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Abstract. Sky condition is a matter of interest for public and
weather predictors as part of weather analyses. In this study,
we apply a method that uses total solar radiation and other
meteorological data recorded by an automatic station for de-
riving an estimation of the sky condition. The impetus of this
work is the intention of the Catalan Meteorological Service
(SMC) to provide the public with real-time information about
the sky condition. The methodology for deriving sky condi-
tions from meteorological records is based on a supervised
classification technique called maximum likelihood method.
In this technique we first need to define features which are
derived from measured variables. Second, we must decide
which sky conditions are intended to be distinguished. Some
analyses have led us to use four sky conditions: (a) cloud-
less or almost cloudless sky, (b) scattered clouds, (c) mostly
cloudy – high clouds, (d) overcast – low clouds. An addi-
tional case, which may be treated separately, corresponds to
precipitation (rain or snow). The main features for estimating
sky conditions are, as expected, solar radiation and its tem-
poral variability. The accuracy of this method of guessing
sky conditions compared with human observations is around
70% when applied to four sites in Catalonia (NE Iberian
Peninsula). The agreement increases if we take into account
the uncertainty both in the automatic classifier and in visual
observations.

Key words. Meteorological and atmospheric dynamics (in-
struments and techniques; radiative processes) – Atmo-
spheric composition and structure (cloud physics and chem-
istry)

1 Introduction

Clouds play an important role in the atmosphere over many
different temporal and spatial scales. Time trends, parame-
terizations, feedbacks, radiation processes and global distri-
bution of cloud features are still uncertain, as described by
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the last technical report of the Intergovernmental Panel on
Climate Change (see the IPCC Technical Summary, available
through the Internet at http://www.ipcc.ch/). It is especially
interesting to mention the existence of difficulties in assess-
ing cloud cover in some specific situations.

For cloud cover assessment, ground-based observations of
two kinds are possible: visual observations, which may be
too subjective, and whole sky cameras, such as the ARM
WSI or the Yankee Environmental Systems TSI. Both op-
tions are expensive, thus, limiting the number of observation
sites over the world. In addition, ground-based observations
cannot reach areas greater than approximately 50 km in ra-
dius (Henderson-Sellers et al., 1987). Moreover, given the
upward view of these observations, there are serious difficul-
ties in detecting high clouds when low clouds are present.
There are, however, long time series of ground-based visual
observations at some sites. Furthermore, ground-based ob-
serving systems may offer good spatial resolution when de-
scribing clouds, thus, allowing for mesoscalar phenomenon
detection. Ground-based observations are also important
when cloud position with respect to the Sun is relevant, for
example, in radiative transfer studies (Sabburg and Wong,
2000). One must remember that standard cloud type def-
initions are based on cloud morphology as seen from the
ground.

On the other hand, cloud data can be derived from ra-
diometric measurements from satellites. Satellite observa-
tions can image large geographical areas, and can cover the
whole Earth. Besides, they may be used to obtain physical
characteristics of clouds, such as optical thickness. Obvi-
ously, satellites cannot view the whole Earth continuously:
a satellite’s resolution can be half an hour and some kilo-
meters for geostationary satellites (e.g. METEOSAT) or one
day and 1 km for polar satellites (e.g. MODIS instrument
on TERRA satellite). By the year 2003, Meteosat Second
Generation data will be available, providing better temporal
(15 min) and spatial resolution (1 km at nadir). These res-
olutions match more adequately temporal and spatial char-
acteristic scales of sky conditions, which can be as small as
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tens of minutes and a few kilometers. Another issue is that
satellites have downward views, which make it difficult to
detect low clouds. Specifically, satellite observation of bro-
ken low clouds is highly dependent on surface properties, for
example, detection of cumulus fields over land will depend
on surface reflectance and proportion of cloud shadow on the
surface. In any case, ground-based observations and satel-
lite measurements are complementary (Hughes, 1984; Charl-
son, 2001).

Back on the ground, the number of automatic weather sta-
tions is increasing all over the world, and nowadays there are
regions with good spatial distribution of this type of station.
Very often these stations are equipped with pyranometers, so
studies relating radiation (and other measurements) with sky
conditions might be useful in many places for several rea-
sons. First, they may provide cloud information required by
radiative transfer models with the adequate temporal resolu-
tion. Second, they may produce a sky condition assessment
compatible with the needs of both weather observers and the
general public.

The major aim of this work is to assess the capability of a
methodology to determine sky conditions from meteorologi-
cal data automatically recorded at automatic meteorological
stations. Specifically, the Catalan Weather Service (Servei
de Meteorologia de Catalunya, SMC) is willing to provide
the general public with real-time information about the sky
condition at its meteorological stations. Instead of hiring hu-
man observers, deploying video or photo devices, or analyz-
ing satellite images, we shall explore here a cheap system to
obtain a diagnostic of the sky condition, since it is based on
processing some already measured variables.

The methodology was already introduced by Calbó et al.
(2001), and is synthetically explained in Sect. 2, along with
the database used to apply the method, and the tools used
to test it. Calb́o et al. (2001) used total and diffuse irradi-
ance measurements with a 5 minute resolution to retrieve sky
conditions representative of 1 h intervals. They suggested an
automatic cluster classification technique with a maximum
likelihood criterion; they tested the method for distinguish-
ing different number of clusters, and compared the results
with non-collocated visual observations. Under those con-
ditions, they obtained accuracy indices of 45% (9 clusters)
and 60% (5 clusters). In the present paper, we make use of
the same classification method, but with different variables
and clusters. Specifically, measurements used here are total
solar irradiance, plus other meteorological variables, such as
relative humidity and temperature; diffuse irradiance is not
available. Data resolution is 1 min, while our aim is to de-
termine sky conditions representative of 1/2 h intervals. Four
databases (measurements and visual observations) are used
here. Moreover, the present work is oriented towards the
above-mentioned particular application.

As for previous similar research, Duchon and O’Malley
(1998) developed a method based on thresholds to make a
diagnostic of sky condition in 7 clusters. Their only vari-
ables were two radiative features: a normalized clearness in-
dex and its standard deviation. Long et al. (1999) suggested

the use of a clear sky identification algorithm (Long and Ack-
erman, 2000) to derive the so-called normalized diffuse cloud
effect. This variable is then empirically related to cloud
cover. Tunc (1999) and Kasten and Czeplak (1980) sug-
gested other relationships between radiation measurements
and sky conditions.

2 Methodology

2.1 Classifier

The method we have chosen to assess the sky condition is a
cluster supervised classification technique using a maximum
likelihood criterion (Calb́o et al., 2001). This technique is
often used for pattern recognition in satellite imagery. Back-
ground information for this method can be found in Duda and
Hart (1973), where the theoretical basis is developed, and in
Richards (1995), where application to satellite imagery is ex-
plained.

The first step in the method is building a feature vector
x for a particular case (i.e. for a particular time and site).
The feature vector includesN variables (features) which are
derived from the measured ones. In the present work, the
only variables we want to use are those usually measured by
an automatic weather station: total solar irradiance, temper-
ature, relative humidity, wind speed and direction, pressure
and precipitation. Then, the method calculates values of dis-
criminant functionsgi(x) for each clusterwi . Each cluster
corresponds to each sky condition to be distinguished. Val-
ues of discriminant functions depend on the conditional prob-
ability P(wi |x) that the particular sample represented byx

belong to clusterwi . Finally, the maximum likelihood crite-
rion is:

x ∈ wi ⇔ gi(x) > gk(x),∀k 6= i , (1)

where each discriminant function can be written as:

gi(x) = ln[P (wi)] −
1

2
ln |6i |

−1/2(x − µi)
T 6i

−1(x − µi) (2)

if a Gaussian distribution forp(x|wi) is assumed. In Eq. (2),
µi is the vector of averaged features of all samples belong-
ing to clusterwi; P(wi) is the a priori probability for a sam-
ple to belong to clusterwi , which can be related to the cli-
matic probability; and6i is the covariance matrix obtained
from all feature vectors belonging to clusterwi . This means
that we have built anN dimensional space of features, where
a particular sample (sky condition) corresponds to a point.
Clusters of points, corresponding to similar sky conditions,
are defined through their centers (µi), shapes6i and a priori
probabilitiesP(wi).

Therefore, for a practical application of such a methodol-
ogy, several decisions must be taken: how many and what
clusters are to be distinguished, and how many and what fea-
tures are available to be used. Then, a data set is needed to
calculate values ofµi , 6i , and eventually,P(wi).
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Table 1. Description of the four sky conditions used in our analysis

Cluster Cloud cover (oktas) Sky conditions

# Low clouds Total clouds

1 0–3 0–3 Cloudless or almost
cloudless sky

2 0–6 4–6 Broken or scattered
clouds

3 0–4 7–8 Overcast sky by high
and middle clouds

4 5–8 7–8 Overcast sky by low
clouds or fog

The number and type of features are not fixed by the clas-
sification method, so we have defined a series of features,
derived after measured variables that are supposed to be rel-
evant, i.e. to introduce information for distinguishing among
sky conditions. Subsequently, we have assessed which sub-
group of these set of features produces the best results. All
features are defined over half an hour periods, since it is the
time interval used by the SMC to update its public broadcast
of weather information. Features tested in the present work
are the following: (i) normalized clearness index,Kn; (ii) so-
lar radiation variabilityV AR4; (iii) mean air relative humid-
ity, U ; (iv) mean air temperature,T ; (v) mean wind speed,
W . FeatureKn is the ratio between measured total irradiance
and estimated total irradiance in cloudless conditions at the
same site, date and time; this ratio is corrected to remove the
intrinsic daily evolution due to changes in optical air mass
(Gonźalez and Calb́o, 1999). FeatureV AR4 is directly re-
lated to the difference between the length of the actualKn

vs. time curve and the length of an horizontal curve, which
corresponds to a cloudless sky. The more variable the global
irradiance (and correspondingly,Kn) is in a given period, the
higher this feature (Calb́o et al., 2001).

In this supervised cluster analysis technique, the number
and type of clusters (i.e. sky conditions to be distinguished) is
to be defined by the user. After several preliminary tests, we
adopted 4 clusters for further analysis. These four sky condi-
tions are defined based on the total amount of clouds and the
amount of low clouds (see Table 1). One reason for choosing
these sky conditions is that they correspond approximately to
four categories largely used by the SMC in its weather fore-
casts and public broadcasts of weather information.

2.2 Database and algorithm training

The process to obtainµi, 6i , andP(wi) is called training,
and it is done by using a database, called training set, where
each record of the ensemble is previously (manually) classi-
fied. So we calculateµi and6i from all feature vectorsx
corresponding to records in clusterwi ; while P(wi) may be
estimated as proportional to the number of records in each
cluster.

Table 2. Position of sites and a priori probabilitiesP(wi) for
each site

Station Position P(w1) P (w2) P (w3) P (w4)

Girona 41.9◦ N, 2.8◦ E, 49% 17% 19% 15%
90 m

Lleida 41.5◦ N, 0.5◦ E, 54% 21% 13% 12%
150 m

Sort 42.4◦ N, 1.1◦ E, 54% 24% 7% 15%
700 m

Deltebre 40.7◦ N, 0.8◦ E, 56% 17% 10% 17%
10 m

The database used in the present work contains data from
four different sites representing different climatic regions in
Catalonia, NE of the Iberian Peninsula (see Table 2). There
is an automatic weather station at each site, with the mea-
surements that we need, and an observer that reports total
and low cloudiness and type of clouds. Data were collected
during one year approximately (May 1999 – May 2000), ob-
taining an average of 600 suitable records for each site.

2.3 Evaluation indexes

Once the classifier is trained, we must evaluate its perfor-
mance by using a number of previously and manually classi-
fied records (the so-called test set). In the present work, the
very same database has been used for training and testing the
method, unless otherwise noted.

The score of the method is shown by a contingency ta-
ble called confusion matrix, where each elementCij is the
number of records pertaining to clusteri that have been au-
tomatically classified in clusterj . So the diagonal elements
correspond to the records that have been correctly classified.
Since we have to compare several matrices, we calculated
some indexes that summarize the information in each matrix.

The most commonly used index is the accuracy index

A =

∑
i

Cij∑
i,j

Cij

, (3)

which is the ratio of correctly classified records over the total
number of records. Although its meaning is clear, this index
does not explain anything about how the accuracy is spread
in the matrix. Therefore, we have also used the kappa index

κ =

N ·
∑
k

Ckk −
∑
k

Ck+ · C+k

N2 −
∑
k

Ck+ · C+k

, (4)

whereCk+ =
∑
j

Ckj , C+k =
∑
i

Cik, andN is the num-

ber of samples in the test set. Thisκ index makes a global
assessment of the performance of the classifier; it includes
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Table 3. Description and evaluation indexes for the best classifier
at each station

Station Features P(wi) Confusion A κ

matrix(1)

Girona KnV AR4UT No 118 10 11 2 73% 60%
10 24 10 7
11 5 40 9
1 5 2 39

Lleida KnV AR4UT W No 260 68 3 15 70% 55%
14 91 13 10
3 14 35 25
1 8 8 45

Sort KnUT No 363 23 4 9 67% 45%
114 43 14 30
11 8 15 14
3 6 15 85

Deltebre KnV AR4UT W Yes 125 3 5 2 70% 42%
29 5 5 5
7 1 6 5
7 0 1 20

(1) In the confusion matrix, rows correspond to “observed” classifi-
cation, and columns correspond to “automatic” classification.

the user’s point of view, and somewhat corresponds to the
improvement of the classifier with respect to a random clas-
sification with equal probabilities for all clusters.

3 Results and conclusion

Table 2 shows the a priori probabilitiesP (wi) obtained at
the four sites used in the present work.P(wi) have been ob-
tained as directly proportional to the frequency of appearance
of each sky condition. All sites show a very high probabil-
ity of almost clear skies. Little differences in probabilities of
other sky conditions are related to particular climatic charac-
teristics of each site, for example, Sort is a mountain site in
the Pyrenees, Lleida is known for its continental climate, and
Deltebre is placed just on the Mediterranean coast.

In Table 3, we show a summary of results obtained af-
ter training and testing the automatic classifier. Actually, for
each site we show some description and the evaluation in-
dexes of the best classifier that we have obtained. This means
that a number of trials have been carried out, for example,
to check which features produce the best result at each site.
Note that accuracy indexes are close to 70% at the four sites,
while κ indexes are in a range between 42 and 60%. The
worstκ index corresponds to Deltebre, the site with the low-
est number of records to train and test the classifier.

In general, the two radiative featuresKn andV AR4, plus
humidityU , are the most relevant variables to be considered
for sky condition identification. TemperatureT and, at some
sites, wind speedW may slightly help to improve the accu-
racy of the classifier. Lacking diffuse radiation data, normal-
ized clearness indexKn is the most important parameter be-
cause it gives a measure of extinction of solar radiation (note
that Kn is basically a global transmittance). The following
feature in importance, the variability parameterV AR4, ac-
counts for variations in the normalized clearness index within
the time interval (1/2 h). It takes minimum values when the
clearness index is constant and maximum values when the
clearness index shows large variability. Therefore, it helps
the classifier to detect skies with significant horizontal struc-
ture. Of course, for a cloudiness horizontal pattern to be
detected as temporal variability, some change (either in the
pattern itself or in the position of the pattern relative to Sun
or the pyranometer) must occur. Note that at Sort we could
not useV AR4, since 1-min data needed for computing vari-
ability was not available at this site. This is the reason that
explains poorer performance of the classifier at this site, and
confirms the interest of using short interval measurements to
compute radiation variability. Relative humidity also adds
some information in the classifier. This is easily explained:
generally speaking, the higher the cloud cover and the lower
the cloud level, the higher the humidity, i.e. low-level clouds
are usually associated to high relative humidity.

We checked the effect of using or not using the a priori
probabilities. At all sites but one (Deltebre), the classifier ob-
tains higher scores when equal probabilities for all sky con-
ditions are used. We think that the very high a priori proba-
bility of class 1 (which is explained by its coastal position),
plus the low number of suitable samples for training and test-
ing at Deltebre, are the reasons for this particular behaviour
at this site.

As far as the number of clusters (sky conditions) chosen is
concerned, we looked for a balance between the number of
clusters and the accuracy of the algorithm. This balance is
met when using 4 clusters, which are also directly related to
the symbols of weather forecasts published by the Sevei de
Meteorologia de Catalunya. With these 4 sky conditions, the
accuracy index is the already mentioned 70%, while analyses
not shown here with the same databases concluded that with
5 clusters, the index is lowered to approximately 60%. Note
that 60% accuracy for 5 clusters is the same figure that we
had obtained in our previous work (Calbó et al., 2001). In the
present work, we consider that for the practical application
that is intended, 70% accuracy is more suitable.

All results shown in Table 3 were obtained using the same
set of data for training the classifier and for testing its perfor-
mance. In addition, all results correspond to using samples
with solar altitude greater than 20◦. The effect of limiting the
use of the classifier to such cases is a significant improve-
ment of its performance. We relate this effect to problems
with measurements (cosine effect of pyranometers, occulta-
tion of the Sun behind some obstacles in the horizon, etc.),
with visual observation of clouds when the Sun is just over
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the horizon, and with featuresKn andV AR4 (cloudless sky
irradiance estimate is usually poorer for low solar altitudes).

We also checked the effect of using different data sets for
training and testing the classifier for Lleida site, splitting the
database into two sets. One set was used to train the classifier
and the other one to test it. Depending on the particular case,
the evaluation indexκ ranged from 44% to 47%, versus a
value of 55% when the very same data were used as a training
set and testing set. The assessment with different data sets is
formally more correct, but we could not use different data
sets at all sites, since the number of suitable records was not
big enough.

At Girona, some additional observations were available,
along with the standard cloud observations and meteorolog-
ical data. This additional information allowed us to find at
least three significant sources of misclassification of samples.
First, very thin clouds, or clouds that lie far from the solar
beam, are hardly detected, since they create little change in
total solar radiation. As some authors have concluded (Long
et al., 1999), diffuse radiation is a key measurement to deal
with these sky conditions. Diffuse radiation, however, is not
a typical measurement at automatic meteorological stations,
and is not available at the sites used in the present work.

Second, human observations, which are the basis of the
“correct” classification, are subjective. Thus, different ob-
servers may have some bias in recording cloud observations,
both regarding the fractional sky cover and the cloud type.

Third, the discreteness of cloud cover measurements (an
entire number between 0 and 8 oktas) provides that little dif-
ferences in the actual sky that may change the “correct” sky
condition classification of a particular sample, while features
are almost unchanged (thus leading to identical automatic
classification).

In order to consider the combined effect of the two latter
issues, we have assigned an uncertainty of 1 okta in observa-
tions of cloud cover. Then, we have re-assessed the perfor-
mance of the classifier. At Girona, for example, the accuracy
index A improves up to 80%, versus the initial 73%. More-
over, another way to account for the uncertainties involved
is to count as correct all samples that are classified in clus-
ters close to the actually correct one. In other words, one
computes the accuracy index including not only values in the
diagonal of the confusion matrix, but also values that are be-
side the diagonal. For Girona, this means an improvement
of A from 73% to 87%, and ofκ from 60% to 82%. Ob-
viously, these values should be considered as maximum val-
ues, and are given here to provide an estimate of the effect of
uncertainty in visual observation of clouds on the automatic
classifier applied in the present work.

In summary, we can say that an automatic classifier based
on maximum likelihood techniques, as suggested by Calbó
et al. (2001), may be applied to determine the sky condition
over a site, with an expected accuracy greater than 70%. This
figure is obtained as an approximate average of applying such
a technique at four sites in Catalonia, trying to distinguish be-
tween four different sky conditions, and using typical mea-
surements available in automatic weather stations. Since an-

other sky condition (precipitation) is immediately diagnosed
from the rain gauge measurement, the overall accuracy for
five sky conditions is even higher. Moreover, if we consider
that a possible user of this information (i.e. the general public
to whom the weather broadcast is addressed) is not interested
in the exact cloud cover, the percentage of cases that may be
labelled as correct should also be higher.

In principle, this technique may be applied to any site
where an automatic weather station equipped with a pyra-
nometer is available. Since the classifier may be trained with
data from the very same site, eventually it can be adapted to
any climate. In agreement with the Catalan Meteorological
Service, plans for our research team include to keep testing
this technique at other sites, and to implement it in the algo-
rithm that continuously manages automatic station data for
real-time broadcast of meteorological information.
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