interaction with energetic
electrons in the inhomogeneous magnetic field. The non-
linear theory of triggered emissions (Omura et al., 1991;
Trakhtengerts et al., 2001) showed that the initial wave
packet forms an electron beam, which then generates sec-
ondary waves of various spectral forms. The similarity be-
tween the spectra of chorus and triggered emissions indicates
that chorus could be generated in the same way as triggered
emissions. However, it was not clear how a succession of
quasi-monochromatic signals and/or intense electron beams
can appear in the region of chorus generation.

Recently, Trakhtengerts (1999) suggested a mechanism of
chorus generation based on the backward wave oscillator
(BWO) regime of magnetospheric cyclotron maser (Trakht-
engerts, 1995). The BWO regime of chorus generation gives
hope of explaining such features of chorus as the appearance
of a succession of discrete elements and their spectrum, the
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relationship of chorus to ELF hiss, the large growth rates of
chorus, and the different generation regimes such as quasi-
periodic and stochastic ones. The suggested BWO model
of chorus generation allows for a number of predictions that
can be checked experimentally. In this paper we compare
spectral and amplitude characteristics of chorus observed on
board the MAGION 5 satellite with those predicted by the
backward wave oscillator model of chorus generation.

2 The BWO regime of chorus generation in the magne-
tosphere

In this section, we briefly review the BWO regime of whistler
wave generation in the magnetosphere (Trakhtengerts 1995,
1999) to select the parameters that can be compared with ex-
perimental data. This regime is similar to the backward wave
oscillator in laboratory electronic devices, where the wave
propagates opposite to the motion of an interacting electron
(Ginzburg and Kuznetsov, 1981). Similar wave-particle in-
teractions take place in the magnetospheric cyclotron maser.
The generation of chorus is based on the cyclotron resonance
of radiation belt electrons with whistler waves

ω − ωH = k‖v‖, (1)

whereω is the wave frequency,ωH is the electron gyrofre-
quency,k‖ andv‖ are the magnetic field-aligned components
of the wave vector and electron velocity.

Certain conditions have to be satisfied for a generator to
operate in the BWO regime. The first condition requires
that the phase velocity component along the magnetic field
should be opposite to the electron motion. According to (1),
this condition is satisfied ifω < ωH . The second condition
is the existence of a well-organized electron beam with small
velocity dispersion in the region of chorus generation. This
condition poses a significant problem, since there is no ob-
vious reason for such a beam to be formed. The solution of
this problem can be related to the fact that cyclotron interac-
tion of band-limited natural ELF/VLF noise-like emissions
with energetic electrons results in the formation of a spe-
cific step-like feature of the distribution function, shown in
Fig. 1a (Trakhtengerts et. al., 1986, 1996; Nunn and Sazhin,
1991). This step-like deformation of energetic electron dis-
tribution function ensures a large growth rateγHD of whistler
waves and transition to the BWO regime, which leads to the
generation of a succession of discrete signals with rising fre-
quency inside each element. Trakhtengerts (1995) showed
that the step-like deformation of the distribution function,
caused by interactions of natural ELF/VLF noise-like emis-
sions and energetic electrons, acts in the magnetosphere as
a well-organized beam in laboratory devices. A schematic
picture of wave and electron motion in the magnetospheric
BWO is shown in Fig. 1b. The BWO generation regime de-
velops within a narrow region near the equatorial plane, and
a positive feedback is provided by the electron beam itself.
In a laboratory BWO, the interaction length is the size of the
device. The magnetospheric BWO has no fixed boundaries,

and its interaction lengthl is determined by the inhomogene-
ity of the geomagnetic field. According to Helliwell (1967)
and Trakhtengerts (1995), the interaction lengthl of whistler
waves and energetic electrons can be written for the dipole
magnetic field as follows:

l = (R2
0L2/k)1/3, (2)

whereR0 is the Earth’s radius,L is the geomagnetic shell,
andk is the whistler wave number.

The BWO generation starts when the density of ener-
getic electrons exceeds some threshold value. According to
Trakhtengerts (1995), this threshold condition can be written
as

p = 2γHDl/
[
π(V‖Vg)

1/2
]

= 1, (3)

wherel is the working length of the magnetospheric gener-
ator,Vg is the group velocity of the whistler waves,γHD ∼

(0.11nh/nc)
1/2ωH is the hydrodynamic growth rate in the

case of the distribution function with a step-like deformation,
1nh is the height of a step, andnc is the cold plasma density.
The BWO (chorus generation) growth rate can be written as
a function ofp in the form (Trakhtengerts, 1999):

γBWO = 2p(p − 1)T −1, (4)

where

T = 1.6l
(
V −1

g + V −1
‖

)
. (5)

If the step height increases, the BWO generation regime
changes from the stationary generation that takes place for
1 < p < p2 to the periodic one with the periodT for
p2 < p < p3. Further increase in the parameterp > p3
leads to the stochastic generation regime with random vari-
ation of the wave amplitude in time. The bifurcation values
p2,3 are equal to:p2 = 2, andp3 = 4.5 for laboratory de-
vices (Ginzburg and Kuznetsov, 1981). To obtain the bifur-
cation valuesp2,3 for chorus, it is necessary to develop the
strict nonlinear theory for the magnetospheric BWO, which
is absent now. Therefore, taking into account a big similarity
in laboratory and magnetospheric BWO generators, we will
take for further estimations the laboratory values ofp2,3. Dy-
namic spectra of VLF emissions, corresponding to different
regimes of the magnetospheric BWO generator, are schemat-
ically represented in Fig. 1c.

After transition to the periodic BWO regime(p2 > 2), the
dynamic spectrum of a separate chorus element is formed
similar to discrete signals triggered by VLF transmitters
(Nunn, 1974; Omura et al., 1991; Trakhtengerts et al., 2001).
In this case, the frequency sweep ratedf/dt (f ≡ ω/2π) at
the exit from the BWO generation region can be written as

df/dt =

[
�2

tr + 3V‖(dωH /dz)
]

· 0.15ω/(ωH + 2ω), (6)

where the trapping frequency�tr is determined by the ex-
pression

�tr = (kuωH b)1/2. (7)
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Fig. 1. (a)A schematic picture of a specific step-like deformation of the distribution function by cyclotron interactions of a natural ELF/VLF
noise-like emissions and energetic electrons. This step-like deformation of energetic electron distribution function ensures the large growth
rate of the whistler waves and transition to the BWO generation regime, which forms a succession of discrete signals.(b) Schematic picture of
the BWO generation regime for chorus generation in the magnetosphere.(c) Dynamic spectra of VLF emissions, corresponding to different
regimes of the magnetospheric BWO generator.

Here,b = B∼/BL, B∼ is the whistler wave magnetic field
amplitude,BL is the geomagnetic field, and u is the electron
velocity component across the geomagnetic field. There is
the additional relation between the chorus amplitude and the
BWO growth rate (Trakhtengerts, 1999):

γBWO/�tr ≈ 3π/32, (8)

whereγBWO is determined by Eq. (4). Taking Eq. (8) into
account, we can rewrite Eq. (6) in the form

df/dt = (γ 2
BWO + S1)1.5ω/(ωH + 2ω), (9)

whereS1 = 0.3V‖(dωH /dz) characterizes the magnetic field
inhomogeneity effect. One can see from Eq. (9) that, if
S1 � γ 2

BWO, chorus elements are formed mainly inside the
BWO generator, and the corresponding frequency variation
is determined by nonlinear effects. In the opposite case, the
frequency shift is determined by the magnetic field inhomo-
geneity factorS1.

Since the frequencies(ω/ωH ) of the observed chorus ele-
ments are spread rather widely (see below), it is convenient
to group the experimentally known values in Eq. (9) in a new
function

G2
≡ df/dt (ωH + 2ω)/1.5ω = γ 2

BWO + S1 (10)

which we call thereafter the “reduced” frequency sweep rate.
Note thatG is equal to the BWO growth rate if the frequency
shift is determined by nonlinear processes(γ 2

BWO � S1).
As one can see from Eqs. (6) and (7), the BWO model pre-
dicts an increase in frequency sweep ratedf/dt andG2 with
chorus amplitude. These relationships are analyzed experi-
mentally below on the basis of Magion 5 data.

3 Overview of data and the analysis procedure

We use new VLF broad-band measurements carried out on
board the Magion 5 satellite for analysis of VLF chorus emis-
sions detected not too far from the magnetic equator, i.e.
from the generation region. Magion 5 was launched as a
part of the INTERBALL mission at a highly elliptic orbit
(Triska et al., 1996). The VLF broad-band measurements
(f < 22.5 kHz) included both electric and magnetic field
components.

Sample dynamic spectra of various types of magneto-
sphere chorus are demonstrated in Fig. 2. The upper panel
shows discrete elements with almost constant frequency, that
were observed at the upper boundary of the ELF hiss at or-
bit 4156 on 28 May 1999. Allcock and Mountjoy (1970)
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Fig. 2. Typical dynamic spectra of VLF chorus emissions on board of Magion 5 satellite for different magnetic disturbances.Kp12 is the
total value ofKp index for the preceding 12 h.

selected similar emissions as a special type of chorus (Q-
chorus), observed on the ground during low magnetic ac-
tivity. We should note that during orbit 4156 the magnetic
activity was also very low(Dst = −6γ ), and the totalKp

index for the preceding 12 h was
∑

Kp 12 = 8. The middle
panel shows an example of quasi-periodic chorus. From the
sonogram at orbit 3239 one can see that chorus is observed
within two bands at frequencies below and above 3 kHz; the
chorus group with a quasi-period of about 0.3 s is well seen
at frequencies of 3–5 kHz. The lower panel shows a typical
example of “chaotic” chorus, usually observed for a greater
magnetic disturbance. In such a case, chorus elements appear
irregularly at different frequencies, and it is impossible to de-
fine either the repetition quasi-period of discrete elements or
the frequency band of chorus. One can see that spectra of
chorus detected by Magion 5 are similar to the schematic
wave spectra in Fig. 1c, corresponding to various regimes of
BWO generation.

To obtain the frequency sweep ratedf/dt , we have ana-
lyzed spectrum of chorus detected by the magnetic antenna
along 10 orbits of Magion 5 in the morning sector (MLT<08)
during the period from October 1998 to January 1999. The
analysis was carried out for more than 8500 chorus ele-
ments, which were identified on sonograms. During that pe-
riod Magion 5 was crossing the region of chorus registration
at latitudes of 30◦–40◦. The VLF chorus was detected in
the plasmapause region atL within 2.5 to 6. We have ob-
tained the center frequency and the mean frequency sweep
ratedf/dt of each chorus element. The center frequency of

an element was defined asfav = (fu + fl)/2, wherefu and
fl are the maximum and minimum frequencies of the ele-
ment, respectively. Note that for most chorus elements an-
alyzed, the frequency sweep ratedf/dt had an almost con-
stant value within the entire frequency range of the element.
Therefore, we were able to obtaindf/dt by dividing the fre-
quency spread1f = fu − fl of an element by its duration
1t .

The dependence of the center frequencyfav of the cho-
rus elements on L-shell is shown in Fig. 3a. The frequencies
of chorus were found within the frequency range 1–12 kHz,
mainly (in 90% cases) within the band below 6 kHz. Fig-
ure 3a shows that the mean chorus frequency decreases with
L asL−2.5 (thin grey line). The thick grey line marksfH /4,
wherefH is the electron gyrofrequency at the equator. The
analysis of the normalized frequencyfav/fH of chorus ele-
ments shows that the meanfav/fH depends rather weakly
on L-shell, varying from 0.2 to 0.25. However, the devi-
ation from this mean value can be quite high (from 0.1 to
0.6). The frequency sweep ratedf/dt of chorus elements as
a function of L-shell is shown in Fig. 3b, where the mean
rate decreases with L-shell asL−2 (grey line). It is notewor-
thy that the frequency sweep rates lie within the range from
103 s−2 to 105 s−2; in about 30% of all elements analyzed
df/dt is higher than 104 s−2.

As it follows from Eq. (10), the quantityG2, that we
named the reduceddf/dt , is more appropriate for compar-
ison of observations with the BWO model, since, at first, it
is directly related to the BWO growth rate and, secondly, it
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Fig. 3. (a) The center frequency of the chorus elementsfav de-
pending on L-shell. Thick grey line marksfH /4, wherefH is the
electron gyrofrequency at the equator. The center frequency of the
chorus band decreases with increasingL asL−2.5 (thin grey line).
(b) The frequency sweep rate of the chorus emissions depending
on L-shell. The rate is rather high (higher than 10 kHz/s) for about
30% of all elements analyzed. The mean sweep rate decreases with
L-shell asL−2 (grey line).

does not include the term depending on the highly variable
ratio off/fH . To estimate the value ofG2, we need the fre-
quency sweep ratedf/dt and the average frequencyfav of
chorus elements, both determined from Magion 5 data, and
the equatorial electron gyrofrequencyfH on the same mag-
netic field line. To computefH , the dipole approximation
for the geomagnetic field was applied, since electromagnetic
chorus at frequenciesf < fH /2 near the equator propagate
at a small angle to the geomagnetic field line (e.g. Goldstein
and Tsurutani, 1984) and, therefore, we assumed that they
were generated and detected at the same L-shell.

4 Results of observations and their comparison with the
BWO model

4.1 Relation between the frequency sweep rate and chorus
amplitude

According to the BWO model, the frequency sweep rate in
a chorus element is a function of the characteristic chorus

amplitude. Unfortunately, we had some technical problems
with the measurements of absolute amplitude for the chorus
detected by Magion 5, so we analyzed variations of the rel-
ative amplitude of chorus. We determined the average value
of amplitude in each chorus element for 7 orbits of Magion 5.

From those orbits we selected two with the largestdf/dt

(orbits 3240 and 3322) and two with the smallestdf/dt (or-
bits 3248 and 3239). Figures 4a and b showdf/dt chorus
elements and Figs. 4c and d show relative chorus amplitudes
for those orbits as functions of L-shell. The comparison be-
tween Figs. 4a and b demonstrates thatdf/dt detected at or-
bits 3240 and 3322 are, indeed, distinctly larger than at or-
bits 3248 and 3239. From Fig. 4 we can also see that at the
same L-shells, the amplitudes of chorus with largerdf/dt

definitely exceed those with smallerdf/dt . The reduced fre-
quency sweep rateG2, in which the effects of spread inf/fH

are eliminated, also increases with the amplitude (Figs. 4e
and f). Such a dependence is in agreement with predictions
of the BWO model for chorus generation (see Eqs. 7–10).

The importance of using the reduced frequency sweep rate
G2 instead ofdf/dt is demonstrated by the sample data de-
tected on orbit 3330 of Magion 5 and shown in Fig. 5. The
top panel shows the frequency sweep ratedf/dt and the cen-
ter frequency of the chorus elementsfav, depending on L-
shell. The bottom panel of Fig. 5 shows the chorus ampli-
tudes along this orbit. Chorus emissions were detected at
L = 3.2 − 4.5. The specific feature of this orbit is that
the meandf/dt almost did not vary along the entire satel-
lite pass, while both the frequency and amplitude of cho-
rus varied considerably, with the frequency decreasing from
fav = 10 kHz atL= 3.3 tofav = 2 kHz atL = 3.8 − 4.5
and the amplitude increasing approximately 4 times in the
same range ofL. Note that the change in both amplitude and
frequency occurs near the density drop, which is seen from
the data on the cold plasma density (bottom panel). Due to
the fast variations in the frequency and amplitude, the direct
correlation betweendf/dt and the amplitude is not seen in
this case, but a good correlation exists between the amplitude
andG2 is evident from Fig. 5b, which is in accordance with
the BWO model.

4.2 Absolute values of the reduced frequency sweep rates
of chorusG2 and their dependence on L-shell

Figure 6 shows theL dependence of the reduced frequency
shift G2 (10). The solid line shows the running average over
100 points ofG2. It is seen thatG2 decreases in both direc-
tions from the maximum reached aboutL = 3.2. The de-
crease at smallerL can be related to the fact that these points
correspond to the inner plasmasphere region, where the cho-
rus amplitude is known to decrease inwards. AtL >3.2,G2

decreases asL−3.
Now we compare the experimentally obtained values of

G and their dependence onL with estimations based on the
BWO model. According to Eq. (10), two terms give the ad-
ditive contribution to the value ofG, the first one is the non-
linear term, which can be expressed in terms of the BWO
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Fig. 4. The frequency sweep ratedf/dt (a, b), chorus amplitudes(c, d), andG2 (e, f) as a function of L-shell for 4 orbits of Magion 5
satellite. Note thatdf/dt is significantly greater on orbits 3240 and 3322 than on orbits 3248 and 3239. Figure shows that the high frequency
sweep ratedf/dt andG2 are observed on the orbits having high chorus amplitudes (orbits 3240, 3322).

growth rateγBWO, and the second one is the linear termS1
related to the magnetic field inhomogeneity.

According to Eqs. (6), (7), and (9),

S1 = V‖/3(dωH /dz) = 1.5(V‖/l)2(1 − f/fH )−1. (11)

Taking into account Eqs. (4) and (11), expression (10) can be
rewritten as

G2
= γ 2

BWO + S1 = γ 2
BWO{

1 + 1.2(1 + fH /2f )2(1 − f/fH )−1/[p2(p − 1)2
]
}
.(12)

It is seen from Eq. (12) that the relation betweenS1 andγ 2
BWO

depends onf/fH andp. For Magion 5 chorus,f/fH ≈ 0.25
is the typical value. Furthermore, we suggest that most cho-
rus emissions in Magion 5 data are related to the periodic and
stochastic regimes of BWO generation. This suggestion is
supported by the types of chorus spectra. In this case,γBWO
is determined by relation (4), wherep > 2. Taking into ac-
count the relationVg/V‖ = 2f/fH , we obtain:

γBWO = 2p(p − 1)Vg/l(1 + 2f/fH ). (13)

Using the typical group velocity of chorusVg =

2.5·104 km s−1, l = 103 km, and 2f/fH = 0.5, we obtain

γBWO = 70–200 s−1 for p = 2–3. Note thatS1 ≤ γ 2
BWO if

p ≥ 2, i.e. near the threshold of the periodic BWO regime.
Therefore,G ≈ γBWO, and we can compare the above esti-
mate forγBWO with the experimentally obtained values ofG.
According to Fig. 6,G lies between 100 and 300 s−1, which
yields a good agreement between two independent estimates
of γBWO.

Taking into account these estimates and relations (7) and
(8) and assuming thatku ∼ ωH , the dependence ofG2 onL

can be obtained in the form

G2
∝ �2

tr ∝ ωH B∼. (14)

For the orbits where the relative wave amplitude was mea-
sured, we can plot the ratio ofG2/B∼ as a function ofL.
According to Eq. (14), this dependence should be the same
asωH (L) i.e. G2/B∼ ∝ L−3. The value ofG2/B∼ depend-
ing on L-shell for 7 orbits of MAGION 5 is shown in Fig. 7.
As is seen from Fig. 7, the valueG2/B∼(L) indeed decreases
asL−2.9 (grey line). Therefore, the experiment again shows
an agreement with the BWO model. Note that taking differ-
ent orbits separately, we obtained slightly different indices
ranging from 2.2 to 3.6 for the power-law fit ofG2/B∼.



E. E. Titova et al.: Verification of the chorus generation model 1079

Fig. 5. Relationships of the frequency sweep ratedf/dt andG2 with chorus amplitudes on orbit 3330, MAGION-5.Top panel: The
frequency sweep ratedf/dt and the center frequency of the chorus elementsfav depending on L-shell for orbit 3330, Magion 5.Bottom
panel: The chorus amplitude,G2 and the cold plasma densitync depending on L-shell for orbit 3330, Magion 5. Bottom panel shows a
good correlation betweenG2 and the chorus amplitudes in contrast to relationships between the frequency sweep ratedf/dt and the chorus
amplitudes.

Another possible test of the BWO model validity is based
on the dependence ofγBWO andG on the cold plasma den-
sity nc. Indeed, it follows from Eqs. (12) and (13) that
G2

∝ γ 2
BWO ∝ (Vg/l)2

∝ n
−2/3
c ; therefore, strong varia-

tions in nc should correlate with variations inG2. Such a
correlation is clearly seen in the Magion 5 data, e.g. on the
lower panel in Fig. 5 showing the satellite motion towards
higher latitudes. When the drop of density was crossed near
L = 3.5, the cold plasma densitync decreased more than an
order of magnitude. At the same time,G2 increased about
3–4 times, which corresponds to the BWO model both qual-
itatively and quantitatively.

5 Discussion and conclusions

Let us discuss the results obtained above in relation to previ-
ous studies of chorus spectral properties. Note that, although
dynamical spectra of chorus have been studied in a multitude
of papers, only several of them, written rather a long time
ago, examined the frequency sweep rate of chorus.

Allcock and Mountjoy (1970) were the first to point out
an increase indf/dt with increase in magnetic activity us-
ing ground-based observations of chorus. Sazhin and Titova
(1977) confirmed that the values ofdf/dt increase withKp

and found these values to decrease with local time. Spectral
characteristics of chorus elements observed on board equa-
torial satellites appeared to be essentially the same as those
detected on the ground (Burtis and Helliwell, 1976). Our re-
sults for spectral characteristics of chorus detected by Ma-
gion 5 basically agree with those of Burtis and Helliwell,
based on OGO 3 data. Some differences in the chorus char-
acteristics are due to the fact that we analyze only the chorus
observed in the early morning sector, while chorus proper-
ties, such as frequencies, inclinations, and latitudes of their
registrations depend strongly on MLT. For instance, as the
activity increases, chorus on the ground are observed during
earlier hours and they have greater frequency sweep rates.
This is whydf/dt of chorus elements at Magion 5 exceed
the values measured at OGO 3 approximately three times.

It is interesting to note that the existence of different gen-
eration regimes of chorus, following from the BWO theory,
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Fig. 6. The reduced sweep rateG2 as a function of L-shell. The
solid line shows the running average over 100 points ofG2. The
meanG(L) varies within a small interval 100–300 s−1.

is confirmed by the results of the earlier ground-based obser-
vations of chorus (Allcock and Mountjoy, 1970; Sazhin and
Titova, 1977). Allcock and Mountjoy detected, as early as
in 1970, the two main types of chorus spectrum, observed
in quiet (a Q-type) and disturbed (an S-type) geomagnetic
conditions. Existence of these types of chorus spectra can
be related to different regimes of VLF wave generation in
the magnetospheric BWO, i.e. to the stationary and chaotic
regimes, respectively. In theory, the transition from the sta-
tionary to the chaotic regime is related to the increase in en-
ergetic electron density that certainly occurs with an increase
in the magnetic disturbance level.

Using the chorus frequency drifts measured by Magion 5
and the BWO theory, we estimated the chorus growth rates
to be about 102 s−1. This is in agreement with both theo-
retical estimates (Trakhtengerts, 1999) and previous exper-
imental results. In particular, Burtis and Helliwell (1975)
found from the OGO 1 satellite data that the chorus ampli-
tude was often growing exponentially in time with the growth
rate ranging from 200 to 2000 dB s−1, i.e. 45 to 450 s−1.
Note that, according to the BWO theory, the chorus genera-
tion region is very small, i.e. about 1000 km near the mag-
netic equator. This fact, confirmed by recent measurements
on board Polar (LeDocq et al., 1998), can result in an over-
estimate of the growth rate based on indirect measurements,
if one assumes the convective growth of chorus. For exam-
ple, LeDocq et al. (1998) estimated the necessary convec-
tive growth rate to be at least 103 s−1 using the typical group
velocity of whistlers at about 2·104 km s−1. However, such
large values of the growth rate are not required if one takes
into account the transition to the absolute instability, i.e. to
the BWO regime of chorus generation.

Comparison of chorus frequency sweep rate with their
amplitudes was performed earlier by Burtis and Helliwell
(1975) using the data from OGO 1 and 3. They did not find a
definite correlation between the chorus sweep rates and am-
plitudes. This conclusion differs from our results, which can
be explained as follows. First, as is seen from Magion 5 data,

Fig. 7. The value ofG2/B∼ depending on L-shell for 7 orbits of
MAGION 5. B∼ is the whistler-wave magnetic field amplitude.
Note thatG2/B∼(L) indeed decreases asL−2.9 (grey line) in good
agreement with BWO model.

it is notdf/dt itself but the reduced inclinationG2 that corre-
lates better with chorus amplitudes. Second, the relation be-
tween the chorus frequency sweep rates and amplitudes can
be revealed only by using a much larger data volume than
was reported by Burtis and Helliwell (1975). In typical situ-
ations, Magion 5 data taken along a single orbit also do not
show a clear correlation betweendf/dt and the amplitude
due to the large spread in parameters. Note, however, that
the value ofG2 does correlate with chorus amplitude even
along a single satellite orbit (see Fig. 5).

Let us estimate amplitudes of whistler waves following
from the BWO theory. Using Eqs. (7) and (8) and substi-
tuting the typical frequencyf/fH ≈0.25 for Magion 5 cho-
rus, we can estimate the chorus amplitude corresponding to
the BWO model asB∼ ≈ 6 · G2/fH . It can be deduced
from Fig. 6 that the value ofG2/fH in the experiment varied
within the rangeG2/fH =1–6s−1. Therefore, the amplitude
in the BWO should beB∼ ≈ 6–36 pT. As noted above, we do
not have absolute measurements of amplitude for Magion 5
data. However, these estimated values seem quite realistic
according to previous studies. Such larger amplitudes are
often detected by satellites. For example, Burtis and Helli-
well (1975) report observations of 1 to 100 pT VLF chorus in
the frequency range from 2 to 10 kHz on board OGO 1 and
OGO 3. For ELF chorus below 1 kHz even the amplitudes far
exceeding 100 pT were detected (Nagano et al., 1996). The
largest reported chorus amplitudes we are aware of (1040 pT)
were detected by GEOS 2 (Parrot and Caye, 1994). Large
amplitudes (>0.5 mV/m) of ELF/VLF chorus were measured
near the equator on board CRRES beyond the plasmapause
at 3< L <7 in the morning and day sectors during magnetic
disturbances (Meredith et al., 2001).

The main conclusions of this study can be summarized as
follows. We have analyzed the frequency sweep ratesdf/dt

for more than 8500 chorus elements recorded by MAGION 5
satellite at latitudes of 30–40 degrees from the geomagnetic
equator atL = 2.5–6 in the morning sector near the plasma-
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pause. We have performed the first direct comparison of the
scalings obtained experimentally with those following from
the backward wave oscillator (BWO) theory for chorus gen-
eration. Observations showed both qualitative and quantita-
tive agreement with the theory in the following tests:

1. There is a correlation between the frequency sweep
rates and the chorus amplitudes. The frequency sweep
rate increases with chorus amplitude, in accordance
with expectations from the BWO model.

2. The chorus growth rate, estimated from the measured
frequency sweep rate, is close to that calculated from the
linear BWO theory and to that obtained in other studies.

3. The BWO regime of chorus generation explains the ob-
served decrease in the frequency sweep rate of the cho-
rus elements with increasing L-shell.

Unfortunately, the absence of absolute amplitude mea-
surements on board Magion 5 does not allow us to perform
a more detailed comparison of chorus properties with the
BWO theory. Moreover, there is a large spread in chorus
frequency drifts even at close frequencies and close latitudes
along the same orbit. However, we think that the results pre-
sented in this paper show the great potential of the BWO
scenario to explain main features of chorus generation. It
seems that further efforts in experimental studies of chorus
emissions should be directed towards using more detailed si-
multaneous high-resolution measurements of both energetic
electrons and whistler waves.
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