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Abstract. Multivariate vertical Empirical Orthogonal Func-
tions (EOF) are calculated for the entire Mediterranean Sea
both from observations and model simulations, in order to
find the optimal number of vertical modes to represent the
upper thermocline vertical structure. For the first time, we
show that the large-scale Mediterranean thermohaline ver-
tical structure can be represented by a limited number of
vertical multivariate EOFs, and that the “optimal set” can
be selected on the basis of general principles. In particu-
lar, the EOFs are calculated for the combined temperature
and salinity statistics, dividing the Mediterranean Sea into
9 regions and grouping the data seasonally. The criterion
used to establish whether a reduced set of EOFs is optimal
is based on the analysis of the root mean square residual er-
ror between the original data and the profiles reconstructed
by the reduced set of EOFs. It was found that the number
of EOFs needed to capture the variability contained in the
original data changes with geographical region and seasons.
In particular, winter data require a smaller number of modes
(4–8, depending on the region) than the other seasons (8–9 in
summer). Moreover, western Mediterranean regions require
more modes than the eastern Mediterranean ones, but this
result may depend on the data scarcity in the latter regions.

The EOFs computed from the in situ data set are compared
to those calculated using data obtained from a model simula-
tion. The main results of this exercise are that the two groups
of modes are not strictly comparable but their ability to repro-
duce observations is the same. Thus, they may be thought of
as equivalent sets of basis functions, upon which to project
the thermohaline variability of the basin.
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1 Introduction

The Mediterranean Sea has been the site of major interna-
tional scientific programs that have set the scene for the mod-
ern study of the thermohaline variability of this basin. A
comprehensive historical in situ data set has been collected
and disseminated (Medatlas, Fichaut et al., 1998) and nu-
merical models have been extensively used to simulate the
large-scale circulation at the seasonal and interannual time
scales (Pinardi and Masetti, 2000). In addition, the Mediter-
ranean Forecasting System Pilot Project (MFSPP, Pinardi
et al., 2003) has begun investigations for the forecasting of
the Mediterranean Sea large-scale circulation based upon the
scientific knowledge of the processes, a near real-time ob-
serving system (Pinardi et al., 2002) and data assimilation
scheme. This paper contributes to the description of the
Mediterranean Sea thermohaline structure for general pur-
poses and as part of the necessary knowledge required for
the proper assimilation of in situ data with the Optimal Inter-
polation scheme used in MFSPP (Demirov et al., 2003).

The thermohaline vertical structure of world ocean basins
is represented by evaluating pertinent temperature-salinity
(T-S) diagrams obtainable from in situ data sets. Recent
works (De Mey and Robinson, 1987; Fukumori and Wun-
sch, 1991) have shown that multivariate Empirical Orthog-
onal Functions (EOF) can efficiently synthesize the infor-
mation contained in the T-S diagrams with the possibility
of reducing the size of the representation, since only few
modes are able to capture the vertical variability in the ocean.
This means that, for open ocean conditions and long time
scales (from synoptic to seasonal), it is possible to reduce
the vertical complexity or degrees of freedom of a dynami-
cal state variable. In other words, if8(x, y, t, z) is the dy-
namical variable, and we can separate it as8(x, y, t, z) =

6iαi (x, y, t) ei(z), then only a reduced number ofei could
be used if the basis functions are vertical EOFs.
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Fig. 1. Regional breakdown of the Mediterranean Sea with the positions of Medatlas casts indicated by crosses in the plot. The regions
are the following:(1) Alboran Sea;(2) Algerian Basin;(3) northwestern Basin;(4) Tyrrhenian Sea;(5) Adriatic Sea;(6) Strait of Sicily;
(7) Ionian Sea;(8) Aegean Sea;(9) Levantine Basin.

This important discovery has led recently to the devel-
opment of reduced order data assimilation techniques, such
as the Scheme for Ocean Forecasts and Analysis (SOFA,
De Mey, 1997) used in MFSPP. Such a scheme projects the
difference between observations and model first guess (mis-
fit) into vertical EOFs and reduces the OI technique to a
two-dimensional instead of a three-dimensional multivariate
problem. However, EOFs should be checked carefully and
should be significant if they are to play such an important
role in the assimilation.

For the Mediterranean Sea, vertical EOF studies have been
undertaken for isolated regions with in situ data (Hecht et al.,
1988; Nittis et al., 1993) and for model simulations (Kor-
res et al., 2000b). In these studies, it was again shown that
a small number of vertical modes could explain most of the
vertical variance in the temperature and salinity profiles, and
even fewer modes could represent the dynamic height ver-
tical structure. The vertical EOFs were also interpreted in
terms of known water masses but the in situ data were very
limited on the time and space scales. A consistent analysis of
an extensive Mediterranean in situ data set has not been done
before this work.

In this paper, optimal sets of bivariate EOFs for the com-
bined temperature and salinity variability in the Mediter-
ranean basin are calculated and shown to be able to efficiently
reproduce the statistics of the vertical thermohaline structure
of the basin. Particular attention has been paid to study the
“significant” bivariate EOFs and “optimal” reduced set of bi-
variate EOFs. Only the water column from the surface to
480 m was investigated, which is the standard sampling depth
limit for most XBTs.

The paper is organized as follows. In Sect. 2, we present
the in situ and model data sets, and the method used to calcu-

late climatologies. In Sect. 3, we describe the methodology
used for the EOF calculations and the methods adopted for
defining the “optimal” reduced EOF subspace and the “sig-
nificant” EOFs. In Sect. 4, we discuss the seasonal variabil-
ity of the in situ and model simulation data sets. In Sect. 5,
we present the bivariate EOF structure from both in situ and
model simulation data. In Sect. 6, we compute the optimal
set of reduced modes capable of reproducing the observed
temperature and salinity profiles. Finally, a summary of the
results and the conclusions are presented in Sect. 7.

2 The data bases

2.1 In situ data

The in situ data used in this study are temperature and salinity
profiles from the Medatlas hydrological database prepared
by a consortium of several Mediterranean data centers fol-
lowing a common protocol (Fichaut et al., 1998). The proto-
col includes a quality control procedure based on the recom-
mendations of the Intergovernmental Oceanographic Com-
mission (IOC) and the European Marine Science and Tech-
nology Program (MAST). Data quality checks consisted of
controlling whether individual values fell within the specific
minimum and maximum values defined for recognized rect-
angular sub-regions (see Fig. 1 in Fichaut et al., 1998), and
evaluating the behaviour of the same values with respect
to accepted limits based on pre-existing statistics obtained
from the LEVITUS climatology (Levitus et al., 1994) and
the MODB climatology (Brasseur et al., 1996).

CTD and bottle data acquired from 1970 to 1995 were ex-
tracted from Medatlas; only data passing the imposed quality
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Table 1. Temporal breakdown by season, by month, and by region
of the in situ profiles from the Medatlas data set whose minimum
depth is 480 m

REGION 1 2 3 4 5 6 7 8 9

Jan 9 20 45 7 0 2 17 1 1

Feb 9 22 324 11 1 3 16 2 25

Mar 31 32 329 117 8 47 28 36 34

Winter 49 74 698 135 9 52 61 39 60

Apr 70 31 206 17 6 0 72 12 99

May 71 33 131 25 9 0 18 10 31

June 25 203 187 16 0 15 52 0 2

Spring 166 267 524 58 15 15 142 22 132

July 23 84 223 79 4 11 70 4 16

Aug 3 14 36 29 4 12 15 3 31

Sept 39 38 44 35 1 14 136 13 44

Summer 65 136 303 143 9 37 221 20 91

Oct 72 58 64 62 6 24 70 8 149

Nov 21 41 78 12 1 22 236 5 80

Dec 7 22 83 28 4 0 14 3 0

Autumn 100 121 225 102 11 46 320 16 229

Grandtotal 380 598 1750 438 44 150 744 97 512

checks (indicated by a control flag equaling 1) were selected
providing a total of 22 268 profiles. Our analysis was done in
order to study the upper thermocline variability, so the maxi-
mum depth selected for our profiles is 480 m which contains
most of the seasonal, mesoscale and interannual variability
signal. The original profiles were linearly interpolated at 16
standard levels (5, 15, 30, 50, 70, 90, 120, 160, 200, 240, 280,
320, 360, 400, 440, 480 m) and reorganized into 9 smaller
data sets, one for each region shown in Fig. 1. The first and
foremost criterion we adopted to divide the Mediterranean
Sea into sub-regions had a physical basis, that is the known
variability associated with the dynamical regimes peculiar to
different areas, following Pinardi and Masetti (2000). The
second criterion is purely numerical and its application en-
sures that enough data are available for the EOF calculation
in each region. Essentially, the 9 regions we identified thus
satisfy these two requirements. We are aware that a more de-
tailed subdivision of the Mediterranean Sea would have been
better from a purely oceanographical point of view, and that
this would have produced different EOFs, but the actual dis-
tribution of in situ data unfortunately does not permit this.

Each regional data set was then carefully checked, in or-
der to eliminate all the profiles containing density inversions
in the vertical, to ensure vertical stability. Then, unreason-
able data were identified level by level as those exceeding the
seasonal mean by more than 3-standard deviations and elim-
inated. Finally, incomplete profiles, namely those containing
gaps in the vertical or shallower than 480 m of depth were
discarded. At the end of this processing, the set of observa-

Table 2. Temporal breakdown by season and by region of the sim-
ulated profiles whose minimum depth is 480 m

REGION 1 2 3 4 5 6 7 8 9

Winter 764 4195 3485 3391 441 858 7388 1069 9036

Spring 774 4210 3446 3416 423 886 7534 1073 8995

Summer 768 4161 3465 3419 434 872 7568 1057 8849

Autumn 760 4180 3465 3405 443 871 7474 1045 8966

tions shrunk to a total of 4713 profiles. The distributions by
season, by month, and by region of the final set of observa-
tions are indicated in Table 1 and the crosses in Fig. 1 show
their geographical location. The uneven distribution in both
time and space is clearly notable.

2.2 Model data

The model data used are monthly mean fields of temperature
and salinity from a model simulation done for the period Jan-
uary 1979 – December 1993. The model simulation is doc-
umented in Demirov and Pinardi (2002), and here we will
describe only a few of its characteristics.

The model used in MFSPP is the Modular Ocean Model
(MOM), which was adapted to the Mediterranean Sea by
Roussenov et al. (1995). The model grid has 31 vertical lev-
els, as in Korres et al. (2000a), and a horizontal resolution
of 1/8◦

×1/8◦, which does not include the northern part of
the Adriatic Sea. Horizontal turbulent mixing is biharmonic,
with tracer coefficients equal to 1.5×1010 m4 s−1 and mo-
mentum coefficients equal to 2×1010

∼m4 s−1. Vertical tur-
bulent processes are parameterized by a constant turbulent
diffusion coefficient set to 0.3×10−4 m2 s−1 and a viscosity
coefficient equal to 1.5×10−4 m2 s−1. A standard convective
adjustment procedure (Cox, 1984) is applied when static in-
stability appears in the water column. This vertical mixing
scheme choice has been studied in the previous work of Ko-
rres et al. (2000a) and Castellari et al. (2000).

The transport through the Strait of Gibraltar is parameter-
ized by extending the model area westward of Gibraltar up to
a longitude 9.25◦W. In this Atlantic box, lying between lati-
tudes 33◦30′ N and 37◦ N, the surface forcing is switched off,
and the temperature and salinity are relaxed towards annual
mean climatological fields.

The surface forcing is computed in an interactive way
with 6-hourly ECMWF (European Center for Medium Range
Weather Forecast) atmospheric reanalysis fields and Sea Sur-
face Temperature (SST) from the model. The different com-
ponents of the surface net heat flux are computed on the basis
of the parameterizations of Reed (1977) for the surface solar
radiation flux, of Bignami et al. (1995) for outgoing, long-
wave radiation, and of Kondo (1975) for sensible and latent
heat fluxes. The bulk formulation of Hellerman and Rosen-
stein (1983) is used in the wind stress computation. Descrip-
tions of the implementation and test of the surface momen-
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tum and heat flux parameterizations can be found in Castel-
lari et al. (1998, 2000). The meteorological data used are
the atmospheric temperature and humidity at 2 m and wind
components at 10 m. Cloud cover is taken from the monthly
mean COADS data (Da Silva et al., 1994). The sea surface
water flux is parameterized with a salt flux given by the re-
laxation of model sea surface salinity towards a new clima-
tology called MED6 (Brankart and Pinardi, 2001), that we
will better describe in the following section. The relaxation
constant is 2 m/days everywhere.

To reduce the amount of data to process, the original data
set was subsampled at 1/2◦

×1/2◦ horizontal resolution. The
remaining data set was pre-processed with the same proce-
dure used for the in situ data set, in order to eliminate the
unreasonable and critical values. The distribution by season
and by region of the data suited to the study is shown in Ta-
ble 2. Obviously, in this case, the data distribution is regular
both in space and in time.

2.3 Climatology

The temperature and salinity fields that will be used in our
calculations are the departures of the observed or simulated
variables from some seasonal climatology. We have two pos-
sible choices for the climatology: a regional mean profile,
that is the average of all the profiles available in a given re-
gion, or a gridded climatology, computed by objective map-
ping. The first is the standard approach in this type of cal-
culation and it is widely used in literature (e.g. Fukumori
and Wunsch, 1991; Gavart and De Mey, 1997; Maes, 1999).
The second was used first in Faucher et al. (2002) and it
looks more promising since it considers the spatial variabil-
ity of the mean within each region. Whatever the choice,
when calculating the departure from monthly mean clima-
tologies, we will obtain anomalies containing information
at both the interannual and the mesoscale time frequencies.
Due to scarcity of data, we cannot distinguish between the
two frequencies and we will consider the full anomaly sig-
nal. Thus, we decided to subtract from the original data the
monthly gridded climatology.

Different climatologies were used for in situ and model
data calculated from each of the two data sets. The model
data climatology was simply calculated by averaging all the
profiles resulting at different times at each grid point, and
grouping them by month. Regarding the in situ data, we
used the monthly averaged MED6 climatology with a hor-
izontal resolution of 0.25◦ calculated from the Medatlas data
set (Brankart and Pinardi, 2001), applying an improved ob-
jective analysis technique already used for calculating the
MED2 climatology (Brasseur et al., 1996).

3 Methods

3.1 Multivariate vertical EOF

The EOF analysis and its equivalent formulation, the Prin-
cipal Components analysis, are tools widely used in atmo-

spheric science and oceanography (see, for instance, Lorentz,
1956; Preisendorfer, 1988; Fukumori and Wunsh, 1991; and
many others). One of its common applications is in reducing
the dimensionality of a problem, and in transforming inter-
dependent coordinates into significant and independent ones
(e.g. De Mey, 1997; De Mey and Benkiran, 2002). Our cal-
culation is based on a bivariate approach that isolates the pri-
mary modes of the combined variance of temperature and
salinity profiles (e.g. Gavart and De Mey, 1997; Maes, 1999).

Without entering into the details of the method, we will
hereupon give a summary of the procedure we adopted so as
to clarify the notations and conventions that were employed
specifically by us. Following Gavart and De Mey (1997), any
hydrological temperature and salinity profile is transformed
into a state vectorx containing the 2M variables needed to
describe the ocean thermohaline state in the vertical, that is:

x = [x1, . . . , x2M ] =

[
δT1

σ T
1

, . . . ,
δTM

σ T
M

,
δS1

σ s
1

, . . . ,
δSM

σ S
M

]
,(1)

whereM is the number of vertical levels andδTk = (Tk −

T clim
k ) and δSk = (Sk − Sclim

k ), k = 1, . . . M, are the de-
partures or anomalies from the climatology at each vertical
level, normalized by their standard deviation from climatol-
ogy,σk:

σ T
k =

√√√√ 1

N

N∑
n=1

(
Tk − T clim

k

)2
n

,

σ s
k =

√√√√ 1

N

N∑
n=1

(
Sk − Sclim

k

)2
n

k = 1, . . . M . (2)

Here,N is the number of observations at each level (i.e. the
number of vertical profiles). Different normalization factors
(2) were calculated for each vertical level. In doing so, we
ensure that the first EOF modes will capture the bulk of the
variability in the section of the water column that was consid-
ered, thereby representing the variances relating to its upper
and deeper portions as well. Alternatively, we could have
used uniform (in the vertical) normalization factors, but in
this case, the first EOF modes would have represented mostly
the variability associated with the upper levels which are
characterized by a higher variance.

We obtained the vertical EOFs as the eigenvectors of the
covariance matrix,C, calculated over the set of realizations
of x (theN profiles) using the MATLABR© function pcacov.
The amount of variance accounted for by each eigenvector,
ei , was calculated, as usual, as the Percentage of Variance
Explained (PVE):

PVEi =
100· λi

2M∑
k=1

λk

. (3)

Since the first eigenvalue has normally the largest value, the
first mode accounts for the largest variance in the water col-
umn.
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The complete set of eigenvectors above forms an orthonor-
mal and complete basis in which we can represent each state
vector according to

x =

2M∑
i=1

aiei, (4)

where theai are the amplitudes or scores or principal com-
ponents.

3.2 Reducing the order of the EOF space: the optimal set
of EOF

Generally, a limited number of EOFs are able to describe
most of the variance in a data set, in particular those with the
largest eigenvalues. This reduced set of EOFs can be used
to represent efficiently the physical field under study, and
we call this subset the “optimal set”. The capacity to rep-
resent a physical state in a reduced order form, preserving its
physical significance, is a fundamental requirement in prac-
tical assimilation problems, where the order reduction could
diminish significantly the size of the algebraic calculations
involved (De Mey, 1997; De Mey and Benkiran, 2002).

There are, however, several methods to decide what is the
“reduced and/or optimal” set of EOFs, and we will list here
the few that we have used. Provided we have identified the
m < 2M dominant modes, the state vector can be repre-
sented by the truncated form,

xr
∼=

m∑
i=1

aiei (5)

Among all the possible basis functions, the EOFs are the
optimum set for a given truncationm because they minimize
the residual variance (Lorenz, 1956), i.e.:

R =
1

N

N∑
n=1

r2
n =

1

N

N∑
n=1

(x − xr)
2
n . (6)

As before,N is the number of observations at each depth,
the latter being indicated by the vector of dimension 2M. The
square root ofR is also referred to as the root mean square
residual error (e.g. Fukumori and Wunsch, 1991).

The most common and simplest approach to establish
the optimum truncation index is described in Preisendorfer
(1988; page 192). One first examines the sequence of eigen-
values,λ1 ≥ λ2 ≥ . . . ≥ λ2M , and looks at their magnitudes.
Occasionally, after a certain index, the values drop abruptly
and remain relatively small. The sharp change of slope in
the eigenvalue curve indicates that the last eigenvectors are
trying to fit the noise in the given profiles. The index value
corresponding to a large drop inλ values can hence be cho-
sen as the truncation indexm in Eq. (5). Concurrently, the
structure of the firstm eigenvectors looks simpler and less
“noisy” than the structure of the higher modes. Preisendorfer
(1988) also listed a number of selection rules based on sta-
tistical hypotheses to separate signal and noise eigenvalues.
Of these, “Rule N”, a dominant-variance rule that is based

on the premise that the larger-variance terms are associated
with the signal, is often used (e.g. Preisendorfer et al., 1981;
Frankignoul and Reynolds, 1983; Korres et al., 2000b). This
rule simulates random sampling of data from a normal pop-
ulation – the noise subspace – by means of a Monte Carlo
procedure, and builds up a cumulative distribution for each
eigenvalue. By testing the null hypothesis that the data sam-
ple has been drawn from the normal population, it identifies
the significant eigenvalues at the 5% level of significance as
the ones larger than the 95% point on the cumulative distri-
bution of the noise spectra. Due to its statistical nature, this
selection rule could fail when the sample size is small (as it
is with our in situ data set), when the data are highly non-
normally distributed, or when correlations in the data set are
large. Thus, we adopted a further criterion based on the com-
parison between the vertically averaged standard deviations
from climatology obtained as a weighted vertical average of
(2):

σ T =

M∑
k=1

(
pkσ

T
k

)/ M∑
k=1

pk σ S =

M∑
k=1

(
pkσ

S
k

)/ M∑
k=1

pk(7a)

and the weighted vertical average of the root mean square
residual, defined using Eq. (6),

rms(δT ) =

M∑
k=1

(
pkσ

T
k

√
Rk

)/ M∑
k=1

pk

rms(δS) =

M∑
k=1

(
pkσ

S
k

√
Rk

) / M∑
k=1

pk, (7b)

where the weightspk-s are calculated as the difference be-
tween adjacent depths and the sum is extended over the full
set of vertical levels. The criterion consists of choosing the
indexm such that the vertical averaged residualrms is much
less than the observed vertically averaged standard deviation.
This means that the ratio of Eq. (7b) to Eq. (7a) should be
small and in fact, the truncation index was chosen in such a
way that this ratio had to be less than 0.3, a threshold value
which ensures that a variance greater than 90% is explained.
Considering that the levels close to the surface have the high-
est variance, the criterion is more rigorous if it is applied by
partitioning the water column into two parts: from 0 to 200 m
and from 240 m to 480 m. Thus, the value ofrms(δT ) and
rms(δS) were calculated for the above two layers separately,
as a function of an increasing truncation index.

3.3 Statistical significance of EOFs

Most of the papers involving EOF calculations in atmo-
spheric and oceanic science associate the concept of statis-
tical significance with the operation of separating the subset
of “significant” eigenvalues that constitute the signal-space
from that which constitutes the noise-subspace, with the ob-
jective – discussed in the previous paragraph – of reducing
the dimensionality of a problem (e.g. Korres et. al., 2000b)
or filtering the data (e.g. Frankignoul and Reynolds, 1983).
The procedures adopted in these cases are statistical tests,
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often based on Monte Carlo simulations, that generate the
probability distribution necessary to identify the group of
“significant” eigenvalues by testing a null hypothesis at some
prescribed level of statistical significance. The already men-
tioned RuleN (see Sect. 3.2) is an example. Apart from their
utility in identifying a truncation point for the reduced set of
EOFs, these procedures do not really address the question of
the quality of the estimation of the EOF patterns. Moreover,
it is difficult, if not impossible, to build the required proba-
bility distribution when the available sample size is small, as
it is with our in situ data set.

The evaluation of the quality of the estimated EOF is an
important issue, especially when the sample size is small and,
therefore, provides only a rough estimate of the covariance
matrix. It obviously follows that the calculated EOFs will
also be only a rough estimate of the true ones. Von Storch
and Hannoscḧock (1986) showed that the sample eigenvalues
are biased estimators of the true eigenvalues, the bias being
inversely proportional to the number of independent samples.
Generally, the largest eigenvalues are overestimated and the
smallest ones are underestimated. Consequently, the sample
variance expressed by the corresponding EOF is systemati-
cally an over- or under-estimation of the true variance.

Moreover, sampling errors occur when the available sam-
ple is too small. North et al. (1982) demonstrated that when
the eigenvalues are closely spaced, the corresponding EOFs
could be a bad approximation of the true ones, if the sam-
pling error is comparable to the spacing of the eigenvalues.
They formulated a rule-of-thumb to evaluate the sampling
errors involved in the EOF calculations and thereafter, to de-
termine if a particular EOF is significantly different from its
neighbour. This rule is very easy to apply and suitable for our
study. So we decided to adopt it as an empirical test of sta-
tistical significance for our calculations. Some more details
on this rule are given below.

Using standard linear analysis arguments, North et al.
(1982) evaluated the “typical errors” of the eigenvalues and
eigenvectors as:

δλk ≈ λk ·

√
2

N
(8a)

δek ≈
δλk

λj − λk

· ej , (8b)

whereλj is the eigenvalue closest toλk andN is the number
of independent samples. The following “rule-of-thumb” was
then formulated:
“If the sampling error,δλk, of a particular eigenvalue is com-
parable to or larger than the spacing betweenλk and a neigh-
boring eigenvalue,λi , then the sampling errorδek for the
EOF associated withλk will be comparable to the size of the
neighboring EOF,ej ”.

Consequently, a kind of degeneracy occurs for which the
two EOFs are intrinsically ambiguous; in fact, any linear
combination of them is also an eigenvector. When this hap-
pens, different sampling methods will lead to drastically dif-
ferent EOFs, depending on the combinations between degen-

erate EOFs that are picked up. It follows that the particular
EOF is not properly resolved and caution is called for when
trying to provide a physical interpretation. The occurrence or
not of degeneracy depends on the quantity of data processed:
the more data, the smaller the “typical errors” in Eqs.(8a, b).

4 Analysis of the data sets

4.1 The climatology

In this section, we will discuss the characteristics of the cli-
matology used for the computations of anomalies. The sea-
sonal characteristics of the climatological temperature and
salinity fields are displayed in Figs. 2 and 3 for the in situ
and the model data. We show the temperature and salinity
fields corresponding to the depths of 50 and 280 m for winter
and summer, where winter is the average of January, Febru-
ary and March, and summer is the average of June, July and
August. The two depths above were chosen as representa-
tive of the surface and intermediate layers, where two dif-
ferent Mediterranean water masses are found. The surface
water layer contains the so-called Modified Atlantic Water
(MAW) due to its origin and successive modifications in-
duced by mixing processes. MAW occupies typically the
first 100–200 m, and is characterized by low salinity values.
How low these values are depends on the geographical lo-
cation: the closer the sampling location is to Gibraltar, the
fresher and more superficial this layer is. The second layer
is representative of the Levantine Intermediate Water (LIW),
which is formed in the eastern Mediterranean during win-
ter and spreads throughout the Mediterranean at intermedi-
ate depths. The LIW is characterized by a subsurface salinity
maximum that is higher and shallower near the formation re-
gion. Since the cores of these water masses occupy different
depths in several parts of the basin, the chosen depths are
only partially representative of them.

Comparing Figs. 2 and 3, it is evident that the climatology
simulated by the model and MED6 are rather alike. Similar
features are observed on the basin scale, but differences exist
in regions where data scarcity is larger. This is the case for
the salinity field at 280 m in the southern Ionian Sea, where
a patch of low salinity waters is present, probably due to
the extrapolation done by the objective analysis technique.
On the other hand, the model shows a drift toward a fresher
and warmer climate due to unresolved physical processes.
Model drift has been documented in several papers during the
last few years (Roussenov et al., 1995; Demirov and Pinardi
2002). Generally, it is due to surface forcing inaccuracies that
produce water masses which are different from those that are
present in reality, and to the Gibraltar Strait parameterization.

Both the temperature and salinity distributions show a pos-
itive west-east gradient. In winter, the temperature difference
between west and east is 4◦C at 50 m depth in both climatolo-
gies (Figs. 2a and e), but the absolute values are 0.2◦C higher
in the model than in MED6. In summer, the same gradient
is 7◦C and the difference between model and in situ values
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Fig. 2. Winter MED6 and model climatological fields at 50 m and 280 m.
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MED6 climatology - SUMMER
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Fig. 3. Summer MED6 and model climatological fields at 50 m and 280 m.
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Fig. 4. Vertical profiles of the standard deviations from climatology for temperature (solid curve) and salinity (dotted curve). The in situ data
for the nine regions (indicated in the lower right corner) are shown for winter(a) and summer(b). Model simulation results are shown in(c)
for winter and(d) for summer (Fig. 4 continues).
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Fig. 4. ... continued.
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Fig. 5. Mean winter vertical structure of temperature (solid line) and salinity (dashed line) calculated as regional averages for(a) Algerian
Basin,(b) northwestern Basin and(c) Levantine Basin.

increases up to 1◦C (Figs. 3a and e). The seasonal variations,
affecting predominantly the surface, are greater in the eastern
than in the western Mediterranean, partially due to the lower
latitudes of the eastern basin and the different air-sea interac-
tion processes that are occurring. At the intermediate level,
the Ionian and Tyrrhenian Seas are found to be warmer in the
case of the model data than in the case of the in situ data by,
respectively, 0.3–0.6◦C and 0.3◦C in winter (Figs. 2b and f)
and 0.3◦C and 0.6◦C in summer (Figs. 3b and f).

The salinity gradient between west and east is not affected
as much by the seasonal changes as the temperature gradi-
ent is. Comparing the salinity fields at 50 m, we note a gen-
eral agreement between the results obtained with the model
and the in situ data both in winter (Figs. 2c and e) and in
summer (Figs. 3c and e). At the depth of 280 m, the model
data is highly smoothed when compared to the in situ data,
and shows the salinity to be slightly lower in the eastern part
(compare Figs. 2h and d and Figs. 3h and d). Even if differ-
ences do exist, we argue that the two climatologies are close
enough to allow the comparison of the EOFs resulting from
the anomalies.

4.2 Vertical variability of temperature and salinity

Vertical profiles of the standard deviation from climatology,
described by Eq. (2), are shown in Fig. 4 for both in situ
and model data. Only the results for summer and winter
are shown, representing the two extremes of the stratification
regime, the first dominated by a well stratified surface layer
and the second by vertical homogenization. The results for
the Adriatic Sea when using in situ data are notably uncertain
due to the data scarcity (see Table 1).

Looking first at the calculation from in situ data (Figs. 4a
and b), we observe that the largest variability is found in the
surface layers in most regions. Typical values of the tem-
perature and salinity departures from climatology are, re-
spectively, around 0.6◦C and 0.2 psu in winter and 2◦C and
0.3 psu in summer. During winter (Fig. 4a), due to the in-
tense vertical mixing processes occurring in the basin, most
of the regions show a surface maximum of T variability be-
tween 0 and 100 m. However, four regions show exceptions
to this rule. The first, region 1, shows the subsurface T and
S variability maxima, due to the different degrees of mixing
that the Atlantic water is subjected to entering the Gibraltar
Strait. The second is the Strait of Sicily (region 6), where we
observe a subsurface maximum of salinity variability proba-
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bly due to the amount of LIW that is able to spread across the
Strait. The third exception is the T variance signal in the Lev-
antine basin (region 9), where intermediate water formation
occurs, giving rise to a 250 m subsurface maximum in vari-
ance. Finally, small variations are found in the northwestern
Basin (region 3) with similar magnitudes in the case of both
the surface and the intermediate layer. Temperature varia-
tions are about 0.3◦C at the surface and 0.1◦C at 500 m, while
the salinity variability ranges from 0.1 to 0.05 psu. This is
due to the vertical homogenization processes occurring in
this region, which result in a low standard deviation in prop-
erty values for the kinds of water masses formed. During
summer (Fig. 4b), the variability is dominated by the sea-
sonal thermocline depth variations that produce a subsurface
variability maximum around 30–50 m, i.e. the depth of the
summer surface layer. The variations in the intermediate
layer are about 0.1◦C and 0.04 psu both in winter and in sum-
mer.

Model data (Figs. 4c and d) give similar information re-
garding the vertical structure, but the order of the variations
are generally smaller than those obtained from the direct ob-
servations. This is particularly evident at the surface, where
the maximum variation in summer is only 0.7–0.9◦C for tem-
perature and 0.15 psu for salinity. On the contrary, region 3
shows higher variability during the winter (Figs. 4c and a),
probably due to the inability of the model to form enough
deep waters in this season.

The comparison between the in situ data and the model
data calculations suggests that the model is a sort of filtered
representation of the variability contained in the in situ data.

5 The seasonal bivariate vertical EOFs

5.1 Results from in situ data

In this section, we will discuss the EOF analysis of in situ
data focussing on three regions, namely the Algerian Basin,
the northwestern Basin and the Levantine Basin. These are
regions where the circulation and the associated mesoscale
phenomena are particularly important for the whole Mediter-
ranean. In Fig. 5, we show the three regional mean winter
vertical profiles of temperature and salinity. In the Algerian
Basin, the surface water is characterized by a minimum av-
eraged salinity of 37.2 (Fig. 5a), which in the northwestern
Basin is 38.2 (Fig. 5b). The underlying layers are occupied
by LIW, characterized by a salinity of about 38.48 in the
Algerian Basin and one ranging between 38.4–38.5 in the
northwestern Basin. In the Levantine basin, LIW occupies a
surface layer and its averaged salinity is about 38.9 (Fig. 5c).

As explained in Sect. 3.1, all the calculations are done us-
ing dimensionless variables. To aid in understanding and in-
terpretation, the results presented here use the dimensional
form of the variables. Dimensional forms are obtained by
multiplying the variables by the corresponding normalization
factor. The same is done for the modes that are furthermore
multiplied by the respective eigenvalue so that they can be
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Fig. 6. Vertical EOFs for region 2 (Algerian Basin):(a) tempera-
ture and(b) salinity modes in winter, and(c) temperature and(d)
salinity modes in summer. The first six winter modes and four sum-
mer modes are shown. For graphical convenience, a dashed line is
used to indicate a change in sign, and respective offsets of 0.5◦C
and 0.25 psu have been added to each T and S mode for ease of
presentation.

compared to each other and interpreted in terms of their con-
tribution to the total variance.

5.1.1 Algerian Basin

Figures 6a and b show the first six vertical modes for both
temperature and salinity calculated from the winter data set.
For graphical convenience, the sign of the first mode in
Fig. 6a was changed, and a dashed line has been used to
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Table 3. The first ten eigenvalues of the covariance matrix of the in situ data in region 2 for winter and summer. The first column contains
the eigenvalues. The percentage of the variance explained (PVE, Eq. (3) is shown in the second column. In the remaining two columns for
each season, the ratio of the vertical average of the root mean square residual (7b) to the vertically averaged standard deviation (7a) is also
shown. This latter is shown only for the layer between 0 and 200 m

Winter Summer

Mode λ PVE rms1T (◦C) rms1S λ PVE rms1T (◦C) rms1S
(%) 0.356◦C 0.183 (%) 0.570◦C 0.194

1 10.3 31.6 0.79 0.75 11.6 36.0 0.98 0.68

2 7.9 24.4 0.67 0.71 7.6 23.5 0.70 0.53

3 4.7 14.6 0.53 0.57 3.2 10.0 0.63 0.47

4 2.6 8.0 0.51 0.50 2.7 8.3 0.59 0.43

5 2.1 6.3 0.45 0.35 1.9 6.0 0.50 0.38

6 1.4 4.3 0.38 0.33 1.2 3.9 0.44 0.36

7 0.8 2.4 0.34 0.29 0.8 2.6 0.37 0.34

8 0.7 2.2 0.27 0.27 0.72 2.3 0.31 0.30

9 0.44 1.4 0.22 0.25 0.45 1.4 0.27 0.26

10 0.36 1.1 0.20 0.20 0.37 1.2 0.27 0.20

Table 4. The first ten eigenvalues of the covariance matrix of the in situ data in region 3 for winter and summer. The first column contains
the eigenvalues. The percentage of the variance explained (PVE, Eq. (3) is shown in the second column. In the remaining two columns for
each season, the ratio of the vertical average of the root mean square residual (7b) to the vertically averaged standard deviation (7a) is also
shown. This latter is shown only for the layer between 0 and 200 m

Winter Summer

Mode λ PVE rms1T (◦C) rms1S λ PVE rms1T (◦C) rms1S
(%) 0.181◦C 0.084 (%) 0.469◦C 0.102

1 12.8 39.9 0.85 0.90 13.7 42.5 0.90 0.71

2 6.8 21.2 0.74 0.52 6.1 19.1 0.86 0.52

3 4.7 14.5 0.51 0.50 3.2 10.0 0.77 0.47

4 2.5 7.9 0.42 0.40 2.6 7.9 0.55 0.46

5 1.50 4.7 0.40 0.32 1.3 4.1 0.53 0.40

6 0.88 2.7 0.33 0.30 1.00 3.1 0.50 0.37

7 0.68 2.1 0.29 0.27 0.92 2.9 0.41 0.35

8 0.47 1.5 0.26 0.24 0.69 2.1 0.35 0.31

9 0.36 1.1 0.24 0.21 0.53 1.7 0.31 0.28

10 0.26 0.8 0.22 0.18 0.37 1.2 0.26 0.25

indicate the inversion. A first look shows that most of the
signal is confined above 250 m for all the eigenvectors. In
Table 3, we show the PVE for each mode and two seasons.
The contribution to the variance of the upper portion of the
water column is given mainly by the first three modes that
together account for 71% of the total variance. Mode 1
(31%) displays maximum fluctuations within the first 70 m
from the surface. Therefore, this mode probably represents
mostly the variability of the mixed layer. A further contribu-
tion to the variability of this layer comes also from mode 3
(15%). Mode 2 (24%) shows two separate maxima for T and
S, respectively. A maximum amplitude for T anomalies is

found around 120 m, in correspondence to a maximum in the
S anomaly displayed by the third mode, while the maximum
for the S anomaly is more superficial, around 70 m. These
subsurface maxima must be associated with the variability of
the MAW that is known to display a wide range of T and S
characteristics (Benzohra and Millot, 1995), due to different
degrees of mixing. This water mass roughly forms a sur-
face layer of about 150 m that is transported eastward along
the coast by the Algerian Current. A high mesoscale activ-
ity is associated with this current, in the form of meanders
and, more frequently, of anticyclonic eddies that strongly in-
fluence the distribution of the water masses in the basin and



180 S. Sparnocchia et al.: Multivariate Empirical Orthogonal Function analysis

their relative mixing (Millot, 1991).
The first three modes are also the ones that account for the

variability at depth. In particular, the second mode displays
a coherent structure below 200 m, where T and S show fluc-
tuations of the same sign. A similar structure is displayed by
the first mode, which dominates in S. We believe this behav-
ior captures the LIW variability, which is normally subject to
compensating effects with respect to temperature and salinity
at depths (warm and salty at depth).

The higher modes contribute very little to the signal and,
as usual, they represent features of limited vertical extent, as
demonstrated by the large number of zero-crossings.

For comparison purposes, the first four modes calculated
from the summer data set are shown in Figs. 6c and 6d. The
surface variability is the main difference with respect to the
winter calculation. It is much greater than in winter and is
scattered over the whole spectrum of eigenvalues. In fact,
the EOFs actually have large amplitudes at the surface – up
to the sixteenth mode (not shown) – although most of the
modes are related to noise.

5.1.2 Northwestern Basin

Figure 7a and b show the first six vertical modes for both
temperature and salinity calculated from the winter data set.
The first mode (40%, see Table 4) contributes to the variance
of the whole water column considered here. It contains a
great part of the variability of the surface layer and most of
the variability of the layer below. The T anomalies have the
same sign throughout the entire water column that was con-
sidered, while the S anomalies change sign around 180 m.
This salinity pattern does not change significantly in summer
(the zero crossing in S is just a little deeper than in winter) as
one can verify by looking at Figs. 7b and d. The temperature
mode instead visibily changes between summer and winter,
as seen when Figs. 7a and c are compared. The first T-EOF
clearly represents the deep winter mixed layer produced by
convective processes, while the S-EOF accounts for the pres-
ence below the surface of LIW, and a surface MAW that has
a larger signal during the summer due to the stratification
conditions.

Mode 2 (21%) contributes to the variance of the first
300–350 m, with an amplitude maximum between 100 and
160 m. This depth indicates the transition from the fresher
and colder MAW at the surface and the saltier and warmer
LIW below, as shown clearly in Fig. 5b. This subsurface
maximum tells us that the variability of this interface is large,
especially in winter. During winter, the T/S interface is dis-
rupted due to intense vertical mixing and the EOF show the
same sign in the first 350 m. Instead, during summer, the in-
terface between MAW and LIW corresponds to a change in
sign of the second EOF at 150 m for temperature (Fig. 7c).

Mode 3 (14%) during winter contributes mainly to the
variance of T in the first 200 m, its contribution being equiv-
alent to that of the first mode. During summer, this mode
shows a temperature subsurface maximum close to the sur-
face (30 m) which may be indicative of the variability in the
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Fig. 7. Vertical EOFs for region 3 (northwestern Basin):(a) tem-
perature and(b) salinity modes in winter, and(c) temperature and
(d) salinity modes in summer. The first six winter modes and four
summer modes are shown. For graphical convenience, a dashed line
is used to indicate a change in sign, and respective offsets of 0.5◦C
and 0.25 psu have been added to each T and S mode for ease of
presentation.

summer mixed layer depth. With regard to the salinity, this
mode possesses a small amplitude and during winter shows
coherent fluctuations from the surface down to 500 m. The
higher modes represent smaller vertical scales, approaching
the noise level. For instance, mode 4 (8%), in the case of
temperature during winter, displays a fluctuation in which the
surface and deeper layer co-oscillate, while the intermediate
layer oscillates in the opposite direction.
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Table 5. The first ten eigenvalues of the covariance matrix of the in situ data in region 9 for winter and summer. The first column contains
the eigenvalues. The percentage of the variance explained (PVE, Eq. (3) is shown in the second column. In the remaining two columns for
each season, the ratio of the vertical average of the root mean square residual (7b) to the vertically averaged standard deviation (7a) is also
shown. This latter is shown only for the layer between 0 and 200 m

Winter Summer

Mode λ PVE rms1T (◦C) rms1S λ PVE rms1T (◦C) rms1S
(%) 0.458◦C 0.055 (%) 0.924◦C 0.095

1 12.7 39.1 0.87 0.88 12.6 38.8 0.78 0.92

2 8.3 25.5 0.81 0.47 8.2 25.3 0.60 0.70

3 6.6 20.4 0.36 0.44 3.1 9.6 0.58 0.55

4 1.4 4.4 0.28 0.34 2.1 6.5 0.50 0.48

5 1.0 3.1 0.27 0.26 1.6 5.1 0.41 0.45

6 0.9 2.7 0.21 0.22 1.3 4.1 0.33 0.37

7 0.38 1.2 0.18 0.19 0.7 2.3 0.30 0.32

8 0.30 0.9 0.15 0.16 0.49 1.5 0.26 0.28

9 0.18 0.6 0.13 0.15 0.43 1.3 0.23 0.26

10 0.14 0.4 0.12 0.15 0.37 1.2 0.21 0.21

5.1.3 Levantine Basin

Figures 8a and b show the first six vertical modes for the
winter. Most of the temperature variability is contained in
the first three modes, as evident in Fig. 8a, where we had to
use different horizontal scales to distinguish the first from the
last three temperature modes. The first mode (39%, see Ta-
ble 5) indicates coherent fluctuations from the surface down
to 500 m for both T and S that furthermore have the same
sign. A subsurface maximum is found at approximately
300 m for temperature. This behavior can be attributed to
the well-mixed winter vertical structure of S in the Levantine
(Fig. 5c) which also forces the vertical coherence in the first
T-EOF.

The second mode (24%) evidences two vertical structures,
the first above 250 m, where both the parameters are sub-
ject to big variations, and the second below 250 m, where
only T shows significant variations. Around this depth, an
inflection is observed in the mean T profile (Fig. 5c), mark-
ing the separation between saltier and warmer surface waters
and the fresher (by just 0.1 psu) and colder water of the in-
termediate layer. Above 250 m, the second temperature EOF
shows a zero crossing around 100 m. In the portion of the
water column extending from the surface down to 100 m, S
and T fluctuate with the same sign. Below, they are oppo-
site in sign. Interpreting this EOF as representative of the
variability of such T-S structure (same sign anomalies at the
surface and opposite signs below 100 m), we think this is in-
dicative of eddy-like features with a high baroclinic vertical
structure. Mode 3 (20%) represents mainly the T variations
above 300 m.

The contribution of the higher modes is much less than in
the other regions. This makes us conclude that in the Levan-
tine region, we need less vertical EOFs than in the western

basin to represent the T-S variability structure.
The first four modes calculated from the summer data set

are shown in Figs. 8c and d. As for the other regions, a large
part of the variability is observed in T in the first 100 m (max-
imum amplitude around 50 m). This is the variability asso-
ciated with the formation of the summer warm mixed layer.
Below 100 m, the LIW structure is reconstructed by the first
two salinity modes that now have larger amplitudes than dur-
ing winter. Thus, the summer period in the Levantine region
is characterized by large variability in the vertical structure
of the salinity anomalies, irrespective of whether they are of
the same or opposite sign with respect to the sign of the cor-
responding temperature anomalies.

5.2 Results from the model simulations

The first three modes obtained from the model data in winter
are shown in Fig. 9. Even though we cannot expect them
to be exactly similar to the modes computed from the in situ
data, we will show here that the model simulation is capable
of recovering some of the major features of the in situ EOFs.

In region 2 (Figs. 9a and b), we found that most of the vari-
ability is in the upper 200 m, and its signal is shared among
the modes represented, as was also observed while analyzing
the results from the in situ data. But differences are found in
the amplitude of the temperature EOFs which is twice that
of the corresponding EOFs obtained with the in situ data.
The salinity EOFs are instead quite similar in amplitude and
shape in the case of both the data sets (compare Figs. 6b with
9b). In region 3 (Figs. 9c and d), the temperature EOFs again
show an amplitude that is twice that of EOFs computed from
the in situ data set (Fig. 7a), while the amplitudes in the case
of the salinity are similar. The shape of the temperature EOF
reveals some similarity to the observed EOF, but in general
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Fig. 8. Vertical EOFs for region 9 (Levantine Basin):(a) temper-
ature and(b) salinity modes in winter, and(c) temperature and(d)
salinity modes in summer. The first six winter modes and four sum-
mer modes are shown. For graphical convenience, a dashed line is
used to indicate a change in sign. For ease of presentation, offsets of
1◦C and 0.5◦C have been added to the first and the second triplets
of T modes, respectively, and an offset of 0.25 psu has been added
to each S mode.

for region 3, there is no evidence of very deep mixing, as was
instead evident in the case of the observed EOF. For region 9
(Figs. 9e and f), the temperature EOFs show the same ampli-
tude as the observed EOF (Fig. 8a), but they are more surface
intensified, again showing a difference between observed and
model data in the depth range of mixing processes. In all the
regions, the temperature and salinity EOFs show the same

Table 6. The order of the optimum reduced set of EOFs as indicated
by a value of the ratio of the root mean square residuals to the stan-
dard deviations of 30%. The percentage of total variance explained
is shown in parentheses

Region Win Spr Sum Aut Year

Alboran 7 (94%) 8 (94%) 8 (94%) 9 (95%) 8 (93%)

Algerian 8 (94%) 8 (93%) 9 (94%) 9 (94%) 9 (93%)

North-Western 7 (93%) 9 (93%) 10 (95%) 8 (93%) 9 (93%)

Tyrrhenian 7 (93%) 6 (92%) 8 (92%) 9 (94%) 9 (93%)

Sicily Strait 7 (95%) - 8 (94%) 7 (93%) 9 (93%)

Ionian 5 (93%) 7 (94%) 8 (93%) 8 (94%) 8 (93%)

Adriatic – – – – 6 (95%)

Aegean 3 (90%) – – – 7 (94%)

Levantine 5 (92%) 7 (93%) 8 (93%) 8 (94%) 9 (94%)

relationships as was found in the EOFs calculated from the
in situ data, which means that the overall T-S characteristics
obtained with the model data agree with those derived from
the observations.

To better evaluate the difference between the EOFs com-
puted from the model and the in situ data, we will use the
former as a basis to reconstruct in situ profiles. At the same
time, we reconstruct the in situ profile using the EOFs de-
rived from the same in situ data, clearly the “best” that we
can do. In other words, we use in Eq. (5) alternatively the
ei from the in situ and the model data. The square root of
Eq. (6) is then used to evaluate therms residual error for the
two cases. This projection method is mimicking what an as-
similation system, such as SOFA, would do using the order
reduction EOFs from model data to assimilate temperature
profiles. We specify that the projection is done on the full
set of EOFs, and the reconstruction is done using a reduced
set. This calculation is shown for region 3 in Fig. 10 and for
region 9 in Fig. 11 for the winter season.

The rms residual errors for T and S are shown fork =

2, 4, 6, 8, and 10, wherek is the number of retained modes.
From the comparison, we deduce that the EOFs calculated
from the model data are as good as the EOFs deduced from
the observational data set to reproduce the in situ profiles.
Therms residual error when using EOFs from model data is
even slightly less than the corresponding residual error ob-
tained by using EOFs from in situ data. This is mainly due to
the homogeneous sampling of model data both in space and
time against the shortage of the in situ data.

In region 9, therms residual error for temperature and
salinity using model EOFs is actually smaller than the cor-
responding error obtained with in situ EOFs. We believe this
can be explained by the scarcity of in situ data used in the
calculation of T, S anomalies for this region (see Table 1)
and the uncertainty in the climatology.

In conclusion, we could say that both model simulation
EOFs and in situ EOFs are capable of reproducing the essen-
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Fig. 9. Winter EOFs from model data.
Temperature(a) and salinity (b) for
the Algerian Basin, temperature(c) and
salinity (d) for the northwestern Basin,
and temperature(e) and salinity(f) in
the Levantine Basin. The first three
modes are shown.

tial thermohaline variability of the Mediterranean Sea his-
torical data. The details of the structure of each mode dif-
fer between the model and in situ EOFs, but the information
content of the two EOF sets is equivalent with respect to their
ability to reproduce the observed variability.

6 The reduced order EOF space

In this section we evaluate the optimal number of EOFs to be
used in reconstructing the full data signal, and their statistical
significance. As already explained, to identify the significant
and optimal EOF subspace, we can use a number of indices.
In Tables 3, 4 and 5, we show the calculation for the PVE
and the ratio between Eq. (7a) and Eq. (7b) in the first 200 m
of the water column. This is the portion of the water column
where the variability is the highest. As already anticipated
in Sect. 3.2, we will define as optimal the set of modes that
return cumulatively a root mean square residual ratio of less

than 30%, a threshold value which ensures that a variance
greater than 90% is explained.

In Table 3, we show the calculations for region 2 and the
winter and summer seasons. We conclude that eight modes
in winter and nine in summer are enough to explain the bulk
of the variability. With this selection, we explain 94% of the
total variance. The first 3 modes explain almost 70% of the
variance, and the first mode by itself explains 32–36% of the
variance.

Table 4 summarizes the same results for region 3. The root
mean square residual error ratio indicates as dominant the
first seven EOFs in winter and the first ten in summer, which
explain, respectively, 93% and 95% of the total variance. As
before, most of the variance (72–76%) is represented by the
first three modes.

The results for region 9 are shown in Table 5. The
root mean square residual error ratio indicates five dominant
EOFs in winter and eight in summer, explaining 92–93% of
the total variance. Once again, the first three modes account
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Fig. 10. RMS residual errors of tem-
perature and salinity for region 3 in
winter obtained by projecting the in situ
data on a k-order EOF subspace, with
k = 2, 4, 6, 8 and 10 when EOFs from
in situ data (a andb) and model data (c
andd) are used.
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Fig. 11. RMS residual errors of tem-
perature and salinity for region 9 in
winter obtained by projecting the in situ
data on a k-order EOF subspace, with
k = 2, 4, 6, 8 and 10 when EOFs from
in situ data (a andb) and model data (c
andd) are used.

for most of the variance that, in this region, is greater in win-
ter (85%) than in summer (74%).

To empirically infer the statistical significance of each
EOF, in Fig. 12, we compare the spacing of the first ten eigen-
values,λk, with their sampling error,δλk, as a function of the
mode numberk. Only in region 3 are the data sufficient to
ensure that each EOF is properly resolved from the adjacent
ones. In the other regions, the data are not enough, and some
degeneracy is found. For example, in region 2, in winter, the

sampling errors of the first and second eigenvalues, and of
the fourth and fifth eigenvalues are comparable to their spac-
ings, consequently, the corresponding EOFs are not statisti-
cally different. Other multiplets are observed at higher mode
numbers, placed in the noisy part of the eigenvalue spectrum.
The same occurs in the winter calculation for region 9, where
the second and third eigenvalues are so close that the error
bars overlap. As explained in Sect. 3.3, when degeneracy oc-
curs we cannot be sure of having found the real “shape” of a
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Fig. 12. Diagram of the first ten eigen-
values (λk) of the in situ EOFs ver-
sus the mode numberk in winter (a)
and summer(b) for the Algerian Basin,
winter(c) and summer(d) for the north-
western Basin, and winter(e) and sum-
mer (f) in the Levantine Basin. The er-
ror bars represent the sampling errors
(δλk).

degenerate EOF, since any linear combination of degenerate
EOFs can also be an eigenvector.

In Table 6, we show the optimal and reduced number of
EOF modes calculated from in situ data for all the regions
and all the seasons. We observe that, in winter, the number
of retained modes is less than in the other seasons. A differ-
ence also exists between the western and the eastern regions.
Independently of the season, the variability existing in the
eastern Mediterranean is described by a smaller number of
modes. As a word of caution, we would like to point out
that generally the amount of data is less in the eastern than
in the western regions, so this result could be simply due to
a subsampling of the variability.

The variance explained by the optimal set of modes is 90–
95%. This is really a high percentage, and one can object that
we were too conservative in setting therms residual error ra-
tio to 0.3. Depending on the particular scientific problem that

the EOF subspace is used for, some physical considerations
can help to further reduce the order. When it is used to as-
similate altimeter data, for instance, a further criterion can
be used that enforces the condition that the information con-
tained in a T-S profile is also observable by the altimeter, i.e.
the T-S signal is present in the sea level anomaly. Faucher
et al. (2002), for instance, evaluate the contribution of each
mode to the dynamic height anomaly (DHA), an approxi-
mation of the sea level anomaly at mid-latitudes and for the
open ocean, by calculating the ratio between the root mean
square of the unresolved DHA and the root mean square of
the total DHA. They accept a ratio of 0.4. When this crite-
rion is applied to our data, the optimal number of modes de-
creases drastically to 1–3, depending on the region/season,
and it remains small when the threshold is decreased from
0.4 to 0.1–0.2.
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7 Summary and conclusions

In this paper, we have attempted to provide a representation
of the upper thermohaline vertical structure of the Mediter-
ranean Sea by means of bivariate vertical EOFs, using tem-
perature and salinity from both observations and model sim-
ulations. The focus of this work was twofold: first, to con-
tribute to the description of the Mediterranean Sea thermo-
haline structure for general purposes and second, to find the
optimal number of vertical modes that can reproduce the T-S
characteristics. This knowledge is the basis of the correct as-
similation of in situ data by means of a multivariate Optimal
Interpolation scheme used in MFSPP (Demirov et al., 2003).

Extending the analysis from the surface to 480 m, it was
shown that most of the thermohaline variability is associated
with the surface layer, usually occupied by MAW, even if a
smaller signal is evident at the intermediate levels as well,
where LIW is found. Most of the variability observed in the
surface layer has to be ascribed to seasonal and mesoscale
processes. Generally, the first three modes are able to re-
produce most of the variance contained in the data; their
dominance over the others is remarkably high in the eastern
basins. The higher modes contribute very little to the signal
and represent smaller vertical scales approaching the noise
level.

The calculations from model simulations and observations
were not in perfect agreement. In fact, the former gener-
ally overestimates the amplitudes of the temperature EOFs
with respect to the corresponding ones obtained from the
in situ data, besides sometimes reproducing different fea-
tures. However, we have demonstrated that both sets of
EOFs, those from the model simulations and the observa-
tions, have the same ability to reproduce the essential vari-
ability present in the observed data. This result is very impor-
tant from the point of view of assimilation, since the EOFs
from model simulations may be thought of as an alternative
set of basis functions upon which to project the thermohaline
variability of a particular data set.

We paid particular attention to the study of the “signifi-
cant” bivariate EOFs and the “optimal” reduced set. To eval-
uate the optimal number of EOFs that can reconstruct the full
data signal, we calculated standard indices such as the Per-
centage of Variance Explained by each mode and the root
mean square residual error. The latter was compared as a ra-
tio to the observed averaged standard deviation of each vari-
able, to ensure that the residual of the projection was suffi-
ciently small with respect to the data variability. We found
that the number of EOFs needed to capture the variability
contained in the original data changes with geographical re-
gion and season. In particular, winter data require a smaller
number of modes (4–8, depending on the region) than the
other seasons (8–9 in summer). Moreover, independently of
the season, the variability existing in the eastern Mediter-
ranean is described by a smaller number of modes than in
the western Mediterranean. We cannot exclude that this re-
sult could be simply due to a subsampling of the variability,
associated with the data scarcity in the eastern regions.

To summarize, we have shown that the large-scale Medi-
terranean thermohaline vertical structure can be represented
by a limited number of vertical bivariate EOFs, and that the
“optimal set” can be selected on the basis of general princi-
ples. Future calculations that will include in the state vector
other variables such as the stream function and the sea sur-
face pressure are planned, in order to take into account the
barotropic part of the transport that is overlooked when the
vertical modes are calculated from a hydrographical database
only.
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