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Abstract. The method earlier used for thefoF2 long-term
trends analysis is applied to revealhmF2 long-term trends at
27 ionosonde stations in the European and Asian longitudi-
nal sectors. ObservedM(3000)F2 data for the last 3 solar
cycles are used to derivehmF2 trends. The majority of the
studied stations show significanthmF2 linear trends with a
confidence level of at least 95% for the period after 1965,
with most of these trends being positive. No systematic vari-
ation of the trend magnitude with latitude is revealed, but
some longitudinal effect does take place. The proposed ge-
omagnetic storm concept to explainhmF2 long-term trends
proceeds from a natural origin of the trends rather than an
artificial one related to the thermosphere cooling due to the
greenhouse effect.

Key words. Ionosphere (ionosphere-atmosphere interac-
tion)

1 Introduction

There is a permanent interest in the problem of global
changes in the terrestrial atmosphere due to an antropogenic
impact. Most of the discussion of this problem has focused
on the troposphere and stratosphere, which are of immedi-
ate human and economic concern. But long-term changes
in the thermosphere and ionosphere should also be studied
seriously not only for their possible practical importance for
the ionospheric HF radio-wave propagation, but also for their
potential use as indicators of changes at lower heights. Dur-
ing recent years several attempts have been made to anal-
yse various sets of long period observations in order to re-
veal the long-term effects in various ionospheric parameters
(Givishvili and Leshchenko, 1994, 1995; Givishvili et al.,
1995; Ulich and Turunen, 1997, Rishbeth, 1997; Jarvis et al.,
1998; Bremer, 1992, 1998; Danilov 1997, 1998; Upadhyay
and Mahajan, 1998; Danilov and Mikhailov 1998, 1999;
Sharma et al., 1999; Foppiano et al. 1999; Mikhailov and
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Marin 2000; Deminov et al., 2000). But no final concept
has been developed yet. Based on the model calculations of
Roble and Dickinson (1989) who predicted a marked cooling
of the mesosphere and thermosphere due to an enhancement
of the atmospheric greenhouse gases, Rishbeth (1990) and
Rishbeth and Roble (1992) predicted a lowering of the F2-
layer height. Assuming these predictions, some researchers
have been trying to explain the observed long-term trends
in the ionospheric parameters as an indication of this green-
house effect in the mesosphere and thermosphere (Bremer,
1992; Givishvili and Leshchenko, 1994; Ulich and Turunen,
1997; Jarvis et al., 1998; Upadhyai and Mahajan, 1998).
Satellite drag observations by Keating et al. (2000) revealed
a 10% decrease in neutral density at 350 km for the 20
year (1976–1996) period which seems to confirm the ther-
mosphere cooling due to the greenhouse effect. On the other
hand, the results of analysis by Bremer (1998) over many
European ionosonde stations, Upadhyay and Mahajan (1998)
over the world-wide ionosonde network, as well as thehmF2
trend analysis for the Southern Hemisphere ionosonde sta-
tions by Jarvis et al. (1998) and Foppiano et al. (1999) have
shown that the F2-layer parameter trends turn out to be dif-
ferent both in sign and magnitude for different stations and
this can hardly be reconciled with the greenhouse hypoth-
esis. Therefore, Upadhyay and Mahajan (1998) concluded
that the analysed data do not provide a definitive evidence
of any global long-term trend in the ionosphere. Jarvis et
al. (1998) relating the revealedhmF2 trends with the green-
house effect, nevertheless stress that other explanations can-
not be ruled out.

It must be pointed out that different authors use different
approaches to extract long-term trends from the ionospheric
observations and the success of analysis depends to a great
extent on the method used. F2-layer ionospheric parameters
strongly depend on solar and geomagnetic activity. These
effects make it difficult to detect long-term trends because
these changes are relatively small compared to the solar and
geomagnetic ones. The useful “signal” is very small and the
“background” is very noisy, so special methods are required
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Table 1. Years of solar minimum and maximum used in the analysis

Years of solar minimum Years of solar maximum

1943, 1944 1947, 1948, 1949
1953, 1954 1957, 1958, 1959
1964, 1965 1968, 1969, 1970
1975, 1976 1979, 1980, 1981
1985, 1986 1989, 1990, 1991

to reveal significant trends from the ionosonde observations.
An approach being developed by Danilov and Mikhailov
(1998, 1999) and Mikhailov and Marin (2000) has allowed
us to find systematic variations of thefoF2 trend magnitude
with geomagnetic (invariant) latitude and local time. The ap-
plication of this approach tofoF2 trend analysis resulted in a
new geomagnetic control concept based on the contemporary
understanding of the F2-layer storm mechanisms (Mikhailov
and Marin, 2000). SincehmF2 andNmF2 are related by
the mechanism of the F2-layer formation, any hypothesis of
the F2-layer parameter trends should explain the observed
trends of both parameters simultaneously. Therefore, if the
F2-layer trends are primarily controlled by the geomagnetic
activity, thehmF2 long-term trends should also demonstrate
corresponding temporal and spatial variation. The aim of this
paper is to studyhmF2 long-term trends in order to check if
the results may be reconciled with the proposed geomagnetic
control hypothesis.

2 Data and method

The height of the F2 layer (hmF2) data used in our analysis
has been prepared according to the following steps:

1. Monthly M(3000)F2 medians on the analysed iono-
sonde stations were obtained from WDC-C at the Rutherford
Appleton Laboratory (Chilton, UK) and from NGDC (Boul-
der, USA) to derivehmF2 values.

2. As we apply 12 month running mean smoothing to the
hmF2 values (see below the first point of the method applied
to extract the trends), gaps in the initialM(3000)F2 observa-
tions have to be filled in. This is done by using the monthly
median MQMF2 model by Mikhailov et al. (1996), which is
based on theM(3000)F2 third-degree polynomial regression
with the sunspot numberR12. The regression is calculated
for each station, with 24 moments of UT and 12 months. The
initial M(3000)F2 monthly medians are converted to solar
local time (SLT) using spline-interpolation.

3. The Shimazaki (1955) formula was used to derivehmF2
from M(3000)F2 hmF2 = [1490/M(3000)F2]–176.

The approach to reveal thefoF2 layer parameter trends is
described in detail by Danilov and Mikhailov (1998, 1999)
and Mikhailov and Marin (2000), so only the main points
of the method applied to thehmF2 trend analysis are sum-
marised below:

1. A 12 month running meanhmF2 rather than just month-
ly median hourly values are used in the analysis. The proce-

dure of 12 month smoothing is the same used to obtain the
12 month running mean sunspot numbersR12 (CCIR, 1988).
This is an important point not used by other researchers as
it strongly decreases the scatter in observedhmF2 data. The
use of 12 month running mean values does not eliminate an-
nual variations but only smoothes them.

2. Relative deviations of the observedhmF2 values from
some model are analysed

δhmF2 = (hmF2obs− hmF2mod)/hmF2mod (1)

wherehmF2mod is a third-degree polynomial regression with
theR12 index. Other researchers (Givishvili and Leshchenko,
1994, 1995; Bremer, 1998; Upadhyay and Mahajan, 1998,
Jarvis et al., 1998) considered absolute deviations rather than
relative ones. The use of relative deviations allows us to com-
bine values for different months to obtain the annual mean
value analysed in our method.

We have calculatedhmF2 trends using two models: a re-
gression withR12 (Model 1) and a regression with a combi-
nation (R12 + 12 month running meanAp index). The latter
is done as an attempt to exclude the dependence on geomag-
netic activity.

hmF2mod1 = a + bR12+cR2
12 + dR3

12 (Model 1)

hmF2mod2 = a + bR12+cR2
12+dR3

12+eAp12 (Model 2)

All the coefficients are calculated for each station, month,
and SLT moment with the least squares method.

3. Linear trends (slopeK) are estimated according to a
linearδhmF2 regression with the year (δhmF2 = a +K year)
for selected hours and months. As annualhmF2 variations
(especially 12 month running mean values) are small, the an-
nual variation of thehmF2 trends are rather small as well for
all SLT moments. Such seasonal variations of the trends for
0, 6, 12 and 18 SLT are shown for several stations in Fig. 1
as an example. Therefore, only annual meanδhmF2 values
at fixed hours are used to find annual mean trends.

4. The test of significance for the linear trend (K parame-
ter) is made using the Fisher’s F criterion (Pollard, 1977)

F = r2(N − 2)/(1 − r2),

wherer is the correlation coefficient between the annual mean
δhmF2 values and the year after Eq. (1), and N is the number
of pairs considered. A 95% confidence level is applied in the
paper.

5. To comparehmF2 linear trends at different stations, the
same time period 1965–1991 is analysed. This is done to
avoid the influence of different (falling/rising) periods in the
long-term geomagnetic activity variations on the trend mag-
nitude as well as for a comparison offoF2 trends obtained
for the same period (Mikhailov and Marin, 2000).

6. We use two selections of years in our analysis to reveal
hmF2 trends: all years and then only years around solar cycle
maximum and minimum (Table 1) to check if the selection
of years makes a difference as it did with thefoF2 trends.
(Danilov and Mikhailov, 1999; Mikhailov and Marin, 2000).
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Fig. 1. Seasonal variation of thehmF2 trends at 6 European
ionosonde stations and 4 moments of SLT. Regression ofhmF2 with
R12 (Model 1) is used.

3 hmF2 formula selection

In searching for thehmF2 trends it should be taken into ac-
count thathmF2 values are not directly scaled from iono-
grams as are other ionospheric parameters. A practical ap-
proach to derivehmF2 values is to use empirical formulas
that link hmF2 to theMUF factor, M(3000)F2. There-
fore, some investigations have been made in order to anal-
yse the dependence of the results on the formula used. Bre-
mer (1992) compared thehmF2 trends for the Juliusruh
ionosonde station using four different methods to derive
hmF2 (Shimazaki,1955; Bradley and Dudeney,1973; Du-
deney, 1974; and Bilitza et al., 1979). He found that the
choice of the formula was not critical for the derived trends.
However, Ulich (2000) analysed several ionosonde stations
showing thathmF2 trends may be different both in sign and
magnitude depending on the formula used to derivehmF2.

Therefore, we have comparedhmF2 trends for several Eu-
ropean stations using the Shimazaki (1955) formula (For-
mula 1) and the Dudeney (1978) formula (Formula 2). The
latter one is more accurate as it includes the dependence on
thefoF2/foE ratio:

hmF2 = (1490MF )/(M3 + 1M) − 176
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Fig. 2. Diurnal variation of thehmF2 trends when the Shimazaki
(Formula 1) and the Dudeney (Formula 2) formulas were used to
derivehmF2 fromM(3000)F2.

with

MF = M3{[(0.0196M2
3 + 1)/(1.2967M2

3 − 1)]}1/2

M3 = M(3000)F2

and

1M = 0.253/(r − 1.215) − 0.012

r = foF2/foE.

The results of such a comparison for St. Petersburg, Up-
psala, Ekaterinburg, Slough, Kiev and Poitiers are shown in
Fig. 2. All analysed stations demonstrate a systematic be-
haviour of the trends when both formulas are applied; the
trend magnitude tending slightly to decrease when the ef-
fect of the underlying layer is taken into account by the ratio
foF2/foE (Formula 2). The differences in the trend magnitude
are not very large and they depend on the local time. Both
formulas give close results during nighttime hours whenfoE
is small, but the difference increases during daytime hours
when the E-layer contribution increases. Therefore, it should
be kept in mind thathmF2 trend results are not as reli-
able asfoF2 ones becausehmF2 values are inferred from
M(3000)F2 by using some empirical formulas which insert
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Fig. 3. A dependence of thehmF2 trend magnitude on geographic
(top panel) and geomagnetic (bottom panel) latitude for two models,
00 and 12 SLT. Filled in symbols correspond to significant trends
at a 95% confidence level. Note the absence of any pronounced
dependence.

an additional noise to the analysedhmF2 values. There are
some problems with the use of formula (2). It includes the
foF2/foE ratio, which should itself demonstrate long-term
variations that distort the soughthmF2 trend. In addition,foE
values used in the formula (2) are not available at many sta-
tions during nighttime hours. Therefore, the simple formula
by Shimazaki (1955) has been chosen for our analysis. This
allowed us to analyse a greater number of ionosonde stations.
In this context it should be mentioned that the use of model
foE values instead of absentfoE observations (Upadhyai and
Mahajan, 1998) should distort thehmF2 trends asfoE itself
demonstrates a long-term trend (Givishvili and Leshchenko,
1995; Bremer, 1998) which is not reflected by an empirical
model such as IRI-90.

4 CalculatedhmF2 trends

Ground-based ionosonde observations on 27 Eurasian sta-
tions located in the 37◦ N – 69◦ N and 5.6◦ W – 136◦ E sector
are used in this study. The list of the stations is given in Ta-
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Fig. 4. Same as Fig. 3 but for the dependence on geographic longi-
tude. Note some longitudinal effect with negative trends at western
European stations.

ble 2. The observations from most of them are seen to over-
lap the analysed period of 1965–1991, which corresponds to
the period of increasing geomagnetic activity. Moreover, this
time period is the richest, with observations over the world-
wide ionosonde network.

The calculatedhmF2 linear trends for four SLT moments
(0, 6, 12 and 18) and two models are shown in Table 2.
An inclusion of the dependence onAp12 to the regression
(Model 2) makes the trends more negative, while Model 1
provides more positive trend magnitudes. Mikhailov and
Marin (2000) found the opposite effect of taking into account
the dependence on theAp index for thefoF2 trends which
were more positive in the latter case.

Most of the stations listed in Table 2 show significant
trends. The number of stations with significant trends (neg-
ative and positive) for four SLT moments and two models is
summarised in Table 3. Most of them are seen to be pos-
itive even when theAp index is included to the regression
(Model 2). The only exception is for the 00 SLT (Model 2)
case when the numbers of positive and negative significant
trends are nearly the same. Therefore, the majority of the
significanthmF2 trends are positive regardless of the model
used. This is an important result of our analysis, which gives
a clue for further physical interpretation.

Using the results given in Table 2, spatial (both latitudinal
and longitudinal) variations of thehmF2 trends have been
analysed. The slopesK at 00 and 12 SLT for the stations
with observations available for the whole period 1965–1991
are plotted versus latitude (geomagnetic and geographic) and
geographic longitude in Figs. 3 and 4, respectively. Regres-
sions ofhmF2 with R12 (Model 1) and withR12 + Ap12
(Model 2) are used in both figures for a comparison. The
scatter of the slopeK at the analysed stations is seen to be
smaller when theAp12 index is included to the regression
(Model 2). The calculated trends are seen to demonstrate
no latitudinal dependence (Fig. 3) regardless of whether geo-
graphic or geomagnetic latitude is used, while a pronounced
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Fig. 5. Diurnal variation of thehmF2 trends in three longitudinal
sectors. Regression ofhmF2 withR12+Ap12 (Model 2) was used.
Filled in symbols correspond to significant trends at a 95% confi-
dence level. The interval of geomagnetic latitudes8 where stations
are located is given in the plots.

latitudinal dependence was revealed for thefoF2 trends
(Danilov and Mikhailov, 1999; Mikhailov and Marin, 2000).
This is another interesting result of our analysis which should
be reconciled with the previous conclusions on thefoF2
trends. On the other hand, some longitudinal effect is seen
in Fig. 4. The trends have a tendency to have different signs
in the West European and in the East European/Asian longi-
tudinal sectors.

All negative trends are observed at the stations located be-
tween 0 and 33◦ E, while significant positive trends are ob-
served to the east from 33◦ E. But it should be pointed out
that some stations, such as Slough or Lycksele, demonstrate
significant positive trends and they are located in the West
European longitudinal sector.

To study this effect in more detail, the diurnal variation
of the trends has been calculated for all ionosonde stations
shown in Fig. 4 (those ones with available observations for
the period 1965–1991) using Model 2. The results are pre-
sented in Fig. 5. Stations have been separated according to
their longitude. Whereas most of the analysed stations lo-
cated in the 0–22◦ E longitudinal sector have negative trends
(Fig. 5, top), those withλ > 37◦ E (bottom panel) present

significant positive trends for all SLT. Stations in the bound-
ary region (middle panel) show small positive or negative
trends which are not significant. A similar longitudinal effect
was found earlier by Bremer (1998). It should be stressed
that although we observe some stations with significant neg-
ative trends (all located in a small longitudinal sector of west-
ern Europe), they are a minority as most of the stations are
seen to present positive trends (see Tables 2 and 3). This
longitudinal effect also requires physical interpretation.

Another point which should be taken into account in the
long-term trends analysis is the possible influence of the
hysteresis effect. Similar tofoF2, theM(3000)F2 values
also demonstrate a hysteresis effect in their solar cycle vari-
ations (Rao and Rao, 1969). AshmF2 values are derived
from M(3000)F2, some effect may also be expected in the
hmF2 variations as well. Danilov and Mikhailov (1999) and
Mikhailov and Marin (2000) found in theirfoF2 long-term
trends research that only when the hysteresis effect at the
rising and falling phases of a solar cycle was avoided, was
it possible to obtain stable significant trends. They recom-
mended using a selection of years around solar cycle maxi-
mum and minimum for thefoF2 trends analysis. Taking into
account this result, we have tried to check the effect of the
year selection on the resultanthmF2 trends. By analogy with
the foF2 trends analysis, we considered all years and then
only years around the solar cycle extrema. The results of this
comparison are given in Table 4 (Model 1) and in Table 5
(Model 2). The selection of years applied in this analysis is
based on the observed annual meanR12 variations. Two or
three years around solar cycle maxima (M) and minima (m)
with close annual meanR12 values are selected for each solar
cycle (Table 1). As it can be seen from Tables 4 and 5, al-
though there are some small differences in thehmF2 slopes
for the two selections of years, the character of the trends
does not change. Therefore, this (M)+(m) selection of years
does not help to revealhmF2 trends, as it did in the case of
the foF2 trends. There is still no explanation for this result.
Therefore, to revealhmF2 long-term trends, all years with
available observations are used (as done in Table 2) since this
increases the statistics and the confidence of results obtained.

5 Discussion

The physical mechanism of the ionospheric trends remains
still unclear. Although the thermosphere cooling due to an
increase in the atmospheric greenhouse gases has been pro-
posed by different researchers as an explanation forhmF2
long-term trends, the results of the F2-layer parameter trends
analysis cannot be explained by this greenhouse hypothesis.
Global cooling of the upper atmosphere due to this effect
would result in a negativehmF2 trend (Bremer, 1992; Ulich
and Turunen, 1997) and a positive one infoF2 at least for the
midlatitude F2-layer (Mikhailov and Marin, 2000), which is
contrary to the obtained observations. This conclusion was
obtained for the Northern Hemisphere stations. Long-term
hmF2 trends for the Southern Hemisphere stations of the Ar-
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Table 3. Number of stations with significant (positive and negative)hmF2 trends taking into account the results presented in Table 2.
Confidence level of 95% is applied

Number of 0 SLT 0 SLT 6 SLT 6 SLT 12 SLT 12 SLT 18 SLT 18 SLT
analysed Stations Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

19 sig. 13 sig. 20 sig. 17 sig. 19 sig. 18 sig. 20 sig. 18 sig.
27 16 posit. 6 posit. 19 posit. 12 posit. 14 posit. 13 posit. 17 posit. 14 posit.

3 negat. 7 negat. 1 negat. 5 negat. 5 negat. 5 negat 3 negat 4 negat.

Table 4. Calculated annual mean slope K (in 10–4 units) for the period 1965–1991. Regression ofhmF2 withR12 (Model 1), and all years
as well as years around solar maximum and minimum (Mm years) are used to obtainhmF2 linear trends. Significant trends at a confidence
level of 95% are denoted by an “s” after the value

STATION 0 SLT 0 SLT 6 SLT 6 SLT 12 SLT 12 SLT 18 SLT 18 SLT Analysed
All years Mm years All years Mm years All years Mm years All years Mm years Years

MURMANSK −3.23 1.00 3.48 1.56 1.66 4.38 3.43 3.02 1965–91
SODANKYLA −6.71 s −10.03 s 8.24 s 6.43 s 5.08 5.75 1.04 0.48 1965–91
LYCKSELE 18.98 s 20.27 s 24.26 s 24.85 s 25.22 s 30.6 s 22.41 s 23.11 s 1965–91
ARKHANGELSK −2.36 5.39 8.95 s 13.46 s 4.77 7.56 15.08 s 16.37 s 1970–89
UPPSALA −15.49 s −8.67 −0.11 3.53 −13.42 s −7.68 −19.85 s −16.08 s 1965–91
ST PETERSBURG 7.64 s 11.23 s 17.87 s 15.84 s 10.12 s 13.03 s 13.54 s 13.71 s 1965–91
JULIUSRUH −3.48 0.33 2.67 4.94 3.63 8.23 s −0.19 2.95 1965–91
SLOUGH 9.19 s 13.05 s 23.78 s 22.55 s 15.00 s 15.46 s 15.66 s 18.56 s 1965–91
KALININGRAD 14.06 s 14.07 s 22.75 s 17.98 s 4.91 5.10 5.55 5.46 1965–91
DOURBES −0.86 −1.01 −2.71 −1.23 −13.36 s −6.26 s −23.75 s −19.91 s 1965–91
YAKUTSK 19.55 s 16.8 s 22.66 s 18.19 s 15.96 s 16.41 s 18.37 s 16.97 s 1965–90
TUNGUSKA 9.7 s 13.08 s 4.64 3.76 16.64 s 19.02 s 12.77 s 13.79 s 1969–91
MOSCOW 27.8 s 36.89 s 31.87 s 40.79 s 29.26 s 42.6 s 31.18 s 41.81s 1965–91
MAGADAN 9.29 s 10.42 s 9.02 10.39 s −9.52 s −2.63 3.19 2.54 1969–91
GORKY 0.69 2.29 8.77 s 7.01 15.47 s 16.7 s 14.58 s 15.35 s 1965–88
POITIERS −4.43 −0.71 −6.09 s −2.34 −7.59 s −2.00 −2.19 7.19 1965–91
EKATERINBURG 15.75 s 16.84 s 30.87 s 32.35 s 14.87 s 18.29 s 22.15 s 25.2 s 1965–91
KIEV 8.89 s 12.58 s 13.75 s 17.69 s 4.35 6.35 9.82 s 11.24 s 1965–91
TOMSK 23.45 s 20.01 s 22.48 s 19.26 s 23.17 s 22.37 s 21.26 s 20.27 s 1965–91
BEKESCSABA −11.94 s −9.58 s −3.77 0.58 −9.8 s −6.77 s −9.39 s −6.23 s 1965–91
NOVOSIBIRSK 7.96 s 9.78 s 8.17 s 7.80 7.59 s 12.06 s 6.2 s 9.6 s 1965–91
IRKUTSK 11.13 s 8.54 s 17.43 s 10.74 s 15.92 s 12.01 s 16.62 s 11.32 s 1965–91
KHABAROVSK 10.27 s 10.93 s 22.89 s 2.77 s 13.48 s 7.66 s 14.63 s 12.48 s 1965–91
NOVOKAZILINSK 1.44 1.38 15.07 s 13.72 −0.97 −1.10 6.39 10.27 1965–88
ALMA ATA 12.51 s 15.12 s 28.27 s 29.71 s 18.77 s 20.99 s 22.98 s 25.81 s 1965–88
TASHKENT 4.99 5.93 10.98 s 5.52 3.97 3.02 9.37 s 6.53 1965–91
ASHKHABAD 33.41 s 32.32 s 40.78 s 37.79 s 35.22 s 35.04 s 41.44 s 41.35 s 1965–91

gentine Islands and Port Stanley were analysed by Jarvis et
al. (1998) and for the Concepcion station by Foppiano et
al (1999). Primarily negativehmF2 trends were revealed at
these stations, especially for Port Stanley. ThehmF2 obser-
vations from the first two stations were analysed by Danilov
and Mikhailov (2001) using the same approach applied in
this paper to reveal the trends. The Argentine Islands data are
shown to demonstrate primarily positivehmF2 trends simi-
lar to most of the Northern Hemisphere stations, whereas at
Port Stanley, there is a stable negativehmF2 trend around
the clock. It was concluded that the difference might be
due to the fact that Port Stanley is close to the region of
the South-Atlantic Geomagnetic Anomaly where processes

of direct corpuscular ionisation may play some role in the
F2 layer formation thus disturbing the “normal” picture of
hmF2 behaviour. A similar effect with negativehmF2 trends
during nighttime hours takes place at Sodankyla which may
be attributed to the F-region ionization by the soft electron
precipitation (Mikhailov and Marin, 2001). Concepcion is
a low-latitude station (8 = −25.1) located at the poleward
slope of the equatorial anomaly bulge where F2-layer for-
mation is strongly controlled both by thermospheric winds
and plasma influx due to the “fountain” effect. Therefore,
a special analysis is required to estimate the contribution of
winds and equatorial electric fields to the formation ofhmF2
trends at this station. Similar to other trend researchers, Fop-
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Table 5. Calculated annual mean slopeK (in 10−4 units) for the whole period withhmF2 observations available on a particular ionosonde
station. Regression ofhmF2 with R12 + Ap12 (Model 2) , and all years as well as years around solar maximum and minimum (Mm years)
are used to obtainhmF2 linear trends. Significant trends at a confidence level of 95% are denoted by an “s” after the value

STATION 0 SLT 0 SLT 6 SLT 6 SLT 12 SLT 12 SLT 18 SLT 18 SLT Analysed
All years Mm years All years Mm years All years Mm years All years Mm years Years

MURMANSK −2.15 −0.68 −6.89 s −4.97 −3.23 s −0.98 −3.12 s −1.25 1958–93
SODANKYLA −10.63 s −9.55 s 2.26 s −1.16 −1.39 −2.68 −8.16 s −9.8 s 1958–97
LYCKSELE 0.98 2.66 −0.05 3.06 1.23 3.52 −2.77 −2.49 1958–97
ARKHANGELSK −5.31 −0.14 6.15 s 8.25 −0.28 −1.79 11.43 s 9.48 s 1970–89
UPPSALA −2.79 −1.22 0.07 1.80 1.79 3.97 −3.01 −3.39 1958–97
ST PETERSBURG 3.15 s 3.13 5.84 s 4.50 0.32 3.99 2.26 3.38 1958–95
JULIUSRUH −5.82 s −5.96 s −3.07 s −1.32 −2.05 0.94 −4.18 s −3.16 1958–91
SLOUGH −4.49 s −4.07 1.19 −2.3 0.63 −1.31 0.59 −0.12 1958–96
KALININGRAD −1.18 −1.56 8.44 s 2.52 −2.95 −4.33 −3.08 −3.03 1965–93
DOURBES −2 s −2.72 s 0.13 −0.22 0.56 −0.33 −2.92 −2.90 1958–96
YAKUTSK 3.29 4.72 3.16 5.70 −0.04 3.81 3.01 5.69 s 1958–90
TUNGUSKA 3.29 5.93 s 1.93 0.19 11.08 s 12.12 s 6.01 s 8.04 s 1969–96
MOSCOW 19.79 s 17.28 s 21.82 s 19.58 s 24 s 25.88 s 23.74 s 22.15 s 1958–95
MAGADAN −0.07 −0.72 −0.13 −3.17 −15.74 s −9.89 s −4.91 −6.95 1969–93
GORKY −4.15 s −6.23 3.35 −0.36 8.83 s 6.86 9.42 s 6.02 1959–88
POITIERS −2.36 −1.89 −9.19 s −4.58 −8.92 s −4.36 −0.93 3.30 1958–95
EKATERINBURG 9.79 s 3.65 18.21 s 16.46 s 14.71 s 12.01 s 19 s 16.44 s 1958–94
KIEV 0.41 2.81 5.37 8.06 0.64 2.08 4.93 5.65 1965–91
TOMSK 4.81 s 2.68 5.22 s 3.80 4.86 s 4.73 s 5.24 s 4.9 s 1958–96
BEKESCSABA −15.29 s −11.48 s −4.54 s −2.70 −11.44 s −6.83 s −10.26 s −5.44 1965–92
NOVOSIBIRSK −3.41 s −3.90 −4.39 s −4.13 0.80 2.03 −1.96 0.07 1959–92
IRKUTSK −4.45 s −4.20 −2.99 −3.28 1.62 1.59 1.76 1.59 1959–91
KHABAROVSK 9.08 s 2.79 8.25 s 4.09 11.55 s 1.58 14.64 s 4.56 1960–92
NOVOKAZILINSK −5.12 −5.41 5.19 3.59 −7.44 s −7.87 2.17 5.96 1965–88
ALMA ATA 7.1 s 7.76 s 19.7 s 20.51 s 13.28 s 15.62 s 18.98 s 19.94 s 1958–88
TASHKENT 1.74 4.10 5.73 s 2.87 5.17 s 5.80 6.95 s 6.31 1962–92
ASHKHABAD 10.01 s 10.11 s 17.07 s 12.94 s 15.99 s 13.67 s 18.01 s 14.14 s 1958–97

piano et al. (1999) have analysed all available (1958–1994)
observations which belong to different periods in the geo-
magnetic activity long-term variation and this cannot be ig-
nored in the F2-layer parameters trend analysis (Mikhailov
and Marin, 2000, 2001). In addition, it should be stressed
that mechanisms of F2-layer trends are different at low, mid-
dle and high-latitude stations, reflecting the specificity of the
F2-layer formation and they can hardly be attributed just to
the thermosphere cooling due to the greenhouse effect.

In connection with this discussion it is interesting to con-
sider the results by Keating et al. (2000) who, in analysing
the orbits of 5 satellites, found a 9.8 ± 2.5% decrease in the
total thermospheric densityρ at 350 km in 1996 with respect
to 1976. They attribute this effect to a 10% increase in the
atmospheric CO2 abundance. According to their estimates,
such a 10% decrease inρ should result in a 5 km lowering of
the constant pressure level. This seems to be in line with the
hmF2 long-term decrease which many researchers are look-
ing for. The Keating et al. (2000) results may be consid-
ered as the first and the only direct experimental evidence for
long-term changes in the thermosphere presumably related
with the greenhouse thermosphere cooling hypothesis. But
one should keep in mind that such small (less than 10% over

20 years) changes inρ may be due to some other reasons,
such as: the conversion of orbital data to atmospheric den-
sity, the accuracy of the empirical model MET99 used for the
data reduction. Unfortunately ionospheric F2layer observa-
tions cannot help us to reveal such small changes inρ which
(if they really exist) are masked by stronger processes. On
the other hand, according to the geomagnetic control con-
cept by Mikhailov and Marin (2000), the 1996 belongs to
the period of decreasing geomagnetic activity (1990-91 is a
turning point), therefore one should expect negativehmF2
trend at mid-latitudes after 1991 which is due to a decrease
in geomagnetic activity but not to a greenhouse effect. Some
examples of such change in thehmF2 trends after 1991 are
given in Fig. 6.

This explanation for the F2-layer parameter long-term
trends, which are not of the man-made origin, is related to
long-term changes in geomagnetic activity. It was shown
that the observedfoF2 trends could be explained by an in-
crease in the F2-layer storm activity as a result of the in-
creasing geomagnetic activity. Moreover, the sign of the
detected trends was shown to be different for the period
prior to and after 1965, in accordance with the change in
the smoothed variation of geomagnetic activity (1965 is an-
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other turning point). Therefore, trends should be analysed
over a time interval which does not include different (in-
creasing/decreasing) periods in geomagnetic activity. This
was the reason for analysing thehmF2 trends for the time
period 1965–1991 with the increasing geomagnetic activity.
Such proposed geomagnetic control of thefoF2 trends im-
plies corresponding trends inhmF2. So let us analysehmF2
trends from this point of view. An approximate expression
for hmF2 can be written for the day-time mid-latitude F2-
region according to Ivanov-Kholodny and Mikhailov (1986):

hm
∼=

H

3
{ln[O]1 + lnβ1 + ln(H 2/0.54d)} + cW, (2)

whereH = kTn/mg is the scale height and [O] is the con-
centration of atomic oxygen,β is the linear loss coefficient
at a fixed heighth1, W (in m/s) is the vertical plasma drift
which is primarily related to thermospheric winds,c is a co-
efficient close to unity,d = 1.38∗1019

∗(Tn/1000)0.5 is a co-
efficient in the expression for the ambipolar diffusion coeffi-
cientD = d/[O]. The loss coefficientβ depends on the den-
sity of the molecular gases N2 and O2: β = k1[N2]+k2[O2],
wherek1 and k2 are the reaction rate constants of the two
processes controlling the sink of O+ ions in the F2-region:

O+
+ N2

k1
−→ NO+

+ N; O+
+ O2

k2
−→ O+

2 + O

both rate constants being temperature dependent (Hierl et al.,
1997).

The main processes responsible for the F2-layer storm
effects are known: neutral composition, temperature and
thermospheric wind changes at middle and lower latitudes,
while electric fields and particle precipitation strongly af-
fect the high-latitude F2-region (Prölss, 1995, and references
therein). During geomagnetic disturbed periods, the high-
latitude energy inputs (Joule heating and particle precipita-
tion) cause changes in the thermosphere global circulation.
These result in a perturbation of neutral composition and
temperature, with a decrease in [O] and an increase in [N2],
[O2] and neutral temperature. Such perturbations are be-
lieved to be the main reason for the mid-latitude F2-region
negative storm effect. They result in an increase of the linear
loss coefficientβ (due to the N2 and O2 concentrations and
temperature increase) with a correspondinghmF2 increase.
The decrease in atomic oxygen concentration has an opposite
effect onhmF2, but the effect of aβ increase usually prevails
(Mikhailov and F̈orster, 1997, 1999). Therefore, we should
expect positivehmF2 trends at middle latitudes as a reaction
to an increase in geomagnetic activity.

At lower latitudes, neutral composition variations are not
large (e.g. Pr̈olss, 1995 and references therein) and the usual
observed positive F2-layer storm effects are primarily due to
an increase in the equatorward thermospheric wind. Some
contribution to the F2-layer positive storm effects at lower
latitudes provides atomic oxygen (Mikhailov et al. 1995).
This results in small or even positivefoF2 trends at lower
latitudes, as was shown by Mikhailov and Marin (2000) and
should result in positivehmF2 trends as well. As both mech-
anisms work in one direction (hmF2 increase), changing
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Fig. 6. Annual meanAp12 and δhmF2 variations at Sodankyla,
Lycksele and Slough, and 12 SLT (Model 1). Note different signs
of trends for the period prior and after 1991.

each other as we pass from middle to lower latitudes, one
should not expect any pronounced latitudinal dependence in
hmF2 trends, as it was shown by our analysis. Therefore,
the revealed positivehmF2 trends from the majority of the
stations can be explained by the F2-layer storm mechanism
due to the long-term increase in geomagnetic activity which
takes place after 1965.

Some of the stations located in the same longitudinal sec-
tor (western region of Europe) have been found to present
negative trends. These trends cannot be explained by the ge-
omagnetic hypothesis and they require an additional analysis.
This may be due to the low quality ofhmF2 data. It should be
stressed thathmF2 values were derived fromM(3000)F2 by
using an empirical formula which inserts an additional noise
to the analysis and, therefore,hmF2 trend results are not as
reliable asfoF2 ones. Ionospheric trend analysis is a very
delicate procedure and an inclusion of some erroneous points
may seriously affect the K value. This is really strange when
close stations demonstratehmF2 trends of different signs.
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Table 6. Calculated coefficients of correlation r between annual meanhmF2 andAp12 values for the whole period withhmF2 observations
available on a particular ionosonde station. Regression ofhmF2 with R12 (Model 1) and withR12 + Ap12 (Model 2), and all years in the
indicated period are used to obtain the coefficients. Significant coefficients at a confidence level of 95% are denoted by “s” after the value

STATION 0 SLT 0 SLT 12 SLT 12 SLT Analysed
Model 1 Model 2 Model 1 Model 2 Years

MURMANSK 0.157 −0.008 0.449 s 0.054 1958–93
SODANKYLA 0.011 −0.006 0.525 s −0.003 1958–97
LYCKSELE 0.509 s 0.040 0.476 s 0.038 1958–97
ARKHANGELSK 0.490 s −0.021 0.819 s −0.017 1970–89
UPPSALA 0.164 −0.004 0.236 −0.008 1958–97
ST PETERSBURG 0.608 s 0.053 0.389 s 0.029 1958–95
JULIUSRUH 0.576 s −0.040 0.579 s 0.020 1958–91
SLOUGH 0.624 s −0.007 0.587 s −0.004 1958–96
KALININGRAD 0.683 s 0.039 0.496 s 0.036 1965–93
DOURBES 0.274 −0.075 −0.096 −0.037 1958–96
YAKUTSK 0.597 s 0.038 0.670 s 0.074 1958–90
TUNGUSKA 0.687 s 0.053 0.569 s 0.073 1969–96
MOSCOW 0.512 s 0.030 0.383 s 0.024 1958–95
MAGADAN 0.627 s 0.023 0.386 s 0.020 1969–93
GORKY 0.312 −0.082 0.509 s −0.023 1959–88
POITIERS 0.439 s −0.018 0.162 −0.030 1958–95
EKATERINBURG 0.467 s 0.012 0.311 0.005 1958–94
KIEV 0.672 s 0.012 0.307 0.021 1965–91
TOMSK 0.635 s 0.055 0.580 s 0.048 1958–96
BEKESCSABA 0.100 −0.015 0.008 −0.003 1965–92
NOVOSIBIRSK 0.648 s −0.023 0.585 s 0.045 1959–92
IRKUTSK 0.548 s 0.019 0.517 s 0.044 1959–91
KHABAROVSK 0.404 s 0.025 0.338 s 0.011 1960–92
NOVOKAZILINSK 0.366 0.013 0.448 s 0.002 1965–88
ALMA ATA 0.547 s 0.041 0.202 0.029 1958–88
TASHKENT 0.230 −0.011 −0.143 −0.035 1962–92
ASHKHABAD 0.498 s 0.045 0.328 s 0.046 1958–97

An example of this fact can be observed when comparing
Lycksele and Uppsala ionosonde stations. These stations are
pretty close (see Table 2), but they demonstrate significant
trends of different signs. Nonetheless, positivehmF2 trends
obtained for most of the stations analysed may be considered
as serious support for the geomagnetic origin of the F2-layer
parameter long-term trends.

Finally, in order to test the proposed relationship between
thehmF2 trends and geomagnetic activity, we calculated the
correlation coefficients between the annual meanδhmF2 and
theAp12 for each ionosonde station, using the whole period
with observations available. The results of this analysis are
given in Table 6. All analysed stations demonstrate posi-
tive δhmF2–Ap12 correlation, with most of them (19 of 27
both at 00 and 12 SLT) being significant with a confidence
level of 95% when Model 1 is used. Such correlation disap-
pears when a geomagnetic index is included to the regression
(Model 2) and this is not surprising. The obtained positive
correlation (when Model 1 is used) may be considered as a
clear indication of the relationship betweenhmF2 trends and
geomagnetic activity. However, it should be pointed out that
despite the fact that theδhmF2–Ap12 correlation disappears
whenAp12 is taken into account in the regression (Model 2),

the inclusion of this index, in fact, does not remove the geo-
magnetic effects on the trends (Mikhailov and Marin, 2000,
2001). Although there is an obvious relationship between
the F2-layer parameter trends and the geomagnetic activity,
it is impossible to remove this geomagnetic effect from the
trends revealed using any conventional index (e.g. monthly
or annual meanAp) of geomagnetic activity. If it could
be done using the conventional indices, the problem of the
F2-layer storm description and prediction would have been
solved long ago, but this is not the case up until now. This
is not surprising as any global geomagnetic activity index
cannot, in principle, take into account the whole complexity
of F2-layer storm effects with positive and negative phases
depending on season, UT and LT of storm onset, storm mag-
nitude, etc. Indeed, the inclusion ofAp12 to the regression
(Model 2) has some effect on the trend magnitude, but with-
out changing, in principle, the results obtained whenAp12
was not considered (Model 1). It was shown that the major-
ity of detectedhmF2 trends were positive regardless of the
model used (Table 3). Therefore, any interpretation of the
F2-layer parameter trends should consider the geomagnetic
effect as an inalienable part of the trends revealed and this
can be done based on the contemporary understanding of the
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F2-layer storm mechanisms. On the other hand an additional
analysis is required to find out the reason for significant neg-
ativehmF2 trends revealed at some stations.

6 Conclusions

The main results of this analysis may be listed as follows:
1. The new approach proposed by Danilov and Mikhailov

(1998, 1999) and Mikhailov and Marin (2000) has been
used to revealhmF2 linear trends at 27 European and Asian
ionosonde stations. Although the choice of a simple formula
by Shimazaki (1955) for thehmF2 derivation has no princi-
ple influence on the trends obtained during nighttime hours,
the trends turn out to be slightly less if the effect of underly-
ing ionisation is taken into account by applying more accu-
rate formulas during daytime hours.

2. The majority of the stations show significant posi-
tive trends for the period of increasing geomagnetic activ-
ity 1965–1991, without any dependence on latitude (neither
magnetic nor geographic). This result can be explained in the
framework of the long-term increase in geomagnetic activity
and related F2-layer storm activity. The significant positive
correlation obtained between the annualδhmF2 andAp12
values confirms this close relationship betweenhmF2 trends
and geomagnetic activity. However, some stations located in
the western part of Europe demonstrate significant negative
trends. This longitudinal effect (earlier revealed by Bremer)
needs further analysis as significant negative trends observed
at some western European stations are not explained within
the geomagnetic control concept.

3. Unlike the case withfoF2 trends, a selection of years
around solar cycle minimum and maximum does not help to
revealhmF2 trends and using of all years with available ob-
servations may be recommended for thehmF2 trends analy-
sis. This increases the statistics and the confidence of results
obtained.

4. Positive significanthmF2 trends obtained for the major-
ity of the stations considered (regardless of the model used)
contradict the suggestion that thermospheric cooling due to
the greenhouse effect might be the cause of the F2-layer
parameter trends. However, they can be explained in the
framework of the geomagnetic control hypothesis proposed
by Mikhailov and Marin (2000).
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