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Abstract. With a well-selected data set, the various events
of the verticalE × B drift velocity variations at magnetic-
equator-latitudes, the resultant ionospheric features at low-
and mid-latitudes, and the practical consequences of these
E × B events on the equatorial radio signal propagation
are demonstrated. On a global scale, the development of a
equatorial anomaly is illustrated with a series of 1995 global
TOPEX TEC (total electron content) maps. Locally, in
the Australian longitude region, some field-aligned TOPEX
TEC cross sections are combined with the matching Guam
(144.86◦ E; 13.59◦ N, geographic) GPS (Global Positioning
System) TEC data, covering the northern crest of the equa-
torial anomaly. Together, the 1998 TOPEX and GPS TEC
data are utilized to show the three main events of vertical
E × B drift velocity variations: (1) the pre-reversal en-
hancement, (2) the reversal and (3) the downward maximum.
Their effects on the dual-frequency GPS recordings are doc-
umented with the raw Guam GPS TEC data and with the
filtered Guam GPS dTEC/min or 1-min GPS TEC data af-
ter Aarons et al. (1997). During theseE × B drift velocity
events, the Port Moresby (147.10◦ E; −9.40◦ N, geographic)
virtual height orh′F ionosonde data (km), which cover the
southern crest of the equatorial anomaly in the Australian
longitude region, show the effects of plasma drift on the
equatorial ionosphere. With the net (1) horizontal (H) mag-
netic field intensity parameter, introduced and called1H or
Hequator-Hnon−equator (nT) by Chandra and Rastogi (1974),
the daily E × B drift velocity variations are illustrated at
121◦ E (geographic) in the Australian longitude region. The
results obtained with the various data show very clearly that
the development of mid-latitude night-time TEC increases is
triggered by the westward electric field as the appearance of
such night-time TEC increases coincides with theE × B

drift velocity reversal. An explanation is offered with the
F-region dynamo theory and electrodynamics, and with the
ionospheric-plasmaspheric coupling. A comparison is made
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with the published model results of SUPIM (Sheffield Uni-
versity Plasmasphere-Ionosphere Model; Balan and Bailey,
1995) and experimental results of Park (1971), and the good
agreement found is highlighted.

Key words. Ionosphere (electric fields; equatorial iono-
sphere; mid-latitude ionosphere)

1 Introduction

1.1 F-region dynamo and electrodynamics

In the ionospheric F-region (150–1000 km), the strong ther-
mospheric neutral winds create vertically upward dynamo
currents, which set up a vertical polarization field where the
positive and negative charges accumulate at the top and bot-
tom boundaries, respectively. During the daytime this polar-
ization field becomes shorted out by the large conductivity of
the sunlit E-layer (90–150 km). However, at nighttime, when
the open circuit conditions apply, the winds maintain this
polarization field. Hence, the positive and negative charges
create an electric field (E) that interacts with the horizontal
magnetic field (B) at and near the geomagnetic dip equator.
The resultant drift velocity sets the ionospheric plasma into
motion (Kelley, 1989):

v =
E × B

B2
. (1)

This electrodynamic lifting operates across the horizon-
tal magnetic field lines at dip-equator-latitudes. It raises
the low-latitude ionospheric plasma above the magnetic dip
equator until the plasma becomes slowed down by the pres-
sure forces. When the plasma loses momentum, it moves
along the magnetic field lines under the forces of gravity and
pressure gradients, and away from the magnetic equator. Fi-
nally, the plasma becomes deposited at higher dip-equator
latitudes in both hemispheres. The combination of the up-
ward plasma drift and downward diffusion along the mag-
netic field lines is called the plasma fountain effect, and the
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resultant ionospheric feature is known as the equatorial or
Appleton anomaly (Appleton, 1946).

The low-latitude ionosphere at F-region heights has been
studied quite extensively in the last three decades for its
electrodynamics and resultant ionospheric features (Blanc
and Richmond, 1980; Fejer, 1986, 1991). Mainly from
the Jicamarca (11.95◦ S; 76.87◦ W, geographic) experimental
data, the various important characteristics of the vertical F-
region plasma drift are well known today (Fejer et al., 1991).
From the model results of SUPIM, the behavior of equatorial
plasma fountain and equatorial anomaly is well understood
(Balan and Bailey, 1995; Balan et al., 1997 and Bailey et al.,
1997).

1.2 VerticalE × B drift velocity variations

As the Jicamarca data indicate (Fejer, 1991), the magnitude
of the vertical F-regionE × B plasma drift velocity largely
depends upon various geophysical factors, such as the lev-
els of magnetic activity, the phase of the solar cycle and the
seasons. The diurnal pattern of the vertical upwardE × B

drift velocity variations in time is such that a day-time veloc-
ity peak (∼20 m/s) is reached at around 11:00 LT. Following
this day-time peak, the vertical upwardE × B drift velocity
decreases to a day-time minimum of approximately 10 m/s
attained at around 16:00 LT. Then, the vertical upwardE×B

drift velocity suddenly increases to an evening maximum of
40–50 m/s soon after sunset (at around 19:00 LT). This event
is called the pre-reversal or evening enhancement. Follow-
ing that the vertical upwardE × B drift velocity rapidly de-
creases through 0 m/s (at around 19:50 LT), where it becomes
downward directed, to a negative maximum of 30–40 m/s (at
around 21:00 LT). Finally, the vertical downwardE×B drift
velocity increases back to 0 m/s and reverses its direction
back to vertical upward from vertical downward at around
local sunrise. This typical 24-h trend can be largely mod-
ified by the seasonal and solar cycle variations. While the
day-time drift velocity values show less variation with the
changing seasons and solar activities, the night-time down-
ward velocities exhibit a large variability. The pre-reversal
enhancement of the vertical upwardE × B plasma drift ve-
locity is most obvious during the equinoctial and summer
seasons at low sunspot numbers, and during all the seasons
at high sunspot numbers (Fejer et al., 1991).

1.3 VerticalE × B drift velocity events and resultant iono-
spheric features identified by SUPIM

The ionospheric processes, related to the evening variations
of the vertical upwardE × B drift velocity, are identified by
the model results of SUPIM (Balan and Bailey, 1995; Balan
et al., 1997; Bailey et al., 1997). The three main events of
the evening variations of the vertical upwardE × B drift
velocity are the pre-reversal enhancement, the reversal and
the downward maximum. The event of pre-reversal enhance-
ment is related to the evening maximum of the vertical up-
wardE × B drift velocity (↑E × B = max). The event of

reversal occurs when the vertical upwardE × B drift veloc-
ity is zero (↑E × B = 0) and becomes downward directed
(↓E × B ≥ 0). At downward maximum, the vertical down-
ward E × B drift velocity is maximum (↓E × B = max).
During theseE×B drift velocity events, the ionospheric pro-
cesses taking place are different. Thus, the equatorial plasma
fountain operates differently. While the verticalE × B drift
velocity is upward and positive (↑E×B > 0), the equatorial
plasma fountain is a forward fountain. Soon after the reversal
of the vertical upwardE × B drift velocity (↑E × B = 0),
the equatorial forward plasma fountain becomes a reverse
plasma fountain. While theE×B drift velocity is downward
directed (↓E × B), the equatorial plasma fountain operates
in a reverse manner and becomes a reverse fountain (Balan
and Bailey, 1995; Balan et al., 1997; Bailey et al., 1997).

The ionospheric formations resulting from the evening
variations of the vertical upwardE × B drift velocity were
also investigated with the model results of SUPIM (Balan
and Bailey, 1995; Balan et al., 1997; Bailey et al., 1997).
These resultant ionospheric features identified by SUPIM:
are the symmetrical equatorial anomaly with plasma bubbles
when↑E × B = max, the broken down equatorial anomaly
with plasma bubbles when↑E × B = 0, and the symmetri-
cal equatorial peak when↓E × B = max. As is well known
from the published model results of SUPIM, the equatorial
anomaly is created by the forward plasma fountain. At the
evening enhancement of the vertical upwardE × B drift ve-
locity, when the vertical upwardE ×B drift velocity quickly
increases to an evening maximum (↑E × B = max), the
equatorial forward plasma fountain undergoes a pre-reversal
strengthening. Thus, the resultant ionospheric feature of the
forward plasma fountain is a well-developed and symmet-
rical equatorial anomaly with plasma bubbles appearing at
the crest and trough regions. At the reversal, when the mag-
nitude of vertical upward drift velocity rapidly drops down
to zero (↑E × B = 0) and its direction becomes opposite
(↓E × B > 0), this well-developed and symmetrical equa-
torial anomaly suddenly breaks down. During the breaking
down process, the development of large plasma bubbles takes
place at the crest and trough regions. This breaking down
process of the equatorial anomaly continues while the re-
verse fountain operates. At the strongest stage of the process,
when the vertical downwardE×B drift velocity is maximum
(↓E ×B = max), the broken down equatorial anomaly trans-
forms into a symmetrical equatorial night-time peak (Balan
and Bailey, 1995; Balan et al., 1997; Bailey et al., 1997).

1.4 Aim and method of investigation

The main objective of this paper is to document the events of
verticalE × B drift velocity variations with the TOPEX and
GPS TEC data, to observe the effects of variousE×B events
on the low- and mid-latitude ionosphere, and to study some
of the physical processes underlying theE×B events investi-
gated. Observation of the low-latitude ionospheric irregular-
ities associated with theseE × B events utilizing the GPS
data, and investigation of the effects of those low-latitude
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Table 1. List of (top one) GPS ground-based receiver, (middle two) ground magnetometer and (bottom one) ionosonde station sites used for
data collection

Station Geographic Geomagnetic
Longitude (◦ E) Latitude (◦ N) Longitude (◦ E) Latitude (◦ N)

Guam 144.86 13.59 215.55 5.63
Muntinlupa 121.02 14.37 191.57 3.58

Lunping 121.17 25.00 189.50 13.80
Port Moresby 147.10 −9.40 219.20 −18.30

ionospheric irregularities on the dual-frequency GPS signal
recordings are also objectives.

In order to achieve these goals, the high sunspot num-
ber 1998–1999 TOPEX and GPS satellite data, and the
low sunspot number 1995 TOPEX satellite data were re-
duced to TEC (total electron content) values in TEC units
(1 TECU=10+16 e−/m2). The dual frequency GPS tech-
nique, which makes use of two closely spaced L-band (L1 =

1575.42 MHz; L2 = 1227.60 MHz) frequency radio signals
transmitted from the GPS satellites in multiple directions,
provided the differential time delay (δ1T in seconds) and
differential carrier phase advance (δ1φ in cycles) GPS satel-
lite data. By applying the TEC theory, the raw GPS satel-
lite data were used to calculate at first the slant GPS TEC
values that were subsequently converted into vertical GPS
TEC values (Klobuchar, 1996). As the GPS satellites re-
volve around the Earth in circular 12-h orbits at an altitude
of 20 183 km, the satellites come into the visible range of
the ground-based receiver twice a day for approximately 7 h,
which is the length of time of a complete GPS satellite pass.
There are six orbital planes of the GPS satellites around the
Earth, where each plane is spaced 60◦ apart and inclined at
55◦. The dual frequency (13.65 GHz and 5.3 GHz) TOPEX
technique provided the over-the-ocean vertical TOPEX TEC
values directly from the differential time delay measurements
(δ1T in seconds) of the onboard altimeter that operates at
nadir direction. At an inclination of 66◦, the low-altitude
(1335 km) satellite of the TOPEX/Poseidon mission covers
the Earth in an approximately a 10-day cycle. A TOPEX cy-
cle is made up of a total of 254 descending (or southbound)
and ascending (or northbound) passes, where the time length
of any pass is 0.935 h or 56 min and 6 s (Johnson et al., 1996).

In this study, the TOPEX and GPS TEC data were plotted
in many different ways, which permitted the observation of
many large- and small-scale (width≤15◦ in latitude) iono-
spheric features globally over the oceans and locally in the
Australian longitude region. Since the larger part of the Earth
is covered by oceans, the global TOPEX TEC maps con-
structed with the over-the-ocean TOPEX TEC values provide
an excellent means to observe the large-scale ionospheric
features worldwide. The individual TOPEX TEC passes,
plotted in geographic and geomagnetic latitudes, made it pos-
sible to view both the large- and small-scale ionospheric fea-
tures at low- and mid-latitudes. The GPS TEC data from
Guam (215.55◦ E; 5.63◦ N, geomagnetic; see also Table 1),

situated close to the magnetic equator in the Australian longi-
tude region, were plotted in time and geographic latitudes to
observe the small-scale ionspheric features at low-latitudes.
TOPEX passes situated close to the Australian East Coast
could be matched up with the Guam GPS TEC plots, as
the Guam data cover the northern crest of the equatorial
anomaly. The effects of low-latitude ionospheric irregular-
ities on the GPS recordings were documented with the raw
GPS TEC data and the intensity of signal degradation was
shown with the filtered Guam GPS dTEC/min or 1-min GPS
TEC data in TECU. By adopting the technique of Chandra
and Rastogi (1974), the daily variations of verticalE × B

drift velocity were observed with the1H (nT) parameter
at 121◦ E geographic longitude. H is the horizontal inten-
sity (H) of the geomagnetic field(B) measured in nano (n
or 10−9) Teslas (T). H reflects the changes in the equatorial
plasma fountain when measured at the magnetic dip equator
(Hequator). All the non-ionospheric variations can be elimi-
nated from the Hequatordata, if the H variations away from
the equator (Hnon−equator) are removed. Thus, the net param-
eter obtained and called1H or Hequator-Hnon−equatoris a good
indicator of the verticalE × B drift velocity. For this pa-
per, the equatorial Muntinlupa (191.57◦ E; 3.58◦ N, geomag-
netic; see Table 1) and non-equatorial Lunping (189.50◦ E;
13.80◦ N, geomagnetic; see Table 1) magnetometer data
were used to obtain the1H parameter. For studying the
physical background of the various verticalE × B drift ve-
locity events in the low-latitude F-region ionosphere at the
Australian longitude region, the virtual height orh′F (Km)
ionosonde data from Port Moresby (147.10◦ E; −9.40◦ N,
geographic; see Table 1) were utilized. Port Moresby is situ-
ated close to the southern crest of the equatorial anomaly in
the Australian longitude region.

2 Results and discussion: verticalE × B drift velocity
events and plasma fountain behavior observed

2.1 Forward plasma fountain

The forward plasma fountain is generated by the vertical up-
wardE×B drift velocity and is symmetric with respect to the
magnetic dip equator in the absence of neutral winds (Balan
and Bailey, 1995). The working mechanism of the forward
plasma fountain is such that it starts developing at around
09:00 LT, when the F-region vertical upwardE × B drift
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Fig. 1. The TOPEX TEC plots show the equatorial anomaly(a) in geomagnetic latitudes at 177◦ E (geographic), where the offset between
the geomagnetic and dip equators is small and(b) in geographic latitudes at 334◦ E (geographic), where this offset is larger. (LT(EQ)
= geographic equator crossing local time, LON(EQ) = equator crossing longitude, geographic, the arrow indicates the satellite travelling
direction).

starts increasing. This vertical upwardE × B drift, created
by the combination of day-time eastward horizontal electric
field (E) and the north-south horizontal magnetic field(B) at
geomagnetic dip equator latitudes, drives the plasma across
the horizontal magnetic field lines. In the equatorial region,
the F2-region plasma rises until it loses momentum and then
diffuses down the magnetic field lines and away from the
magnetic dip equator due to the forces of gravity and pres-
sure gradient. The overall process results in the formation of
the equatorial ionization anomaly characterized by a trough
centered over the geomagnetic dip equator, and two crests
at about±17◦ magnetic latitudes in those longitude regions
where the geomagnetic equator and geomagnetic dip equa-
tor overlap. An example of this is shown in Fig. 1a with a
TOPEX pass where the TOPEX TEC is plotted against the
geomagnetic latitudes. The negative geomagnetic latitude
values indicate Southern Hemisphere latitudes. On 9 March
1998, the equatorial anomaly appeared over the western Pa-
cific Ocean, close to the Australian East Coast, at 177◦ E
geographic longitude at 11:66 LT, in decimal hours that is
11 h 39 min. Since the dip equator is situated at 2.5◦ north of
the geomagnetic equator, the offset between the geomagnetic
equator and geomagnetic dip equator is small, only 2.5◦ (lati-
tude). If the offset between the geomagnetic and dip equators
is large, one equatorial anomaly crest will be situated close

to or on the geomagnetic equator, depending upon the mag-
nitude of the offset, as the equatorial anomaly is symmetri-
cal to the geomagnetic dip equator. In order to show this, a
TOPEX pass over the eastern Atlantic Ocean at 334◦ E geo-
graphic longitude is plotted in geographic latitudes in Fig. 1b.
The equatorial anomaly appeared on 13 November 1998 at
20:83 LT, in decimal hours that is 20 h 55 min. In this longi-
tude region, the geomagnetic equator is 8◦ south of the geo-
graphic equator. As the geomagnetic dip equator is situated
6◦ north of the geographic equator, the offset is large, 14◦

(latitude). Thus, the southern crest of the equatorial anomaly
is close to the geomagnetic equator.

The diurnal variations of the equatorial anomaly, on
a global scale, is demonstrated with a series of global
TOPEX TEC maps constructed with the low sunspot number
1995 Southern Hemisphere summer and autumnal equinox
data for the day-time sector that extends from 09:50 LT to
17:50 LT at the geographic equator (denoted as LT(EQ) =
equator crossing local time in hours (h), see Fig. 2). The
TOPEX map with the earliest equator-crossing local time
(09:50 LT; see Fig. 2a) shows that the asymmetrical equa-
torial anomaly appears first over the eastern Pacific Ocean,
where the offset between the geomagnetic and geographic
equators is increasing from the 200◦ E geographic longitude
where they cross. As Balan et al. (1997) and Bailey et
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Fig. 2. The global TOPEX TEC maps
show the development of equatorial
anomaly in the 1995 Southern Hemi-
sphere summer and autumnal equinox.

al. (1997) explained, the strong poleward wind makes the
day-time equatorial anomaly highly asymmetrical in such
a way that the plasma fountain extends to higher latitudes
and supplies more ionization to the hemisphere with stronger
poleward winds. Over the Pacific Ocean, the build up of
the equatorial anomaly continues in the local morning and
its best development occurs at around local midday (see
Fig. 2b), when the upwardE × B drift reaches its maximum
day-time value. During the early and mid-afternoon hours
(see Figs. 2c–d), the equatorial anomaly becomes better de-
veloped in the Australian longitude region and over the At-
lantic Ocean. Later in the afternoon, the equatorial anomaly
remains well developed over the Atlantic Ocean (see Fig. 2e).
Furthermore, it becomes better developed over the Indian

Ocean, and weaker over the Pacific Ocean and in the Aus-
tralian longitude region (see Fig. 2e).

2.2 Pre-reversal strengthening of the verticalE × B drift
velocity: ↑E × B = max

2.2.1 Model results with SUPIM

The vertical upwardE × B drift velocity undergoes a pre-
reversal enhancement soon after sunset. This can be ex-
plained by the eastward neutral winds, which blow across
the east-west conductivity gradient and cause an enhance-
ment of the eastward electric field (E) at around sunset. At
this time, the effect of neutral wind upon the plasma foun-
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Fig. 3. The Guam GPS data show equatorial plasma bubbles(a) with the matching TOPEX TEC curve in latitudes (at 157◦ E, LT=20.20 h at
the magnetic equator in decimal hours) and(b) in time. (c) Signal degradation on the raw GPS TEC data is due to the GPS phase scintillation.
(d) The filtered dTEC/min plot shows the intensity of that phase scintillation.(e) The 1H data plot obtained with the Muntinlupa and
Lumping magnetic data shows the time of pre-reversal strengthening at 121◦ E geographic longitude, in the Australian region.(f) The data
from Port Moresby show the sudden increase in height due to the pre-reversal strengthening, and then the sudden decrease due to the reversal
and downward drift. The GPS satellite is distinguished by the PRN (Pseudo Random Noise) number. In the Australian region LT=UT+10 h.
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tain is minimal due to the impulsive response of the iono-
sphere to the sudden strengthening of the F-region drift. This
means that regardless of the longitudinal location, the for-
ward plasma fountain becomes symmetric with respect to the
geomagnetic dip equator. With the model results of SUPIM,
Balan and Bailey (1995) and Balan et al. (1997) investi-
gated the forward plasma fountain undergoing a pre-reversal
strengthening at three different locations. Their results show
that the above-mentioned impulsive response of the iono-
sphere drives the plasma to higher altitudes, which causes
the plasma density to become largely reduced in the bot-
tomside F-region. This leads to the development of plasma
bubbles and spread-F irregularities via the Rayleigh-Taylor
gradient instability in the region of the magnetic dip equator
(Fejer and Kelley, 1980; Balan and Bailey, 1995; Balan et al.,
1997).

2.2.2 Experimental observations

During the 1998 Southern Hemisphere vernal equinox sea-
son, the above mentioned events and their signatures were
observed with the GPS and TOPEX TEC, magnetic and
ionosonde data. Two examples are shown on the quiet days
of 20 September 1998 (see Fig. 3) and 23 September 1998
(see Fig. 4). The resultant ionospheric features of the pre-
reversal enhancement of the vertical upwardE × B drift ve-
locity was observed with the overlapping Guam GPS TEC
and TOPEX TEC data plotted in geographic latitude (see
Fig. 3a). On 20 September 1998, Fig. 3a shows the symmet-
rical equatorial anomaly with plasma bubbles at both crests
with the TOPEX TEC data. The matching Guam GPS TEC
plot shows also the plasma bubbles at the northern crest of
this equatorial anomaly (see Fig. 3a). As the symbol? at
13.59◦ N geographic latitude indicates, in the Australian lon-
gitude region Guam is situated at the northern anomaly crest.
The time of the bubble appearance was obtained with the
same Guam GPS TEC data plotted in universal time (UT
in hours; see Fig. 3b). In Eastern Australia the local time
(LT in hours) is UT+10 hours. The GPS signal degrada-
tion, due to the development of equatorial plasma bubbles
and small-scale ionospheric irregularities such as TEC fluc-
tuations, is obvious on the raw Guam GPS TEC data, which
are represented with the slant absolute and relative Guam
GPS TEC curves (see Fig. 3c). The magnitude of this GPS
signal degradation is illustrated with the filtered Guam GPS
dTEC/min data (see Fig. 3d). It is worth noting that the GPS
phase scintillation is quite strong during this magnetically
quiet period (Kp = 1) at high sunspot numbers, when the
Sun is more active. The GPS phase scintillations are a ma-
jor concern today since they affect and degrade the perfor-
mance of satellite links. The time of pre-reversal enhance-
ment of the vertical upwardE × B drift velocity was esti-
mated with the1H parameter plotted in time (see Fig. 3e)
and it happened at around 09:25 UT or 19:25 LT in decimal
hours. This pre-reversal enhancement sets the plasma into
motion and therefore suddenly increases the F-region height.
The event of F-region height increase is documented with

theh′F data (see Fig. 3f) from Port Moresby, situated at the
southern crest of the equatorial anomaly (indicated by the
symbol? at −9.40◦ N geographic latitude on Fig. 3a) in the
Australian longitude region. Thish′F plot shows the sud-
den increase in height at the time of pre-reversal enhance-
ment of the vertical upwardE × B drift velocity. As the
Rayleigh-Taylor mode becomes unstable, due to the sudden
height increase, the equatorial plasma bubbles develop (Fe-
jer and Kelley, 1980) and cause the phase scintillations of
the GPS signals. Since the plasma fountain is instantaneous,
there is little time difference between the time of height rise
and the time of the pre-reversal enhancement of the vertical
upwardE × B drift velocity. However, the resultant iono-
spheric features, such as the symmetrical equatorial anomaly
and the plasma bubbles, have a time cumulative nature, and,
therefore, they appear later in time.

2.2.3 Ionosphere-plasmasphere coupling governed by the
eastward electric field

Figure 4 shows the same↑E × B = max event with the
23 September 1998 data sets. However, the significance of
this figure is that the TOPEX pass shown in Fig. 4a is field-
aligned. It means that the ground track of this TOPEX satel-
lite pass, obtained by plotting the geographic coordinates of
the data points making up that TOPEX pass, follows the same
magnetic field line. This field-aligned TOPEX pass shows
that when the equatorial anomaly undergoes a pre-reversal
strengthening, the TEC at mid-latitudes becomes depleted
and, therefore, appears to be low in both hemispheres (in-
dicated as “low TEC” in Fig. 4a). The development of low
TEC at mid-latitudes is due to the ionosphere-plasmasphere
coupling governed by the eastward electric field that was first
explained by Park (1971).

The coupling of ionosphere and plasmasphere is governed
by the electric fields in the ionosphere (E), which cause the
vertical plasma movement via the verticalE × B drift that
was introduced and explained in detail earlier in this paper.
Park (1971) explained the background mechanisms with the
height rise, caused by the increased eastward electric field
lifting the ionosphere to higher altitudes where the loss rates
are smaller, and with the reduced downward plasma flow
from the plasmasphere to the ionosphere at mid-latitudes.
These mechanisms create an initial decrease in the electron
concentration, and, therefore, in the TEC, at mid-latitudes.
In Fig. 4a the field-aligned TOPEX pass shows the low- and
mid-latitude ionosphere at the pre-reversal enhancement of
the eastward electric field (↑E × B = max), and provides
direct evidence of the ionosphere-plasmasphere coupling by
showing their characteristic signatures. These signatures are
the well-developed and symmetric equatorial anomaly with
plasma bubbles at low latitudes, and the low-TEC region at
mid-latitudes in both hemispheres. The rest of Fig. 4 is simi-
lar to that of Fig. 3 that was explained in detail in the previous
section. In brief, Fig. 4b shows the plasma bubble, developed
on the northern crest of the equatorial anomaly, in time with
the Guam GPS TEC data. The associated signal degrada-
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Fig. 4. The Guam GPS data show equatorial plasma bubbles(a) with the matching field-aligned TOPEX TEC curve (at 180◦ E, LT = 19:50
at the magnetic equator), which shows a mid-latitude low TEC region as well, in latitudes and(b) in time. (c) Signal degradation on the raw
GPS TEC data is due to the GPS phase scintillation.(d) The filtered dTEC/min plot shows the intensity of that phase scintillation.(e) The
1H data plot obtained with the Muntinlupa and Lumping magnetic data shows the time of pre-reversal strengthening at 121◦ E geographic
longitude, in the Australian region.(f) The data from Port Moresby show the sudden increase in height due to the pre-reversal strengthening,
and then the sudden decrease due to the reversal and downward drift.
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tion on both GPS carriers are shown with Fig. 4c. Its mag-
nitude is measured with the filtered Guam GPS dTEC/min
data. As Fig. 4d shows, the intensity of GPS phase scintilla-
tion is obvious and quite intensive at high sunspot numbers
for a magnetically quiet period (Kp = 2+). Finally, the time
of evening enhancement was estimated with the1H param-
eter plotted in time in Fig. 4e, and the effect of the vertical
upward plasma drift on the low-latitude ionosphere is shown
with the sudden rise ofh′F in Fig. 4f.

2.3 Vertical upwardE × B drift velocity reversal:↑E ×

B = 0

2.3.1 Model results by SUPIM

Following the pre-reversal enhancement (↑E × B = max),
the vertical upwardE × B drift velocity quickly decreases.
In approximately 30 min, it reaches zero (↑E × B = 0),
and then becomes negative (↑E × B < 0) or downward di-
rected (↓E × B > 0). This event is called theE × B drift
velocity reversal. At this time, the forward plasma fountain
still diffuses downward along the magnetic field lines for a
very short period of time. Soon after that, when the verti-
cal upwardE ×B drift velocity becomes downward directed
(↓E × B > 0), the reverse plasma fountain begins its op-
eration (Balan and Bailey, 1995; Balan et al., 1997; Bailey
et al., 1977). TheE × B drift velocity reversal is caused
by the ionospheric electric fields, which reverse to the west
(from the east), as the day-time eastward neutral winds be-
come westward directed after sunset. During the reversal,
the large downward diffusion of the reverse plasma fountain
provides favorable conditions for the generation and propa-
gation of plasma bubbles and spread-F irregularities via the
Rayleigh-Taylor gradient instability in the region of the mag-
netic dip equator (Fejer and Kelley, 1980). The neutral winds
are most effective on the plasma fountain when theE × B

drift velocity is zero (Balan and Bailey, 1995; Balan et al.,
1997; Bailey et al., 1977). The resultant ionospheric features
of the vertical upwardE × B drift velocity reversal are the
broken down equatorial anomaly, and the plasma bubbles at
low-magnetic-equator-latitudes or at the equatorial anomaly
trough and crests regions (Balan and Bailey, 1995; Balan et
al., 1997; Bailey et al., 1977).

2.3.2 Experimental observations

All the above described events and their signatures were ob-
served on the magnetically disturbed (Kp = 6− and 5−) day
of 26 September 1998 with the Guam GPS and TOPEX TEC,
magnetic and ionosonde data, which are shown in Fig. 5. In
Fig. 5a the Guam GPS TEC values of a satellite pass, namely
PRN (Pseudo Random Noise) number 1, are plotted in time
and show two sets of equatorial plasma bubbles. These bub-
bles are related to the two different events ofE × B, which
are associated with the development of plasma bubbles and
small-scale ionospheric irregularities. The earlier set of bub-
bles belongs to the event of pre-reversal enhancement of the

vertical upwardE × B drift velocity (↑E × B = max) and
is situated at the northern crest of the equatorial anomaly.
The latter set of bubbles is associated with the reversal of the
drift velocity (↑E × B = 0) and is situated in the trough
region of the equatorial anomaly. With the raw Guam GPS
TEC data, the GPS signal degradation, due to the develop-
ment of plasma bubbles and small-scale ionospheric irregu-
larities, such as TEC fluctuations, is shown in Fig. 5b. Again,
the magnitude of this GPS signal degradation is illustrated
with the filtered Guam GPS dTEC/min (see Fig. 5c). During
this magnetically disturbed period (Kp = 6− and 5−), the
high intensity of the GPS phase scintillation is obvious. This
Guam GPS dTEC/min plot also shows very clearly the two
separate GPS phase scintillation events. As was explained
before, the first event is related to the vertical upwardE × B

drift velocity increase before sunset, which is the pre-reversal
enhancement (indicated as↑E × B = max on Fig. 5c). The
second event is the reversal (indicated as↑E × B ≈ 0 on
Fig. 5c). Figure 5c also clearly indicates that there is no
phase scintillation between these twoE×B events when the
vertical upwardE × B drift velocity quickly drops down to
zero from positive maximum. The SUPIM model estimated
30-min time interval separating these twoE × B events
is longer on the filtered Guam GPS dTEC/min plot due to
the time cumulative nature of the resultant ionospheric fea-
tures, which are the plasma bubbles and TEC fluctuations at
each event. In order to show the resultant ionospheric fea-
tures at low- and mid-latitudes at eachE × B event, the
Guam GPS TEC pass in Fig. 5a was matched with two field-
aligned TOPEX TEC cross sections. Figure 5d shows the
ground tracks of the TOPEX satellite passes that were used
in the construction of field-aligned TOPEX TEC cross sec-
tions. For the event pre-reversal enhancement (↑E × B

= max), the field-aligned TOPEX TEC cross section con-
structed with two TOPEX passes (see Figs. 5d and e) shows
the symmetrical equatorial anomaly with plasma bubbles at
both crests and the low TEC region at southern mid-latitudes.
The bubble at the northern anomaly crest was also detected
with the first set of bubbles in the Guam GPS TEC data, and
the good match of the two different satellite data is appar-
ent. At southern mid-latitudes, the TEC depletion, explained
with the ionosphere-plasmasphere coupling (see detailed ex-
planation in Sect. 2.2.3 Ionosphere-plasmasphere coupling
governed by the eastward electric field), is obvious and in-
dicated as “low TEC” in Fig. 5e. For the event of drift ve-
locity reversal (↑E × B = 0), another field-aligned TOPEX
TEC cross section was constructed with three TOPEX satel-
lite passes (see Figs. 5d and f). Figure 5f shows the breaking
down of the equatorial anomaly when the anomaly crests are
broken down already, and the plasma bubbles in the anomaly
trough region are still well developed. The second set of
plasma bubbles in the Guam GPS data matches well with
this field-aligned TOPEX TEC cross section and gives sup-
portive evidence for the Guam GPS TEC data interpretation.
This field-aligned TOPEX TEC cross section also reveals the
appearance of mid-latitude night-time TEC increases in both
hemispheres. Figure 5g shows the1H parameter plotted in
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Fig. 5. The Guam GPS data show(a)
the equatorial plasma bubbles and(b)–
(c) GPS phase fluctuations.(d) The
ground tracks of the TOPEX passes are
plotted with the magnetic field lines to
show the field-aligned TOPEX passes.
The field-aligned TOPEX passes with
the GPS data illustrate the events of(e)
pre-reversal enhancement and(f) rever-
sal. (g) The time of pre-reversal en-
hancement in the Australian region is
estimated from the1H plot.
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time for the day of 26 August 1998, to estimate the time of
pre-reversal enhancement of the vertical upwardE × B drift
velocity. This happened at around 10:00 UT or 20:00 LT. The
first set of Guam GPS phase scintillations, the signature of
pre-reversal enhancement of the vertical upwardE × B drift
velocity, started at 0.75 h or 45 min later, at around 10:75 UT
or 20:75 LT. This later occurrence is due to the time cumula-
tive nature of the resultant ionospheric features.

2.3.3 Ionosphere-plasmasphere coupling governed by the
westward electric field

The development of mid-latitude night-time TEC increases
shown in Fig. 5f can be explained with the ionosphere-
plasmasphere coupling governed by the westward electric
field. According to Park (1971), at the time of vertical up-
wardE×B drift velocity reversal (↑E×B = 0), a downward
plasma flow from the plasmashere to the ionosphere at mid-
latitudes in both hemispheres is triggered by the westward
electric field. This mechanism results in the development
of ionospheric night-time TEC increases at mid-latitudes in
both hemispheres (see detailed explanation in Sect. 2.6 De-
velopment of mid-latitude night-time TEC increases).

2.4 Vertical downwardE ×B drift velocity between rever-
sal and maximum: 0<↓E × B<max

2.4.1 Model results by SUPIM

Soon after the reversal, the vertical upwardE × B drift be-
comes downward directed, and the forward plasma fountain
begins its operation in the opposite direction. The downward
drift pushes the plasma down, across the horizontal magnetic
field lines, which creates a low plasma pressure region in
the topside ionosphere. As a response to the generation of
this low-plasma-pressure region, the plasma starts flowing
towards the magnetic equator, from both of the high-pressure
crests, to fill up this low-pressure region. As the downward
drift continues, it creates a new, low-pressure region at the
magnetic equator and the process goes on until the intensity
of the downward drift decreases. This mechanism is called
the reverse fountain and it is responsible for the breaking
down of the equatorial anomaly. The associated ionospheric
feature at magnetic-equator-latitudes is an asymmetrical bro-
ken down equatorial anomaly. During this time, the neutral
winds can alter the symmetry of the reverse plasma with re-
spect to the magnetic equator (Balan and Bailey, 1995; Balan
et al., 1997; Bailey et al., 1977).

2.4.2 Experimental observations

The event after the reversal and its signatures were observed
with the TOPEX data on the magnetically quiet day of 27 Oc-
tober 1998. In Figs. 6a–c, two field-aligned TOPEX TEC
cross sections situated over the Pacific Ocean are illustrated.
Figure 6a shows the ground tracks of the satellite passes uti-
lized and the magnetic field lines in the grid of geographic
parallels. Figures 6b and c show the resultant ionospheric

features of the reverse plasma fountain at such a stage when
the vertical downwardE × B drift velocity is between re-
versal and downward maximum (0<↓E × B<max). Both
field-aligned TOPEX TEC cross sections show the asymmet-
rical broken down equatorial anomaly when the equatorial
plasma bubbles developed at the reversal are gone already,
and when the residue of the equatorial anomaly crests has
almost disappeared. In both hemispheres, the mid-latitude
night-time TEC increases at around±40◦ N geomagnetic
latitudes appear to be well developed. These field-aligned
TOPEX passes indicate that the mid-latitude night-time TEC
increases in both hemispheres are maintained during the op-
eration of the reverse plasma fountain.

2.5 Maximum vertical downwardE × B drift velocity:
↓E × B = max

2.5.1 Model results by SUPIM

The reverse plasma fountain becomes most intensive when
the downward verticalE ×B velocity drift reaches its maxi-
mum (↓E × B = max) at around 21:00 LT. At that stage, the
associated ionospheric feature at magnetic-equator latitudes
is a night-time TEC increase centered over and symmetri-
cal to the overlapping magnetic and dip equators. The main
source of plasma building up the night-time increases at the
magnetic-equator latitudes is the reverse fountain (Balan and
Bailey, 1995; Balan et al., 1997; Bailey et al., 1997). Dur-
ing the time of maximum vertical downward drift, the neu-
tral winds have the least effect on the reverse plasma foun-
tain and, therefore, its symmetry is not altered (Balan et al.,
1997).

2.5.2 Experimental observations

This ↓E × B = max event and its signatures were observed
on the very quiet day (Kp = 0+ and 1−) of 19 March 1998
with a field-aligned TOPEX TEC pass shown in Fig. 7. Fig-
ure 7a illustrates the ground tracks of TOPEX passes used
for constructing the field-aligned TOPEX pass. The resultant
ionospheric feature of the reverse plasma fountain, when the
vertical downwardE×B drift velocity is maximum (↓E×B

= max), is shown in Fig. 7b. It is a symmetric night-time
TEC increase centered over the overlapping magnetic and
dip equators. This field-aligned TOPEX pass also shows a
well-developed mid-latitude night-time TEC increase in the
Southern Hemisphere at 41.89◦ N geographic or 36.75◦ N
geomagnetic latitude and the conjugate TEC increase in the
Northern Hemisphere. As the operation of reverse plasma
fountain continues after the reversal and as the magnitude
of vertical downwardE × B drift velocity nears towards its
maximum, the equatorial anomaly becomes more and more
reduced. Finally, it turns into one single peak that is symmet-
rical, because the neutral winds have no effect on the reverse
plasma fountain at maximum vertical downward drift. While
the ionospheric electric field is westward directed, the mid-
latitude night-time TEC increases in both hemispheres are
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Fig. 6. (a)The ground tracks of the TOPEX passes are plotted with the magnetic field lines to show the field-aligned TOPEX passes.(b)–(c)
The field-aligned TOPEX TEC cross sections depict the broken down equatorial anomaly at less than maximum downward drift and the
mid-latitude night-time TEC increases.

maintained by the plasma flows from the plasmasphere to the
ionosphere at mid-latitudes via the ionosphere-plasmasphere
coupling governed at this time by the westward electric field.

2.6 Development of mid-latitude night-time TEC increases

With the various field-aligned TOPEX TEC cross sections
presented in this paper, the absence and presence of night-
time TEC increases at mid-latitudes were demonstrated at the
various stages of the operation of forward and reverse plasma
fountain. Based upon the work of Park (1971), the depletion
of mid-latitude electron density, and hence the TEC, was ex-
plained with the eastward electric field via the ionosphere-
plasmasphere coupling. The enhanced eastward electric field
has the potential to reduce the mid-latitude downward plasma
diffusion from the plasmasphere to the ionosphere at mid-
latitudes in both hemispheres, and therefore to decrease the

TEC at mid-latitudes (see Figs. 4a and 5e). This enhanced
eastward electric field is also responsible for the stronger ver-
tical upwardE × B drift at magnetic-equator-latitudes that
is known as the pre-reversal enhancement when the verti-
cal upwardE × B drift velocity is maximum (↑E × B =
max). The increased F-region heights at low-latitudes (see
Fig. 4f) and decreased electron density, and therefore TEC,
at mid-latitudes (see Figs. 4a and 5e) were interpreted to be
the signatures of the↑E ×B = max event. Soon after sunset,
when the eastward day-time neutral winds become westward
directed, the eastward electric field turns westward. This
westward electric field reverses the verticalE × B plasma
drift from upward to downward, and at the reversal the drift
velocity is zero (↑E × B = 0). Due to the coupling of
the ionosphere and plasmasphere, the westward electric field
triggers a plasma flow, from the plasmasphere to the iono-
sphere at mid-latitudes in both hemispheres, which is the



I. Horvath and E. A. Essex: VerticalE × B drift velocity variations 1029

Fig. 7. (a)The ground tracks of the TOPEX passes are plotted with the magnetic field lines to show the field-aligned TOPEX pass.(b) The
field-aligned TOPEX TEC cross section depicts the symmetric equatorial peak at maximum downward drift and the mid-latitude night-time
TEC increases in magnetic latitudes.

main source of plasma building up the night-time TEC in-
creases at mid-latitudes in both hemispheres. This plasma
flow continues while the ionospheric electric field is west-
ward directed and maintains the mid-latitude night-time TEC
increases in both hemispheres during the vertical downward
E × B drift (0 >↓E × B≥max; see Figs. 6b–c and 7b)
at magnetic-equator latitudes. The dramatic decrease of F-
region heights at low-latitudes soon after the pre-reversal en-
hancement (see Figs. 3f and 4f), and the appearance (see
Fig. 5f) and maintenance (see Figs. 6b–c and 7b) of conjugate
night-time TEC increases at mid-latitudes are the signatures
of the vertical downwardE × B drift event.

As Park (1971) explained, the lowering of the night-
time F-layer results in increased electron densities at mid-
latitudes, which is a direct consequence of the westward elec-
tric field. The increased electron densities at mid-latitudes
can be explained with the decreased height of the F-layer that
creates an enhanced loss rate, which competes with the en-
hanced downward plasma flow from the plasmasphere to the
ionosphere at mid-latitudes, triggered and maintained by the
westward electric field. At greater heights, where the loss
rates are smaller, the downward flowing plasma becomes a
dominant factor and the lowering of the F-layer results in in-
creased electron densities.

To explain this process in greater detail, the mechanism
is as follows. By assuming that the ionization consists of
O+, H+ and electrons in equilibrium, the vertical downward
E × B drift velocity forces the ionosphere down to lower
heights and therefore reduces the concentration of O+ (i.e.
[O+

]). Consequently, at a certain altitude, the[O+
] has been

reduced while[O] and [H] remained unaffected. The fol-
lowing reduction in[H+

] (protons) creates a non-equilibrium

gradient and also a downward diffusion of[H+
]. In this

downward proton diffusion from the plasmasphere to the
ionosphere at mid-latitudes, the[O+

] increases by the charge
exchange with the neutral oxygen: H+

+ O→H + O+. As a
final result, the lowering of the F-layer at mid-latitudes is
coupled with an increase in the electron concentration and
TEC at mid-latitudes (Park, 1971).

3 Summary and conclusion

Based upon the published SUPIM results (Balan and Bailey,
1995; Balan et al., 1997; Bailey et al., 1997), the develop-
ment of forward and reverse plasma fountain, their behav-
ior, and the working mechanism of the forward and reverse
plasma flows were discussed and illustrated with experimen-
tal data at variousKp values. Since the magnetic forces
have a great importance in the development of the resultant
ionospheric features at magnetic-equator-latitudes and mid-
latitudes, the field-aligned TOPEX passes were used for the
investigation. With these “field-aligned” TOPEX TEC cross
sections, constructed by connecting two or three different
TOPEX passes that cross the same magnetic field lines, the
variousE×B drift velocity events were documented and the
behavior of the plasma fountain was followed up. The typi-
cal ionospheric signatures of each event at magnetic-equator-
latitudes were noted and the good agreement between the
model results of SUPIM and experimental TOPEX results
was found. In the Australian longitude region, the associ-
ated low-latitude ionospheric irregularities, such as plasma
bubbles and TEC fluctuations, were observed with the Guam
GPS TEC data that cover the northern crest of the equato-
rial anomaly. Their effects on the dual-frequency GPS car-
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riers were demonstrated with the raw Guam GPS TEC data.
The magnitude of the associated strong GPS phase fluctua-
tions was measured and demonstrated with the filtered Guam
GPS dTEC/min plots. Even during the magnetically quiet
periods investigated, the severe signal degradation at high
sunspot numbers was obvious and was explained with the
ionospheric irregularities formed at a more intensive solar ac-
tivity. The effects of plasma fountain on the equatorial iono-
sphere were studied with the virtual height orh′F ionosonde
data from Port Moresby situated at the southern crest of the
equatorial anomaly in the Australian longitude region. The
sudden F-region height rise at the time of pre-reversal en-
hancement and fall at the reversal were all obvious. The time
of the pre-reversal enhancement of the vertical upwardE×B

drift velocity was estimated with the1H parameter. The sim-
ilar time values obtained with theh′F and1H data indicate
the instantaneous nature of the plasma fountain. However,
the later occurrence of resultant ionospheric features can be
explained with their time cumulative nature.

The field-aligned TOPEX TEC cross sections made it pos-
sible to observe the mid-latitude ionosphere at the time of
eachE×B drift velocity event. The various examples at low
and highKp values indicate that the electric field has a poten-
tial to alter the downward plasma flow at mid-latitudes dur-
ing the magnetically quiet and disturbed periods investigated.
Evidence was found that at the evening enhancement of the
vertical upwardE×B drift velocity, when the eastward elec-
tric field becomes increased before sunset, the mid-latitude
ionosphere becomes depleted since the plasma flow from the
plasmasphere to the ionosphere at mid-latitudes became re-
duced by the enhanced eastward electric field. Furthermore,
the appearance of mid-latitude night-time TEC increases co-
incides with the event of vertical upward drift velocity re-
versal. It can be explained with the westward electric field,
which triggers a downward plasma flow from the plasmas-
phere to the ionosphere at mid-latitudes. This plasma flow is
the main source of plasma of these night-time TEC increases
at mid-latitudes. Moreover, the conjugate mid-latitude night-
time TEC increases are maintained during the operation of
the reverse fountain, while the electric field is westward di-
rected and while the downward plasma flow from the plasma-
sphere to the ionosphere at mid-latitudes continues. This pa-
per also gave direct evidence that these low-and mid-latitude
mechanisms associated with the east-west electric fields are
not only substorm phenomena, as Park (1971) suggested, but
also occur during magnetically quiet periods at high sunspot
numbers.

Finally, it can be concluded that this paper gave a compre-
hensive demonstration – with a few, but well selected data
sets – of theE ×B drift velocity events, their resultant iono-
spheric features, their characteristic signatures, their effect
on the low-latitude GPS recordings; and of the ionosphere-
plasmasphere coupling. It also demonstrated how well the
resultant ionospheric features can be observed with the dif-
ferent satellite techniques such as TOPEX and GPS, and
what the practical consequences of these events are on the
transionospheric signal propagation in the equatorial region.

The good agreement found between the experimental obser-
vations obtained with the various different data sets of this
paper and the published results of SUPIM (Balan and Bailey,
1995; Balan et al., 1997; Bailey et al., 1997) and Park (1971)
was highlighted.
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