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Abstract. The interpretation of structure in cusp ion disper-
sions is important for helping to understand the temporal and
spatial structure of magnetopause reconnection. “Stepped”
and “sawtooth” signatures have been shown to be caused by
temporal variations in the reconnection rate under the same
physical conditions for different satellite trajectories. The
present paper shows that even for a single satellite path, a
change in the amplitude of any reconnection pulses can alter
the observed signature and even turn sawtooth into stepped
forms and vice versa. On 20 August 1998, the Defense Me-
teorological Satellite Program (DMSP) craft F-14 crossed
the cusp just to the south of Longyearbyen, returning on the
following orbit. The two passes by the DMSP F-14 satel-
lites have very similar trajectories and the open-closed field
line boundary (OCB) crossings, as estimated from the SSJ/4
precipitating particle data and Polar UVI images, imply a
similarly-shaped polar cap, yet the cusp ion dispersion sig-
natures differ substantially. The cusp crossing at 08:54 UT
displays a stepped ion dispersion previously considered to
be typical of a meridional pass, whereas the crossing at
10:38 UT is a sawtooth form ion dispersion, previously con-
sidered typical of a satellite travelling longitudinally with re-
spect to the OCB. It is shown that this change in dispersed ion
signature is likely to be due to a change in the amplitude of
the pulses in the reconnection rate, causing the stepped signa-
ture. Modelling of the low-energy ion cutoff under different
conditions has reproduced the forms of signature observed.

Key words. Ionosphere (particle precipitation) Magneto-
spheric physics (energetic particles, precipitating, magneto-
pause, cusp and boundary layers)

1 Introduction

The origin of cusp ion dispersion signatures has been dealt
with for observing satellites over a range of altitudes. In this
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paper we shall be concentrating on low-altitude satellite ob-
servations.

1.1 Cusp ion dispersion signatures

During sub-solar reconnection under southward IMF
(Bz < 0), newly-opened field lines allow particles from
the magnetosheath to precipitate through the magnetospheric
cusps into the ionosphere. The velocity dispersion as the par-
ticles travel along field-lines from the point of particle in-
jection means that the more energetic particles of any one
species will reach the ionosphere before the less energetic
particles. The lowest energy ions measured at any point are,
therefore, from the point of reconnection of that field line.
This means that the low-energy ion cutoff is directly related
to the time elapsed since reconnection. On the boundaries be-
tween regions of newly-opened flux, a discontinuity will be
observed if the reconnection is pulsed. The form that the cusp
ion dispersion will take in low-altitude satellite observations
has been modelled by Lockwood and Davis (1996), showing
that near-normal (meridional) and near-tangential (longitu-
dinal) satellite crossings of the OCB give rise to markedly
different signatures. As the OCB is usually roughly L-shell
aligned these near-normal and near-tangential crossings are
meridional and longitudinal in nature. Under pulsed recon-
nection conditions, the model predicts that a meridional pass
will measure a stepped ion signature, as reported by Newell
and Meng (1991) and by Lockwood et al. (1993), whereas a
longitudinal crossing will measure a sawtooth ion signature,
as reported by Pinnock et al. (1995).

1.2 Boundary definitions

A common point of contention in current literature is the
identification of the open-closed field line boundary (OCB).
Here we define the polar cap as comprising of open field-
lines connected to the IMF, hence bounded by the OCB, but
there are difficulties in locating the OCB using different types
of data. For this reason there are many “working definitions”
of the polar cap boundary, including the auroral oval bound-
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aries. Even here there is ambiguity as optical observations
will give different boundaries, dependent on wavelength and
intensity threshold, when compared with particle precipita-
tion. There have been a number of studies linking the pole-
ward auroral emission (PAE) boundary with the polar cap
boundary (Elphinstone et al., 1990; Brittnacher et al., 1999)
and while there are still many questions regarding the valid-
ity of this technique, the correlation between DMSP and UVI
poleward auroral oval boundaries is generally good (Ger-
many et al., 1997; Kauristie et al., 1999; Baker et al., 2000).
On the dayside, separations between the OCB and the PAE
tend to be small.

Sotirelis et al. (1998) have attempted to determine the
shape of the OCB from just DMSP precipitating particle
data, but had difficulties because the OCB shape is variable
on much shorter temporal and spatial scales than the sepa-
ration of the DMSP satellite passes in time and space, par-
ticularly under substorm conditions. Importantly, the low-
latitude boundary layer was taken as being inconsequential to
their results, because it was assumed that it was of small and
constant latitudinal extent – especially near magnetic noon.
The responses of the convection reversal boundary (CRB)
and the pattern of convection, in general, to IMF conditions
have also been well studied (Cowley and Lockwood, 1992;
Lester et al., 1995; McCrea et al., 2000). However, identifica-
tion of the OCB from the CRB is difficult due to the variable
offsets due to viscous-like momentum transfer to closed field
lines and spatial gradients in ionospheric conductivities.

2 Data sets

2.1 DMSP SSJ/4 spectrograms

The Defense Meteorological Satellite Program (DMSP) op-
erates several satellites, each equipped with identical low-
and high-energy SSJ/4 precipitating particle detectors. These
instruments measure electron and ion flux in logarithmically
spaced energy bins from 30 eV to 1 keV and 1 keV to 30 keV
– the redundancy at 1 keV is used for cross-calibration of the
low- and high-energy detectors. The satellites have a polar,
sun-synchronous orbit at a height of∼840 km with an orbital
period of∼102 min.

The DMSP electron precipitation could be used to define
the dayside OCB as the poleward edge of the full magne-
tosheath population. This assumes that magnetospheric elec-
trons flow sufficiently rapidly across the magnetopause along
newly-opened field lines into the magnetosheath, such that
the offset caused by field line convection in the electrons’
time-of-flight can be neglected. At almost the same loca-
tion, the satellite should observe the equatorward edge of
magnetosheath-like electrons that have flowed into the mag-
netosphere along the newly-opened field lines. Sometimes
these signatures overlap, which may indicate an unknown
mechanism is injecting sheath electrons onto closed LLBL
field lines – placing the OCB at the poleward edge of the
magnetospheric electrons. Alternatively, the magnetospheric
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Fig. 1. IMF Bx (top panel),By (middle panel) andBz (bottom
panel) data taken by the MAG instrument on board ACE for 20
August 1998. The vertical marks at 07:38 and 09:22 UT correspond
to the lagged times of the DMSP cusp crossings at 08:54 UT and
10:38 UT, respectively.

electrons may have been prevented from escaping along open
field-lines by a magnetic bottle or a potential drop or may
have gradient-B and/or curl-B drifted from closed to open
field lines – in which case the OCB is at the equatorward
edge of the sheath electrons and the LLBL is open (Lock-
wood, 1997). In addition, a lack of substorm activity over
the previous hours may have caused the energetic magneto-
spheric electron fluxes to have fallen to values below the in-
strument one-count level on some L-shells. Thus, their pole-
ward edge is not always a reliable indicator of the OCB and is
not used here. The satellite positions have been transformed
to MLat/MLT coordinates using the Tsyganenko T89 mag-
netic field model with a standard reference height of 840 km.
Ion precipitation signatures have been shown to depend on
the angle at which the satellite traverses the OCB (Lockwood
and Davis, 1996), but we show that these signatures also de-
pend on the convection velocity and reconnection rate.

This paper examines an event with the observed charac-
teristic of a stepped ion dispersion followed by a sawtooth
ion dispersion, and shows how these dispersions can be in-
terpreted in terms of pulsed reconnection. The 20 August
1998 event was observed during consecutive cusp crossings
by the DMSP F-14 craft at∼08:54 UT and∼10:38 UT, re-
spectively.

2.2 Interplanetary conditions

The interplanetary conditions for the period under study (see
Fig. 1) have been taken from the ACE satellite which is up-
stream of the Earth, along the Sun-Earth line at (XGSE =

248RE , YGSE = 12RE , ZGSE = 24RE , where 1RE is a
mean Earth radius; 6370 km). For this location we can be
reasonably confident that most changes in IMF orientation
measured by ACE will interact with the Earth. The time lag
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Fig. 2. Energy-time electron and ion spectrogram observed by
DMSP F-14 on 20 August 1998, with the cusp crossing from
08:53:36–08:54:09 UT.

from ACE to Earth for this event is estimated from the solar
wind speed to be 76 min. A southward turning of the IMF
occurred at 05:18 UT. From about 04:30 UT to 08:00 UT the
solar wind density was enhanced to an above average value
of np ∼37 cm−3. For the remainder of the period the IMF
was strongly southward (Bz = −5 to −10 nT), with strong
and consistently negative IMFBy . The solar wind speed was
∼345 km s−1; this remained fairly constant throughout the
interval. The vertical dot-dash lines in Fig. 1 are at the lagged
times of the two DMSP crossings studied in this paper. The
IMF By component is similar in the two cases (∼ − 5 nT),
but theBz component is roughly twice as large for the sec-
ond pass (∼− 8 nT with∼− 4 nT for the first pass). Though
the solar wind speed is roughly the same in the two cases,
the concentration,np, is much lower (∼5 cm−3, compared to
∼30 cm−3 for the first pass).

The AE index (data not shown) shows a period of sub-
storm growth from roughly 06:36 UT. This corresponds to
the arrival at Earth of the southward IMF seen at ACE at
about 05:18 UT and thus estimated to arrive at the magneto-
sphere at about 06:34 UT, confirming the propagation lag of
76 min.

3 Results

Energy-time spectrograms are presented in Figs. 2 and 3 for
both electrons and ions, as observed by DMSP F-14. In these
plots the differential energy flux is plotted both as a function
of energy and time of observation.

On 20 August 1998, the DMSP F-14 satellite crossed the
cusp just to the south of Longyearbyen, returning on the fol-
lowing orbit to similar (MLT, MLat) coordinates. In both
these passes, energetic magnetospheric electron fluxes were
too low to show any OCB signature, which is, therefore,

Fig. 3. Energy-time electron and ion spectrogram observed by
DMSP F-14 on 20 August 1998, with the cusp crossing from
10:38:12–10:38:27 UT.
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Fig. 4. Trajectories of DMSP F-14 on successive orbits, mapped in
invariant latitude (MLAT) and magnetic local time (MLT). The blue
track corresponds to the first satellite pass, the red track corresponds
to the second satellite pass. The triangles mark the OCB boundaries
as defined in precipitating particle data.

clearest in the sheath electron data. The orbit paths for these
cusp passes are shown in Fig. 4. The cusp crossings were
from 08:53:36–08:54:09 UT and 10:38:12–10:38:27 UT, re-
spectively. The poleward emission boundary was observed
by the UVI instrument on Polar (see Fig. 5) to move equator-
ward from about 74.3◦ to 71.4◦ MLat. The OCB determined
from the equatorward edge of sheath electrons seen by F-14
was at 73.7◦ MLat and 70.9◦ MLat for the two passes, indi-
cating an overlap of about 0.5◦ in both cases. The electrons
causing this overlap were not seen by the DMSP satellites
(either because they were of too low a flux or because they
were at energies above 30 keV and thus out of the range of the
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Fig. 5. Plots of the Polar UVI data at 08:59, 09:11, 10:39 and 10:48 UT, mapped in invariant latitude (MLat) and magnetic local time (MLT).
The green line indicates the approximate field-of-view.

instrument). We can conclude that the LLBL, be it open or
closed, was only about 0.5◦ in latitudinal width. As the orbit
precession is extremely slow, the satellite trajectory in each
case is very similar. Both cusp crossings display structure in
the ion dispersions, the first crossing exhibiting a stepped sig-
nature and the second crossing displaying a sawtooth signa-
ture. For the first pass upward steps are seen at 08:53:42 and
08:53:56 UT, and these are separated by upward dispersion
ramps, a “stepped” signature. For the later pass an upward
step is again observed at 10:38:13 UT. However, the disper-
sion ramp after this step is downward, giving a “sawtooth”
appearance.

4 Discussion

We have presented two satellite passes with similar trajec-
tories but with clearly different cusp ion dispersions. The
IMF was southward in both cases. Following Lockwood and
Davis (1996) we have searched for a change in the OCB ori-
entation that could explain this. In the time between the two
DMSP passes, the IMFBy has become slightly more neg-
ative, opening the possibility of an asymmetric expansion
of the polar cap favouring the dusk sector. As the required

change in orientation of the OCB is anti-clockwise, and a
negativeBy shift will tend to drag the merging gap dawn-
wards – hence clockwise – any such shift cannot provide the
explanation. Though the field-of-view of UVI is limited at
this time (see Fig. 5), inspection of UVI images shows no
evidence of the OCB orientation change needed.

The observed density enhancement, when lagged to find
the time of arrival at Earth, begins over 3 h before the
first pass. The density then drops from about 30 cm−3, at
07:53 UT, to about 5 cm−3, at 08:07 UT (lagged times of
09:09 UT and 09:23 UT) – over an hour before the second
pass. Any temporal effects with a causal link to the density
drop will have dissipated by this time, so they will not affect
the form of the signature observed. It can be seen, however,
that the ion flux levels are somewhat lower in the second pass
– consistent with this density change.

Structured cusp ion dispersions as a result of pulsed re-
connection from an extended X-line have been modelled by
Lockwood and Davis (1996), showing that different satellite
trajectories can give rise to different ion dispersion signatures
for the same reconnection conditions. The conditions for ob-
serving a stepped or sawtooth signature are dependent on the
ratio of the satellite and boundary velocities (as this is treated
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Fig. 6. A three-panel plot of: the input reconnection rate for the
model under pulsed reconnection; relative positions of the satellite
(dash-dot line) and OCB (solid line); and the modelled low-energy
ion cutoff as observed within the energy range of the DMSP satel-
lites. The model is using a 1-minute reconnection pulse within a
4-min cycle. Pulse reconnection rate,εp = 3 mV m−1; Back-
ground reconnection rate,εb = 0.01 mV m−1; Satellite velocity,
Vs = 3 km s−1.
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Fig. 7. Same as Fig. 6, but forεp = 8 mV m−1.

in 1-D, i.e. there is longitudinal symmetry, all velocities are
considered normal to the merging gap) and are summarised
here.

For a satellite moving poleward with the field lines (i.e. it
is at rest in the de Hoffman-Teller frame), a steady-state dis-
persion will be observed, even though the reconnection rate
is pulsed, because the satellite stays with the same newly-
opened field line. If the satellite velocity exceeds the con-
vection velocity significantly, a stepped signature will result.
Similarly, if the convection velocity is much greater than the
satellite velocity, then a sawtooth signature is observed, even
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Fig. 8. Same as Fig. 7, but forVs = 7 km s−1.

though the reconnection behaviour in space and time is the
same. The plots presented here take equatorward erosion of
the OCB into account and show how a variation in the recon-
nection rate can give both sawtooth and stepped signatures
for identical satellite trajectories. The convection velocity is
dependent on the average reconnection rate, as is the overall
boundary drift.

If the satellite moves equatorward across the OCB (e.g.
DMSP in the dayside Northern Hemisphere), then a stepped
ion signature will be seen if the satellite boundary-normal
velocity is greater than (or equal to) the boundary-normal
speed of equatorward erosion. In this case the satellite will
be moving from older flux tubes to more recently opened flux
tubes. For the case of the satellite velocity being less than the
erosion velocity, the relatively rapid erosion of the boundary
means that the satellite can move onto a flux-tube that has
been open for longer than the one it just left, hence a saw-
tooth signature is seen.

Lockwood and Davis (1996) considered the case of the
same reconnection history and two different pass orientations
relative to the OCB. Here we extend the analysis by consid-
ering different reconnection rate variations but the same pass
orientation relative to the OCB. We have made calculations
using a 1-D simulation of OCB dynamics under pulsed re-
connection. The low-energy ion cutoff at the satellite is cal-
culated as a function of observation time. The input recon-
nection rate behaviour can be pulsed and can include back-
ground reconnection between pulses. For the purposes of
this paper convective flow is assumed to be constant during
reconnection pulses (which have an assumed square-wave
form). In other words, the pulses are inductively smoothed.

The OCB motion can be described as a sum of boundary-
normal flow velocities. The boundary velocity,V b, is gov-
erned by the reconnection rate,ε, and the convection veloc-
ity, V c (Lockwood and Smith, 1992):

Vb = Vc − V ′
= Vc − (ε/B i) · (dy′/dy) , (1)
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whereV ′ is the flow speed across the OCB in its own rest
frame,(dy′/dy) is the mapping factor between the length of
the reconnection X-line and its ionospheric projection andBi

is the ionospheric magnetic field strength.
Between the cusp crossings by the DMSP satellite the IMF

Bz component became more negative, suggesting a possible
cause for the increased rate of reconnection. The average
reconnection voltage is known to be dependent on the mag-
nitude ofBz (Reiff et al., 1981; Freeman et al., 1993; Fedder
et al., 1991). This can occur because the X-line becomes
longer or because the reconnection rate increases, or both.

The model predictions of Lockwood and Davis (1996) for
the cusp ion dispersion signatures observed by satellites trav-
elling meridionally and longitudinally, relative to the OCB
can be reproduced in form by assuming a variation in recon-
nection rate (see Figs. 6 and 7). The key factor is the ratio
of boundary-normal satellite velocity,Vs , to the equatorward
boundary velocity,Vb. Changing the satellite trajectory will
affectVs , possibly affecting the observed cusp ion signature.
However, if the rate of reconnection is varied, the conditions
for the observation of these signatures can be met. The sig-
natures calculated here are longer than is typically observed.
Sawtooth signatures tend to be observed over greater periods,
as they are generally associated with a skimming of the OCB.
These have been observed to last for several hundred seconds
(Pinnock et al., 1995). Stepped signatures, resulting from a
high boundary-normal satellite velocity relative to the OCB,
will be observed with a shorter duration (typically a few tens
of seconds). The model assumes a stable system with regular
reconnection pulses and a large inter-pulse period; also the
one-dimension nature of the model means that the longitudi-
nal extent of the X-line projection is not taken into account.
The calculated signatures are intended to be illustrative and
reproduce the form of the signature.

Figures 6, 7 and 8 show the results of model calculations.
In each case the top panels show the input square wave recon-
nection rate variation with pulses of amplitudeεp, between
which is a background rate ofεb. The middle panels show
the OCB latitude variation (solid line) and the satellite lati-
tude (dot-dash line). The bottom panels show the predicted
low-energy ion cutoff as a function of time as the satellite
passes along the path shown in the middle panel. In each
case, the poleward convection velocity,Vc, was set to a fixed
(inductively smoothed) value of 500 m s−1 and the bound-
ary motion was found by evaluatingVb from Eq. (1). Note
the scales used for each panel are common to all three fig-
ures. Figure 6 is for relatively small reconnection rate pulses
and reveals a classic stepped signature as the satellite moves
equatorward. Figure 7 uses the same reconnection rate vari-
ation, except the amplitude of the pulses,εp, is (8/3) times
larger. It can be seen that the stepped signature has become
a sawtooth form. Figure 8 is for exactly the same reconnec-
tion rate behaviour as Fig. 7, but the spacecraft is moving
along a path that has a much greater meridional component
(as can be seen from the greater slope of the dot-dash line)
and the gradient of the satellite position is once again greater
than that of the OCB position during the reconnection pulse,

i.e. Vs > Vb. It can be seen that this has returned the dis-
persion to a stepped form, the effect modelled by Lockwood
and Davis (1996).

5 Summary

The form of cusp ion dispersion signatures was previously
shown to be dependent on the trajectory of the observing
satellite. Modelling has shown that reconnection rate can
also determine the form of the cusp ion dispersion observed.
Data from consecutive DMSP satellite passes on 20 August
1998 show both stepped and sawtooth signatures. Supporting
data shows that an orientation change in the OCB is unlikely
to explain the change in signature. The most likely cause of
increased reconnection over this period is a 5 nT increase in
the magnitude of the already negative IMFBz that appears to
have increased the amplitude of the reconnection pulses.

We conclude that the rate of reconnection must have in-
creased – if the average reconnection voltage had increased
by a lengthening of the X-line alone, then the signature
would not have changed form. The effect of lengthening the
X-line would be to increase the longitudinal extent of the re-
connection pulses.
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