
HAL Id: hal-00316922
https://hal.science/hal-00316922

Submitted on 3 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Fourier transform of the symmetric decreasing
rearrangements

Philippe Jaming

To cite this version:
Philippe Jaming. On the Fourier transform of the symmetric decreasing rearrangements. Annales de
l’Institut Fourier, 2011, 61, pp.53-77. �hal-00316922�

https://hal.science/hal-00316922
https://hal.archives-ouvertes.fr


ON THE FOURIER TRANSFORM OF THE SYMMETRIC

DECREASING REARRANGEMENTS

PHILIPPE JAMING

Résumé. Inspired by work of Montgomery on Fourier series and Donoho-
Strak in signal processing, we investigate two families of rearrangement
inequalities for the Fourier transform. More precisely, we show that the
L

2 behavior of a Fourier transform of a function over a small set is con-
trolled by the L

2 behavior of the Fourier transform of its symmetric
decreasing rearrangement. In the L

1 case, the same is true if we further
assume that the function has a support of finite measure.

As a byproduct, we also give a simple proof and an extension of
a result of Lieb about the smoothness of a rearrangement. Finally, a
straightforward application to solutions of the free Shrödinger equation
is given.

1. Introduction

The use of rearrangement techniques is a major tool for proving func-
tional inequalities. For instance, it has been used extensively for proving the
boundedness of the Fourier transform between weighted Lebesgue spaces
(see e.g. [JS1, JS2, BH] and the references therein). Let us mention that a
weighted inequality for the Fourier transform was proved in [BH] with the
help of a result of Jodeit-Torchinsky [JT] showing that an operator that is
of type (1,∞) and of type (2, 2) satisfies some rearrangement inequalities.

Results mentioned so far deal with the rearrangement of Fourier trans-
forms and not with Fourier transforms of rearrangements. As the two oper-
ations are of course far from commuting, it is thus not possible to deduce
anything from them about the behavior of the Fourier transform of the re-
arrangement of a function. In that direction, a remarkable theorem is due to
Lieb [Li, Lemma 4.1] that shows that the decreasing rearrangement preserves
smoothness :

Theorem 1.1 (Lieb for s = 1 [Li], Donoho-Stark for 0 < s < 1 [DS1]). Let
d ≥ 1 be an integer and 0 ≤ s ≤ 1. Then there exists a constant Cs such
that, for every ϕ in the Sobolev space Hs(Rd) i.e.

‖ϕ‖Hs :=

(∫

Rd

|ϕ̂(ξ)|2(1 + |ξ|2)s dξ

)1/2

< +∞,
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∥∥|ϕ|∗
∥∥
Hs ≤ Cs

∥∥ϕ
∥∥
Hs.

Further results relating smoothness and rearrangements may be found e.g.
in papers by A. Burchard [Bu], B. Kawohl [Ka]. The best possible estimate
for second order derivatives was obtained by Cianchi [Ci]. We will also show
some sort of dual version of it, namely that ‖ϕ‖s ≤ Cs‖|ϕ|∗‖s if s < 0.

In this paper, we are mainly dealing with a slightly different type of esti-
mates. Namely, we will show that the frequency content of the rearrangement
of a function controls the frequency content of the function. We first show
an “L1-result” which may be stated as follows :

Theorem 1.2. Let S,Ω > 0. Then there exists a constant C = C(S,Ω)
such that, for every ϕ ∈ L1(Rd) with support of finite measure S, and for
every a, x ∈ Rd,

(1.1)

∣∣∣∣∣

∫

|ξ−a|≤Ω
ϕ̂(ξ)e2iπxξ dξ

∣∣∣∣∣ ≤ C

∫

B(0,Ω)
|̂ϕ|∗(ξ) dξ.

This theorem is inspired and generalizes a result of Donoho and Stark
which states that, for d = 1, C(S,Ω) = 1 provided ΩS is small enough,
a result that we will generalize to higher dimension. One does not expect
C(S,Ω) to be bounded when S → +∞ so that the hypothesis on the sup-
port of ϕ may not be lifted. Nevertheless, we show that the result can be
somewhat improved by taking Bochner-Riesz means.

We also show that in the “L2-case” the situation is better :

Theorem 1.3. Let d be an integer. Then there exists a constant κd such
that, for every set Σ ⊂ Rd of finite positive measure and every ϕ ∈ L2(Rd),∫

Σ
|ϕ̂(ξ)|2 dξ ≤ κd

∫

B(0,τ)

∣∣∣|̂ϕ|∗(ξ)
∣∣∣
2
dξ,

where τ is such that |B(0, τ)| = |Σ|.
The similar estimate for Fourier series was previously obtained by Mont-

gomery [Mo]. The result of Montgomery has also been generalized to Fourier
transforms in a different way in [JS1, JS2] where rearrangements of Fourier
transforms are considered rather than Fourier transforms of rearrangements
as in Theorem 1.3.

Theorem 1.3 should be compared to Theorem 1.1. Both theorems state
that one can control one of the Fourier transforms of ϕ or of ϕ∗ by the other
one in a weighted L2-sense. Our results show that if the weight is “small”
(e.g. the characteristic function of a set of finite measure), then ϕ̂∗ controls
ϕ̂. In Lieb’s result, the weight is “big” and the control goes the opposite way.
We conjecture that this is also the case when the weight is the characteristic
function of the complementary of a set of finite measure, at least when ϕ has
a support of finite measure. We will show how this would imply an optimal
generalization to higher dimension of an uncertainty principle proved by F.
Nazarov in the one-dimensional case.



FOURIER TRANSFORMS AND REARRANGEMENTS 3

Further, Theorem 1.3 may be interpreted in the following way : assume

that ϕ has a big “high-frequency component”, in the sense that

∫

Σ
|ϕ̂(ξ)|2 dξ

stays large for all Σ in a set of balls of radius 1 and centered away from 0,
then ϕ∗ must be big near to 0. In other words, high-frequency oscillations
are “pushed” to low-frequency oscillations by symmetrization.

The paper is organized as follows. In the next section, we introduce the
necessary notation and prove a few simple preliminary lemmas. In Section
3, we prove Theorem 1.1 and its “dual” version. The following section is
devoted to the proof of Theorem 1.2. We pursue with the generalization
of Montgomery’s Theorem and present a conjecture related to Nazarov’s
Uncertainty Principle. We then give a direct illustration of the result in
terms of solutions of the free Shrödinger equation. Finally, we explain how
to extend our results to other symmetrizations.

2. Preliminaries and Notations

2.1. Generalities. Throughout this paper, d will be an integer, d ≥ 1. On
Rd, we denote by 〈., .〉 and |.| the standard scalar product and the associated
norm. For a ∈ Rd and r > 0, we denote by B(a, r) the open ball centered at
a of radius r : B(a, r) = {x ∈ Rd : |x− a| < r}.

The Lebesgue measure on Rd is denoted dx and we write |E| for the
Lebesgue measure of a Borel set E. The various meanings of |A| should be
clear from the context.

The Fourier transform of ϕ ∈ L1(Rd) is defined by

ϕ̂(ξ) =

∫

Rd

ϕ(t)e−2iπ〈t,ξ〉 dt.

This definition is extended from L1(Rd)∩L2(Rd) to L2(Rd) in the standard
way. The inverse Fourier transform is denoted ϕ̌.

2.2. Bessel functions and Fourier transforms. Results in this section
can be found in most books on Fourier analysis, for instance [Gr, Appendix
B].

Let λ be a real number with λ > −1/2. We define the Bessel function Jλ
of order λ on (0,+∞) by its Poisson representation formula

Jλ(x) =
xλ

2λΓ
(
λ+ 1

2

)
Γ
(

1
2

)
∫ 1

−1
(1 − s2)λ cos sx

ds√
1 − s2

.

Let us define J−1/2(x) = cos x and for λ > −1/2, Jλ(x) := Jλ(x)
xλ . Then Jλ

satisfies |Jλ(x)| ≤ Cλ(1 + |x|)−λ−1/2. It is also known that Jλ, λ > −1/2,
has only positive real simple zeroes (jλ,k)k≥1.

We will need the following well-known result :

(2.2) χ̂B(0,1)(ξ) =
Jd

2

(2π|ξ|)

|ξ| d
2
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from which we deduce that |χ̂B(0,1)(ξ)| ≤ C(1 + |ξ|)− d+1

2 thus χ̂B(0,1) ∈
Lp(Rd) for all p > 2d

d+1 .

More generally, if we denote by mα(x) = (1 − |x|2)α+, then

m̂α(ξ) =
Γ(α+ 1)

πα

Jd
2
+α(2π|ξ|)

|ξ| d
2
+α

= 2
d
2
+απ

d
2 Γ(α+ 1)J d

2
+α(2π|ξ|).

2.3. Rearrangements. For a Borel subset E of Rd of finite measure, we
define its d-dimensional symmetric rearrangement E∗ to be the open ball of
Rd centered at the origin whose volume is that of E. Thus

E∗ = B(0, r) with |B(0, 1)|rd = |E|.
Let ϕ be a measurable function on Rd. We will say that ϕ vanishes at

infinity if its level sets have finite measure : i.e. the distribution function of
ϕ, µϕ(λ) = |{x ∈ Rd : |ϕ(x)| > λ}|, is finite for all λ > 0. This is of course
the case if ϕ ∈ Lp for some p ≥ 1. We define the symmetric rearrangement
|ϕ|∗ via the level-cake representation :

|ϕ|∗(x) =

∫ +∞

0
χ{y∈Rd : |ϕ(y)|>λ}∗(x) dλ

which has to be compared with the level-cake representation of |ϕ| :

|ϕ(x)| =

∫ +∞

0
χ{y∈Rd : |ϕ(y)|>λ}(x) dλ.

Rearrangements satisfy many useful properties :
— |αϕ|∗ = |α||ϕ|∗.
— For a set E of finite measure and for α > 0, (αE)∗ = αE∗. Therefore,

if we write ϕα(x) = ϕ(x/α), then |ϕα|∗(x) = |ϕ|∗(x/α).
— ϕ and |ϕ|∗ are equimeasurable, that is, for all λ > 0 µϕ(λ) = µ|ϕ|∗(λ).

In particular, ϕ and |ϕ|∗ have same Lp norm for 1 ≤ p ≤ ∞.
— The following theorems of Hardy, Littlewood and Riesz will be usefull

(see e.g. [LL, Chapter 3] for a proof) :

Lemma 2.1 (Hardy-Littlewood). Let ϕ,ψ be non-negative functions van-
ishing at infinity, then∫

Rd

ϕ(x)ψ(x) dx ≤
∫

Rd

|ϕ|∗(x)|ψ|∗(x) dx.

Lemma 2.2 (Riesz). Let ϕ,ψ, χ be non-negative functions that vanish at
infinity. Then∫

Rd

∫

Rd

ϕ(s)ψ(t)χ(s − t) ds dt ≤
∫

Rd

∫

Rd

|ϕ|∗(s)|ψ|∗(t)|χ|∗(s− t) ds dt

We will also need the following result which is probably well known :

Lemma 2.3. If ϕ ∈ Lp(Rd), then |ϕ|∗(t) ≤
‖ϕ‖p

|B(0, 1)|1/p|t|d/p for all t ∈ Rd.
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Proof. From Bienaymé Tchebichev we get µϕ(λ) ≤
‖ϕ‖pp
λp

for all λ > 0. But

then,

|B(0, 1)|rd := |{x ∈ R : |ϕ|∗(x) > λ}| = |{y ∈ Rd : |ϕ(y)| > λ}| ≤
‖ϕ‖pp
λp

.

Therefore, for ζ ∈ Rd with |ζ| = 1, |ϕ|∗
((

‖ϕ‖p
p

λp|B(0,1)|

)1/d
ζ

)
≤ λ. Inverting

this, we get |ϕ|∗(t) ≤
‖ϕ‖p

|B(0, 1)|1/p|t|d/p as claimed. �

In a similar way, one may prove that, for a function ϕ on Rd that decays
like |ϕ(x)| ≤ C(1 + |x|)−γ , then

(2.3) |ϕ|∗(t) ≤ C(1 + |t|)−γ .

3. Lieb’s Theorem and its “dual” version

Assume that either χ ∈ L2(Rd) and ϕ ∈ L2(Rd) ∩ L1(Rd) or vice versa
ϕ ∈ L2(Rd) and χ ∈ L2(Rd) ∩ L1(Rd). Then,

∫

Rd

χ̂(ξ)|ϕ̂(ξ)|2 dξ =

∫

Rd

χ̂(ξ)ϕ̂(ξ)ϕ̂(ξ) dξ

= 〈χ̂ϕ̂, ϕ̂〉 =
〈
χ̂ ∗ ϕ, ϕ̂

〉
= 〈χ ∗ ϕ,ϕ〉

with Parseval. The computation are justified by the fact that, as χ ∈ L2(Rd)
and ϕ ∈ L1(Rd) (or vice versa), χ ∗ ϕ ∈ L2(Rd). As ϕ ∈ L2(Rd), we may
apply Fubini to get

∫

Rd

χ̂(ξ)|ϕ̂(ξ)|2 dξ =

∫

Rd

∫

Rd

χ(x− y)ϕ(x)ϕ(y) dxdy

≤
∫

Rd

∫

Rd

|χ|∗(x− y)|ϕ|∗(x)|ϕ|∗(y) dxdy

with Riesz’s Rearrangement Inequality (Lemma 2.2). Unwinding the previ-
ous computations, we thus obtain

(3.4)

∫

Rd

χ̂(ξ)
∣∣ϕ̂(ξ)

∣∣2 dξ ≤
∫

Rd

|̂χ|∗(ξ)
∣∣|̂ϕ|∗(ξ)

∣∣2 dξ.

Remark 3.1. The hypothesis on ϕ can not be totally lifted. For instance,
one can not have the inequality with χ̂ = χS for large enough S (see [DS2]).
However, Theorem 1.3 gives a good substitute in that case.

As an application of (3.4), let us prove the following :

Proposition 3.2. Let s > 0, and let ϕ ∈ L2. Then
∫

Rd

(1 + |ξ|2)−s|ϕ̂(ξ)|2 dξ ≤
∫

Rd

(1 + |ξ|2)−s|ϕ̂∗(ξ)|2 dξ.



6 PHILIPPE JAMING

Proof. Let us recall that, for each s > 0, there exists a number cs such that,
for every ξ ∈ Rd,

(1 + |ξ|2)−s = cs

∫

Rd

|u|s−de−π(1+|ξ|2)|u|2 du.

Let us define χu(x) = cs|u|s−2de−π|u|
2

e−π|ξ|
2/|u|2. A simple computation then

shows that χ̂u(ξ) = cs|u|s−de−π(1+|ξ|2)|u|2 . Applying (3.4) to χ = χu, we
obtain∫

Rd

cs|u|s−de−π(1+|ξ|2)|u|2|ϕ̂(ξ)|2 dξ ≤
∫

Rd

cs|u|s−de−π(1+|ξ|2)|u|2|ϕ̂∗(ξ)|2 dξ.

Integrating over u ∈ Rd gives the result. �

As a second consequence of (3.4), we prove Lieb Theorem and Donoho-
Stark’s extension of it. The proof is directly inspired by Lieb’s proof.

Theorem 3.3. Let d ≥ 1 be an integer and 0 ≤ s ≤ 1. Then there exists a
constant Cs such that For ϕ in the Sobolev space Hs(Rd), then ‖|ϕ|∗‖Hs ≤
Cs‖ϕ‖Hs.

Proof. The case s = 0 is trivial :

(3.5) ‖|̂ϕ|∗‖2 = ‖|ϕ|∗‖2 = ‖ϕ‖2 = ‖ϕ̂‖2.

If 0 < s ≤ 1, define gs(x) = e−π|x|
s

for x ≥ 0. Then, gs is completely
monotonic, that is, for every integer k, (−1)k∂kgs(x) ≥ 0 for x > 0. Accord-
ing to a celebrated theorem of Bernstein (see e.g. [Fe, Chapter 18, Section
4] or [Wi, page 161]), gs is the Laplace transform of a positive measure on
(0,+∞). In particular, there exists a non-negative measure µs such that

e−π|ξ|
2s

=

∫ +∞

0
e−πt|ξ|

2

dµs(t).

From (3.4) applied to χ defined by χ(t) = t−de−π|x|
2/t, we obtain∫

Rd

e−πt|ξ|
2∣∣ϕ̂(ξ)

∣∣2 dξ ≤
∫

Rd

e−πt|ξ|
2∣∣|̂ϕ|∗(ξ)

∣∣2 dξ.

Integrating with respect to µs(t), we thus obtain∫

Rd

e−πt|ξ|
2s∣∣ϕ̂(ξ)

∣∣2 dξ ≤
∫

Rd

e−πt|ξ|
2s∣∣|̂ϕ|∗(ξ)

∣∣2 dξ.

With (3.5), it follows that
∫

Rd

1 − e−πt|ξ|
2s

t

∣∣|̂ϕ|∗(ξ)
∣∣2 dξ ≤

∫

Rd

1 − e−πt|ξ|
2s

t

∣∣ϕ̂(ξ)
∣∣2 dξ.

Finally,
1 − e−πt|ξ|

2s

t
→ π|ξ|2s as t → 0 and

1 − e−πt|ξ|
2s

t
≤ π|ξ|2s so that

Lebesgue’s Lemma implies that

(3.6)

∫

Rd

|ξ|2s
∣∣|̂ϕ|∗(ξ)

∣∣2 dξ ≤
∫

Rd

|ξ|2s
∣∣ϕ̂(ξ)

∣∣2 dξ.
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A new appeal to (3.5) and to the fact that 1 + |ξ|2s ≃ (1 + |ξ|2)s gives the
result. �

Note that for s = 1, 1 + |ξ|2s = (1 + |ξ|2)s so that C1 = 1. Note also that
the proof does not extend to s > 1 as gs is no longer completely monotonic
in that case.

4. An extension of a result of Donoho and Stark

4.1. Higher dimensional generalization of Donoho and Stark’s the-

orem. We will start this section by giving a simple generalization of Donoho
and Stark’s result. The main purpose of this is to explain the idea of the
proof of the next theorem which may appear a bit obscure and technical
otherwise.

Proposition 4.1. Let d ≥ 1 and α > −1/2. Then there exists a constant
ϑ = ϑ(d, α) such that, for every Ω, S > 0 with ΩS1/d ≤ ϑ and for every
ϕ ∈ L1(Rd) with support of finite measure at most S, we have

∣∣∣∣
∫

Rd

Ω−dmα(ξ/Ω)ϕ̂(ξ) dξ

∣∣∣∣ ≤
∫

Rd

Ω−dmα(ξ/Ω)|̂ϕ|∗(ξ) dξ.

Proof. Let R be such that the ball of radius R has measure S, |B(0, R)| = S.
Plancherel’s Formula shows that

Ω−d

∫

Rd

mα(ξ/Ω)ϕ̂(ξ) dξ = 2d/2+απd/2Γ(α+ 1)

∫

Rd

Jd/2+α(2πΩ|x|)ϕ(x) dx.

It follows from Lemma 2.1 that
∣∣∣∣
∫

Rd

Ω−dmα(ξ/Ω)ϕ̂(ξ) dξ

∣∣∣∣ ≤

≤ 2d/2+απd/2Γ(α+ 1)

∫

Rd

|Jd/2+α(2πΩ|x|)||ϕ(x)|dx

≤ 2d/2+απd/2Γ(α+ 1)

∫

Rd

|Jd/2+α|∗(2πΩ|x|)|ϕ|∗(x) dx

= 2d/2+απd/2Γ(α+ 1)

∫

B(0,R)
|Jd/2+α|∗(2πΩ|x|)|ϕ|∗(x) dx.

In order to complete the proof, it is enough to prove that Jd/2+α has an
“absolute” maximum at 0 :

Fact. There exists ε0 > 0 such that for all t ∈ [0, ε0), Jd/2+α(t) > Jd/2+α(ε0)
and, for all t ≥ ε0, |Jd/2+α(t)| ≤ Jd/2+α(ε0).

We will postpone the proof of this fact to the end of this section. An
immediate consequence of this fact is that |Jd/2+α|∗ = Jd/2+α on [0, ε0),
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thus, if 2πΩ|x| < ε0 on B(0, R) i.e. ΩS1/d < ε0|B(0, 1)|1/d/2π, then
∣∣∣∣
∫

Rd

Ω−dmα(ξ/Ω)ϕ̂(ξ) dξ

∣∣∣∣

≤ 2d/2+απd/2Γ(α+ 1)

∫

B(0,R)
Jd/2+α(2πΩ|x|)|ϕ|∗(x) dx(4.7)

= 2d/2+απd/2Γ(α+ 1)

∫

Rd

Jd/2+α(2πΩ|x|)|ϕ|∗(x) dx

=

∫

Rd

Ω−dmα(ξ/Ω)|̂ϕ|∗(ξ) dξ

which completes the proof once we have proved the fact. �

Let us now give the proof of the fact (note that this is obvious for the
sinc function).

Proof of the fact. First, Jd/2+α is the Fourier transform of a positive L1

function and is therefore positive definite :
∑

i,j=1,...,n

Jd/2+α(|ti − tj |)ξiξj ≥ 0

for every integer n, every t1, . . . , tn ∈ Rd and every ξ1, . . . , ξn ∈ C. As usual,
by appropriately choosing the ξi’s and the ti’s one gets that Jd/2+α(t) is

maximal at t = 0. As |Jd/2+α(t)| ≤ C/td/2+1/2+α, it is enough to show that,
for every local maximum ti > 0 of |Jd/2+α|, |Jd/2+α(ti)| < Jd/2+α(0).

To do so, note that from the positive definiteness of Jd/2+α, for every
t > 0, the matrix




Jd/2+α(0) Jd/2+α(ti) Jd/2+α(t+ ti)
Jd/2+α(ti) Jd/2+α(0) Jd/2+α(t)

Jd/2+α(t+ ti) Jd/2+α(t) Jd/2+α(0)




is positive definite and thus has non-negative determinant. In particular, if

Jd/2+α(ti) = ±Jd/2+α(0),
(
Jd/2+α(t+ ti)∓Jd/2+α(t)

)2 ≤ 0. It follows that,
for all t > 0, Jd/2+α(t + ti) = ±Jd/2+α(t), which contradicts the estimate

|Jd/2+α(t)| ≤ C/td/2+1/2+α. �

Finally, note that if, as in [DS2] we use Riesz’s Inequality (Lemma 2.2)
instead of Hardy-Littlewood’s Iniequality (Lemma 2.1), we obtain the fol-
lowing :

Proposition 4.2. Let d ≥ 1 and α > −1/2 and ϑ(d, α) be the constant
of Proposition 4.1. Let ϕ ∈ L2(Rd) with support of finite measure S. If

ΩS1/d ≤ ϑ(d, α)/2, then
∣∣∣∣
∫

Rd

Ω−dmα(ξ/Ω)|ϕ̂(ξ)|2 dξ

∣∣∣∣ ≤
∫

Rd

Ω−dmα(ξ/Ω)||̂ϕ|∗(ξ)|2 dξ.
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4.2. The main theorem. We are now in position to extend this result in
the following way :

Theorem 4.3. Let d be an integer and let β ≥ d
2 − 1 and α > −1

2 . Let
S,Ω > 0. Set

ψ(s) =





(1 + s)
1

2
(d−2α−1) if α < d−1

2

ln(1 + s) if α = d−1
2

1 if α > d−1
2

.

Then there exists a constant C = C(d, α, β) such that, for every ϕ ∈ L1(Rd)
with support of finite measure S, for every x, a ∈ Rd,

Ω−d

∣∣∣∣
∫

Rd

ϕ̂(ξ)(1 − |ξ − a|2/Ω2)α+e
2iπxξ dξ

∣∣∣∣

≤ Cψ(ΩdS)

∫

Rd

Ω−d(1 − |ξ|2/Ω2)β+ |̂ϕ|∗(ξ) dξ.(4.8)

Remark 4.4. The condition α > d−1
2 that appears here for ψ(s) to be

constant is the same as the trivial bound for convergence of Bochner-Riesz
means. Actually both bounds only depend on bounds of appropriate Bessel
functions.

Proof. It is enough to prove (4.8) for a = x = 0 and then apply it to

ϕ(a,x)(t) = ϕ(t − x)e2iπat. Note that |ϕ(a,x)|∗ = |ϕ|∗ so that the right hand

side of (1.1) is unaffected by the change of ϕ into ϕ(a,b).
We may further replace ϕ by its dilate ϕ(x/Ω) so that, without loss of

generality, we may assume that Ω = 1. More precisely, assume we are able
to prove that

(4.9)

∫

Rd

(1 − |ξ|2)α+ϕ̂(ξ) dξ ≤ ψ(S)

∫

Rd

(1 − |ξ|2)β+ |̂ϕ|∗(ξ) dξ

for every S > 0 and every functions ϕ with support of finite measure S. We
will then apply this to ϕΩ(x) = ϕ(x/Ω) which has support of measure ΩdS.
Note that ∫

Rd

(1 − |ξ|2)α+ϕ̂Ω(ξ) dξ =

∫

Rd

Ωd(1 − |ξ|2)α+ϕ̂(Ωξ) dξ

=

∫

Rd

(1 − |ξ|2/Ω2)α+ϕ̂(ξ) dξ.

On the other hand, |ϕΩ|∗(x) = |ϕ|∗(x/Ω) therefore |̂ϕΩ|∗(ξ) = Ωd|̂ϕ|∗(Ωξ)
so that ∫

Rd

(1 − |ξ|2)β+ |̂ϕΩ|∗(ξ) dξ =

∫

Rd

(1 − |ξ|2/Ω2)β+ |̂ϕ|∗(ξ) dξ.

It is thus enough to prove (4.9), i.e. to assume that Ω = 1 in Theorem 4.3.
The beginning of the proof follows the lines of the proof of Proposition 4.1.
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Using Parseval and Hardy-Littlewood’s Symmetrization Lemma 2.1, we
obtain ∣∣∣∣

∫

Rd

(1 − |ξ|2)α+ϕ̂(ξ) dξ

∣∣∣∣ =

∣∣∣∣
∫

Rd

m̂α(t)ϕ(t) dt

∣∣∣∣

≤
∫

Rd

|m̂α|∗(t)|ϕ|∗(t) dt.

Recall that m̂α(t) = Cd,α|t|−d/2−αJd/2+α(2π|t|). We will therefore write
|m̂α|∗(t) = J ∗

d/2+α(|t|).
On the other hand∫

Rd

(1 − |ξ|2)β+ |̂ϕ|∗(ξ) dξ =

∫

Rd

Cd,β|t|−d/2−βJd/2+β(2π|t|)|ϕ|∗(t) dt.

But, as |ϕ|∗ is a radial function that is “radially decreasing”, we may write
|ϕ|∗(t) =

∫
χB(0,s)(t) dµ(s) where µ is a non-negative measure and χB(0,s)

is the characteristic function of the ball of center 0 and radius s. It is thus
enough to prove that, for s ≤ S,

∫

Rd

J ∗
d/2+α(|t|)χB(0,s)(t) dt

≤ ψ(S)

∫

Rd

Cd,β|t|−d/2−βJd/2+β(2π|t|)χB(0,s)(t) dt.

Switching to polar coordinates, this is equivalent to proving that :
∫ s

0
J ∗
d/2+α(r)rd−1 dr ≤ ψ(S)

∫ s

0
rd/2−β−1Jd/2+β(2πr) dt.

Now, it is well known that the graph of a Bessel function Jν (ν > −1)
consists of “waves” that are alternately positive and negative. Moreover, the
areas of these waves is strictly deceasing. That is, if we denote by jν,k the
kth zero of Jν , then

(4.10)

∫ jν,k+1

jν,k

|Jν(r)|dr

is strictly decreasing. As a consequence, we obtain that, for γ ≥ 0,
∫ jν,k+1

jν,k

r−γ |Jν(r)|dr >

∫ jν,k+1

jν,k

j−γν,k+1|Jν(r)|dr

>

∫ jν,k+2

jν,k+1

j−γν,k+1|Jν(r)|dr

>

∫ jν,k+2

jν,k+1

r−γ |Jν(r)|dr.

It follows that, for 0 ≤ γ < ν + 1
∫ x

0
r−γ |Jν(r)|dr ≥ Cν,γ > 0.
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On the other hand, from |Jν(t)| ≤ Cν(1+t)
−1/2 and (2.3), we get J ∗

d/2+α(|t|) ≤
Cd,α(1 + |t|)− 1

2
(d+1+2α) thus

∫ s

0
J ∗
d/2+α(r)rd−1 dr ≤





C(1 + s)
1

2
(d−2α−1) if α < d−1

2

C ln(1 + s) if α = d−1
2

C if α > d−1
2

which completes the proof. �

Remark 4.5. The behavior of Bessel functions used here is a classical result
was proved originally by Cooke [Co1, Co2] using delicate estimates involving
the Lommel functions and several properties of Bessel functions. This is
linked to the Gibbs Phenomena which is best seen for ν = 1/2 (the case

d = 1, α = 0) for which J1/2(t) =
sin t

t
. The following estimates can then be

found in many elementary courses in Fourier Analysis :
∫ s

0

sin 2πt

πt
≥
{
s if 0 ≤ s ≤ 1/2

2/5 if s ≥ 1/2

and

∫ s

0

sin 2πt

πt
→ 1

2
as s→ +∞.

In [Ma], Makai proved (4.10) for ν > −1 in a simpler way using a differ-
ential equation approach of Sturm-Liouville type. A particularly simple proof
of Cooke’s Theorem has been devised by Steinig in [St].

The range of γ’s can be extended to some negative values γ > −γ(ν) where
γ(ν) is defined in an implicite form for −1 < ν < −1/2, (Askey and Steinig
[AS]) and γ(ν) = −1/2 for ν ≥ −1/2 (Gasper [Ga]). This allows to extend
the theorem to β ≥ d−1

2 . Further results may be found in [MR].

The argument in the proof may be slightly modified to obtain the follow-
ing :

Corollary 4.6. Let d be an integer and let β ≥ d
2 and α > −1/2. Let

S,Ω > 0. Then there exists a constant C = C(d, α, β) such that ϕ ∈ L1(Rd)
with support of finite measure S, for every a ∈ Rd,

Ω−d

∫

Rd

|ϕ̂(ξ)|(1 − |ξ − a|2/Ω2)α+ dξ

≤ C(1 + ΩdS)d/2
∫

Rd

Ω−d(1 − |ξ|2/Ω2)β+ |̂ϕ|∗(ξ) dξ.

More generally, if ψ ∈ L2(Rd) ∩ L1(Rd) then, for every ϕ ∈ L1(Rd) with
support of finite measure S,∫

Rd

|ϕ̂(ξ)||ψ(ξ/Ω)|dξ

≤ C
(
‖ψ‖2/d

1 + ‖ψ‖2/d
2

)d/2
(1 + ΩdS)d/2

∫

Rd

(1 − |ξ|2/Ω2)β+ |̂ϕ|∗(ξ) dξ.
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Sketch of proof. Let us write |ϕ̂| = ϕ̂ then
∫

Rd

(1 − |ξ|2)α+|ϕ̂(ξ)|dξ =

∫

Rd

eiφ(ξ)(1 − |ξ|2)α+ϕ̂(ξ) dξ

=

∣∣∣∣
∫

Rd

[eiφ(·)(1 − | · |2)α+]̂(t)ϕ(t) dt

∣∣∣∣

≤
∫

Rd

|µα|∗(t)|ϕ|∗(t) dt

where µα is the Fourier transform of eiφ(ξ)(1 − |ξ|2)α+. One can not expect
any better behavior of this function then to be in L2∩L∞ thus, with Lemma
2.3, |µα|∗(t) ≤ C(1 + |t|)−d/2. Therefore

∫ s

0
|µα|∗(r)rd−1 dr ≤ C(1 + s)d/2

(with the obvious abuse of notation). The remaining of the proof of the
corollary follows the line of the previous proof.

The second statement is just a refinement of the previous one. We have

to estimate |ψ̂|∗ for which we use that ‖ψ̂‖2 = ‖ψ‖2 thus, from Lemma 2.3,

|ψ̂|∗(t) ≤ C‖ψ‖2|t|−d/2 and ‖ψ̂‖∞ ≤ ‖ψ‖1 thus |ψ̂|∗(t) ≤ C‖ψ‖1. Combining
both estimates, we get

|ψ̂|∗(t) ≤ C
(
‖ψ‖2/d

1 + ‖ψ‖2/d
2

)d/2
(1 + |t|)−d/2.

�

Finally, assume that ϕ ∈ L2 with support of finite measure S. Then
ϕ ∈ L1 and |ϕ̂(ξ)| ≤ ‖ϕ‖1 ≤ S1/2‖ϕ‖2. Thus

∫

B(0,Ω)
|ϕ̂(ξ)|2 dξ ≤ S1/2‖ϕ‖2

∫

B(0,Ω)
|ϕ̂(ξ)|dξ

≤ κ(1 + ΩdS)
d
2S1/2‖ϕ‖2

∫

B(0,Ω)
|̂ϕ|∗(ξ) dξ

with Corollary 4.6. Using Cauchy-Schwarz, we thus get

∫

B(0,Ω)
|ϕ̂(ξ)|2 dξ ≤ κ(1 + ΩdS)

d+1

2 ‖ϕ‖2

(∫

B(0,Ω)

∣∣∣|̂ϕ|∗(ξ)
∣∣∣
2
dξ

)1/2

.

It turns out that this estimate may be improved. This is done in Section 5
by adapting a result originally proved for Fourier series in [Mo].

5. The L2 Theorem

Theorem 5.1. Let d ≥ 1 be an integer. Then there exists a constant κd such
that, for every set Σ ⊂ Rd of finite positive measure and every ϕ ∈ L2(Rd),

(5.11)

∫

Σ
|ϕ̂(ξ)|2 dξ ≤ κd

∫

Σ∗

∣∣∣|̂ϕ|∗(ξ)
∣∣∣
2
dξ.
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Proof. Let τ be defined by |B(0, τ)| = |Σ|, that is B(0, τ) = Σ∗.
It is enough to prove the theorem for ϕ ∈ L1(Rd) ∩ L2(Rd).
For λ > 0, let Dϕ(λ) be the level set

Dϕ(λ) = {x ∈ Rd : |ϕ(x)| > λ}.

Let us further choose λ̄ to be the smallest non-negative real number λ such
that |Dϕ(λ)| ≤ |B(0, τ−1)|. For simplicity of notation, we will write D =
Dϕ(λ̄). Let us further write ϕ̂ = f + g where

f(ξ) =

∫

D

ϕ(x)e−2iπ〈x,ξ〉 dx and g(ξ) =

∫

Rd\D

ϕ(x)e−2iπ〈x,ξ〉 dx.

First
∫

Σ
|f(ξ)|2 dξ ≤ ‖f‖2

∞

∫

Σ
1 dξ ≤

(∫

D

|ϕ(x)|dx
)2

|Σ|

≤ |B(0, τ)|
(∫

B(0,τ−1)
|ϕ|∗(x) dx

)2

.

Further, using Parseval’s Identity
∫

Σ
|g(ξ)|2 dξ ≤

∫

Rd

|g(ξ)|2 dξ =

∫

Rd\D

|ϕ(x)|2 dx =

∫

|x|≥τ−1

|ϕ|∗(x)2 dx.

As |ϕ̂|2 ≤ 2|f |2 + 2|g|2, we get
(5.12)
∫

Σ
|ϕ̂(ξ)|2 dξ ≤ 2|B(0, τ)|

(∫

B(0,τ−1)
|ϕ|∗(x) dx

)2

+ 2

∫

|x|≥τ−1

|ϕ|∗(x)2 dx.

On the other hand, let K = χB(0,1) ∗ χB(0,1) and note that

(i) 0 ≤ K ≤ K(0) = cd := |B(0, 1)| = πd/2

Γ(d/2+1) ,

(ii) K is supported in B(0, 2),

(iii) K = k̂2 where k(x) = χ̂B(0,1)(x) =
Jd/2(2π|x|)

|x|d/2 .

Further, let Kτ (ξ) = 1
cd
K(2ξ/τ) and kτ (x) =

(
τd

cd2d

)1/2
k(xτ/2). A simple

computation then shows that
∫

B(0,τ)

∣∣∣|̂ϕ|∗(ξ)
∣∣∣
2
dξ ≥

∫

Rd

Kτ (ξ)
∣∣∣|̂ϕ|∗(ξ)

∣∣∣
2
dξ

=

∫

Rd

∫

Rd

|ϕ|∗(x)|ϕ|∗(y)
∫

Rd

Kτ (x)e
2iπξ(x−y) dξ dxdy

=

∫

Rd

∫

Rd

|ϕ|∗(x)|ϕ|∗(y)k2
τ (x− y) dxdy := I(5.13)
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Now, using the Poisson representation of Bessel functions,

kτ (u) =

(
τd

cd2d

)1/2

k(uτ/2) =
Jd/2(πτ |u|)√
cd|x|d/2

=
2
√
cdτ

d/2

(2π)Γ(1/2)

∫ 1

0
(1 − t2)d−1/2 cos(π|u|τt) dt.

It is then obvious that, for 0 ≤ |u| ≤ 1/τ ,

kτ (u) ≥ kτ (1/τ) =
2
√
cdτ

d/2

(2π)d/2Γ(1/2)

∫ 1

0
(1 − t2)d−1/2 cos(πt) dt

= (υd|B(0, τ)|)1/2

where

υd =

(
2

(2π)d/2Γ(1/2)

∫ 1

0
(1 − t2)d−1/2 cos(πt) dt

)2

.

We will now write I ≥ I1 + I2. For I1, we restrict the integration in (5.13)
to x, y ∈ B(0, 1/2τ) and for I2, the integration is restricted over |x| ≥ 1/τ
and |y − x| ≤ 1/tau.

Let us first estimate I1 :

I1 ≥ υd|B(0, τ)|
∫∫

x,y∈B(0,1/2τ)
|ϕ|∗(x)|ϕ|∗(y) dxdy

≥ υd|B(0, τ)|
(∫

|x|≤ 1

2τ

|ϕ|∗(x) dx

)2

.

From∫

|x|≤ 1

2τ

|ϕ|∗(x) dx =

∫

|x|≤ 1

τ

|ϕ|∗(x) dx−
∫

1

2τ
≤|x|≤ 1

τ

|ϕ|∗(x) dx

we deduce that ∫

|x|≤ 1

2τ

|ϕ|∗(x) dx ≥ 1

2d

∫

|x|≤ 1

τ

|ϕ|∗(x) dx.

We thus obtain the etimate

(5.14) I1 ≥ υd
2d

|B(0, τ)|
(∫

B(0,1/τ)
|ϕ|∗(x) dx

)2

.

On the other hand, if |y| < |x|, then |ϕ|∗(y) ≥ |ϕ|∗(x), so that
∫

{y∈Rd :|y|<|x|,|x−y|≤ 1

τ
}
|ϕ|∗(y)k2

τ (x− y) dy

≥ |ϕ|∗(x)
∫

{y∈Rd :|y|<|x|,|x−y|≤ 1

τ
}
k2
τ (x− y) dy.
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Using the properties of kτ we then obtain
∫

{y∈Rd :|y|<|x|,|x−y|≤1

τ
}
|ϕ|∗(y)k2

τ (x− y) dy

≥ |ϕ|∗(x)
∫

|t|≤ 1

τ
,|x+t|<|x|

k2
τ (t) dt

≥ |ϕ|∗(x)k2
τ (1/τ)|B(0, 1/τ) ∩B(x, |x|)|

≥ |ϕ|∗(x)υd|B(0, τ)||B(0, 1/2τ)|

=
υd|B(0, 1)|2

2d
|ϕ|∗(x)

provided |x| ≥ 1
τ , since then {|u| ≤ τ−1, |x+ u| < |x|} ⊃ B( 1

2τ x/|x|, 1/2τ).
Therefore, as for I2 we have restricted the integration in (5.13) to (x, y)’s

such that |x| ≥ 1
τ , |y| < |x| and |x− y| ≤ 1

τ , we obtain

(5.15) I2 ≥ υd|B(0, 1)|2
2d

∫

|x|≥ 1

τ

|ϕ|∗(x)2 dx.

From (5.14) and (5.15) we get that
∫

B(0,τ)

∣∣∣|̂ϕ|∗(ξ)
∣∣∣
2
dξ ≥ υd min

(
1, |B(0, 1)|2

)

2d+1
×

×


2|B(0, τ)|

(∫

B(0,1/τ)
|ϕ|∗(x) dx

)2

+ 2

∫

|x|≥ 1

τ

|ϕ|∗(x)2 dx




≥ υd min
(
1, |B(0, 1)|2

)

2d+1

∫

Σ
|ϕ̂(ξ)|2 dξ

in view of (5.12), as claimed. �

Corollary 5.2. Let d,≥ 1 be an integer and let κd be the constant given by
the previous theorem. Let ψ be a non-negative function on Rd that vanishes
at infinity. Then for every ϕ ∈ L2(Rd),

∫

Rd

ψ(ξ)|ϕ̂(ξ)|2 dξ ≤ κd

∫

Rd

|ψ|∗(ξ)
∣∣∣|̂ϕ|∗(ξ)

∣∣∣
2
dξ.

Proof. For λ > 0, Theorem 5.1 implies that
∫

Rd

χ{ξ : ψ(ξ)>λ}|ϕ̂(ξ)|2 dξ ≤ κd

∫

Rd

χ{ξ : ψ(ξ)>λ}∗

∣∣∣|̂ϕ|∗(ξ)
∣∣∣
2
dξ.

Integrating this inequality over λ > 0 and exchanging the order of integra-
tion gives the result. This comes from the layer-cake representation for the
left hand side and from the definition of |ψ|∗ for the right side. �

It seems natural to us to conjecture that if the characteristic function χΣ

of Σ is replaced by the characteristic function of its complement χΣc then
the inequality in (5.11) is reversed :
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Conjecture 1.

Let d ≥ 1 be an integer. Then there exists a constant κd such that, for every

set Σ ⊂ Rd of finite positive measure and every ϕ ∈ L2(Rd),

(5.16)

∫

Rd\Σ∗

∣∣|̂ϕ|∗(ξ)
∣∣2 dξ ≤ κd

∫

Rd\Σ

∣∣ϕ̂(ξ)
∣∣2 dξ.

Let us note that (5.16) may be rewritten
∫

Rd

∣∣|̂ϕ|∗(ξ)
∣∣2 dξ −

∫

Σ∗

∣∣|̂ϕ|∗(ξ)
∣∣2 dξ ≤ κd

∫

Rd

∣∣ϕ̂(ξ)
∣∣2 dξ −

∫

Σ

∣∣ϕ̂(ξ)
∣∣2 dξ.

As
∥∥|̂ϕ|∗

∥∥
2

=
∥∥ϕ̂
∥∥

2
, this is equivalent to

∫

Σ

∣∣ϕ̂(ξ)
∣∣2 dξ ≤

(
1 − 1

κd

)∫

Rd

∣∣ϕ̂(ξ)
∣∣2 dξ +

1

κd

∫

Σ∗

∣∣|̂ϕ|∗(ξ)
∣∣2 dξ.

If this conjecture were true, then the following conjecture would follow :

Conjecture 2.

Let d ≥ 1 be an integer. Then there exists a constant Cd such that, if S and

Σ are two sets of finite measure then, for every ϕ ∈ L2(Rd),

‖ϕ‖2
2 ≤ Cde

Cd(|S||Σ|)1/d

(∫

Rd\S

∣∣ϕ(x)
∣∣2 dx+

∫

Rd\Σ

∣∣ϕ̂(ξ)
∣∣2 dξ

)
.

This conjecture has been proved in dimension d = 1 by F. Nazarov [Na]
and for d ≥ 2 and either S or Σ convex by the author in [Ja]. (The result

was stated with a constant of the form Cde
Cd min(ω(S)|Σ|1/d,ω(Σ)|S|1/d) where

ω(S) –resp. ω(Σ)– is the mean width of S –resp. Σ– if this set is convex.

But, it is a well known fact that ω(S) ≤ Cd|S|1/d).
Let us now show how Conjecture 1 implies Conjecture 2. First, as is well

known, it is equivalent to show that
∫

Σ

∣∣ϕ̂(ξ)
∣∣2 dξ ≤ Cde

Cd(|S||Σ|)1/d

∫

Rd\Σ

∣∣ϕ̂(ξ)
∣∣2 dξ

for every ϕ ∈ L2 with support in S. But, from Theorem 5.1,
∫

Σ

∣∣ϕ̂(ξ)
∣∣2 dξ ≤

∫

Σ∗

∣∣|̂ϕ|∗(ξ)
∣∣2 dξ.

Now |ϕ|∗ is supported in S∗, so that the particular case of Conjecture 2 that
has already been proved in [Ja] (and |S∗| = |S|, |Σ∗| = |Σ|) implies that

∫

Σ

∣∣ϕ̂(ξ)
∣∣2 dξ ≤ Cde

Cd(|S||Σ|)1/d

∫

Rd\Σ∗

∣∣|̂ϕ|∗(ξ)
∣∣2 dξ.

Finally, once Conjecture 1 is established, this would imply that
∫

Σ

∣∣ϕ̂(ξ)
∣∣2 dξ ≤ κdCde

Cd(|S||Σ|)1/d

∫

Rd\Σ

∣∣ϕ̂(ξ)
∣∣2 dξ.
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Note that it is enough to establish Conjecture 1 for ϕ with support S of

finite measure and that one can allow for κd = κd(S,Σ) = CeC(|S||Σ|)1/d
.

6. An application to the Free Shrödinger Equation

Let us recall that the solution of the Free Shrödinger Equation

(6.17)




i∂tv +

1

4π
∆2
xv = 0

v(x, 0) = v0(x)

with initial data v0 ∈ L2(Rd) has solution

v(x, t) =

∫

Rd

e−iπ|ξ|
2t+2iπ〈x,ξ〉v̂0(ξ)dξ

=
(
e−iπ|ξ|

2tv̂0
)

(̌x)(6.18)

=
eiπ|x|

2/t

(it)d/2

∫

Rd

eiπ|y|
2/tv0(y)e

−2iπ〈y,ξ〉/tdy

=
eiπ|x|

2/t

(it)d/2
̂eiπ|·|2/tv0(x/t).(6.19)

We may thus apply Corollary 4.6 and Theorem 5.1 to obtain a control of

v(x, t) over sets of finite measure. This is stated in terms of |̂v̂0|∗ for small

time and of |̂v0|∗ for large time. More precisely, using respectively (6.18) and
(6.19), we obtain the following :

Theorem 6.1. Let v be the solution of (6.17) and let Σ be a set of finite
measure and let τ be defined by |B(0, τ)| = |Σ|. Let β ≥ d−1

2 .

(1) For every t > 0,
∫

Σ
|v(x, t)|2 dx ≤ C

∫

B(0,τ)

∣∣̂|v̂0|∗(ξ)
∣∣2 dξ.

Moreover, if v̂0 has support of finite measure S, then∫

Σ
|v(x, t)| dx ≤ C|Σ|1/2(1 + |Σ|1/d)d/2(1 + S)

∫

Rd

(1 − |ξ|2)β+ |̂v̂0|∗(ξ) dξ.

(2) For every t > 0,
∫

Σ
|v(x, t)|2 dx ≤ Ct−d

∫

B(0,τ)

∣∣|̂v0|∗(ξ/t)
∣∣2 dξ.

=

∫

B(0,τ/t)

∣∣|̂v0|∗(ξ)
∣∣2 dξ.(6.20)

Moreover, if v0 has support of finite measure S, then∫

Σ
|v(x, t)| dx ≤ C|Σ|1/2(1 + |Σ|1/d/t)d/2(1 + S)d/2

∫

Rd

(1 − |ξ|2)β+ |̂v0|∗(ξ) dξ.

Here C is a constant that only depends on d and on β.
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For the second part of each statement, we have used ψ = χΣ and Ω = 1
in Corollary 4.6 and a trivial change of variables.

Let us remark that, using Hölder and Hausdorff-Young, we have for 1 ≤
q ≤ +∞,

1

q
+

1

q′
= 1

∫

B(0,τ/t)

∣∣|̂v0|∗(ξ)
∣∣2 dξ =

∫

Rd

χB(0,τ/t)

∣∣|̂v0|∗(ξ)
∣∣2 dξ

≤
∥∥∥χB(0,τ/t)

∥∥∥
q

∥∥∥
∣∣|̂v0|∗(ξ)

∣∣2
∥∥∥
q′

= |B(0, τ/t)|1/q
∥∥∥
∣∣̂|v0|∗(ξ)

∣∣
∥∥∥

2

2q′

≤ |Σ|1/q
td/q

∥∥|v0|∗
∥∥2

2q
q+1

.

Setting p =
2q

q + 1
∈ [1, 2], it follows from (6.20) that

∫

Σ
|v(x, t)|2 dx ≤ C

|Σ|2−p
td(2−p)

∥∥v0
∥∥2

p
.

This estimate can also be obtained directly from the standard dispersive
estimate (∫

Rd

|v(x, t)|q dx

)1/q

≤ Ct
− d

2

(
1− 2

q

)
‖v0‖q′

(
1

q
+

1

q′
= 1, q ≥ 2) and Hölder’s inequality. The estimate (6.20) is slightly

more precise and also shows that the case of radial initial data is somehow
the worst case.

7. Concluding remarks

For the clarity of exposition, we have chosen to deal only with the d-
dimensional radial decreasing rearrangement of functions. An alternative
would have be to deal with the 1-dimensional (resp. k-dimensional) symmet-
ric decreasing rearrangement defined as follows : for a set E ⊂ Rd of finite
measure, we define E⋆ = [−a, a] where a = |E|/2 (resp. E⋆ = B(0, r) ⊂ Rk

with |B(0, r)|k = |E|d). One can then define the symmetric decreasing re-
arrangement of functions through the layer cake representation :

|ϕ|⋆(x) =

∫ +∞

0
χ{y∈Rd : |ϕ(y)|>λ}⋆(x) dλ.

This rearrangement as similar properties to the one we considered so far.
One may then adapt directly the proofs of Theorems 4.3 and 5.1 to obtain
the following results :

Theorem 7.1. Let d ≥ 1 be an integer.
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(1) Let α > −1/2, β ≥ 0. Let S,Ω > 0 and let ψ be as in Theorem
4.3. Then there exists a constant C = C(d, α, β) such that, for every
ϕ ∈ L1(Rd) with support of finite measure S, for every x, a ∈ Rd,∣∣∣∣
∫

Rd

ϕ̂(ξ)(1 − |ξ − a|2/Ω2)α+e
2iπxξ dξ

∣∣∣∣

≤ Cψ(ΩdS)

∫

R

(1 − |ξ|2/Ω2)β+ |̂ϕ|⋆(ξ) dξ.

(2) There exists a constant κd such that, for every Σ ∈ Rd of finite
measure ad every ϕ ∈ L2(Rd),

∫

Σ

∣∣ϕ̂(ξ)
∣∣2 dξ ≤ κd

∫ |Σ|/2

−|Σ|/2

∣∣|̂ϕ|⋆(ξ)
∣∣2 dξ.
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