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Abstract. The energetics of driven magnetic reconnections
induced by the deformation of the magnetopause boundary
due to the solar wind-magnetosphere interaction are studied.
The bursty type reconnection ensues due to the forcing of
the magnetopause boundary by the solar wind. For typical
plasma parameters in the inner central plasma sheet (ICPS),
the magnetic energy release during the reconnection is esti-
mated and it is found that the available free energy is com-
parable to the observed kinetic energy of typical bursty bulk
flows. It implies that the part of the free energy goes into
the heating of the ICPS particles, whereas the rest goes into
its acceleration. The accelarated particle manifests itself as
bursty flows.

Key words. Magnetospheric physics (magnetotail; storms
and substorms)

1 Introduction

Observations of the near-Earth plasma sheet between approx-
iamately 10 and 20RE suggest that the main transport of
mass, energy and magnetic flux is realized via shortlived,
high speed plasma flows, known as bursty bulk flows (BBFs)
(Angelopolous et al., 1992, 1994, 1997; Baumjohann and
Paschmann, 1990; Baumjohann, 1993; Sergeev et al., 1995;
Yermolaev et al., 1999). The occurrence rates of high speed
flows in the plasma sheet boundary layer (PSBL) and inner
central plasma sheet (ICPS) are in the ratio of 2: 1 for 400–
600 km/s flows and 1: 2 for flows greater than 800 km/s.
The flow bursts are directed predominantly Earthward and
they are associated with relatively low plasma density in all
plasma sheet regions. A typical BBF event lasts for about
10–15 minutes and a majority of all flows stay uninterupted
at high speed levels for around 10 s.

The transport of plasma and magnetic fluxes at a high
speed, both Earthward and tailward, have been explained in
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the framework of the near-Earth neutral line (NENL) model
(Hones, 1976; Hones and Schindler, 1979; Birn, 1980). The
NENL model has been quite successful in explaining many
diverse observed features of substorm related changes in the
magnetotail. Even though BBFs are positively correlated
with the geomagnetic activity, there is no one-to-one cor-
respondence between a substorm and BBF. Therefore, the
NENL paradigm cannot be invoked to explain the bursty
flows. There have been various models proposed so far
for the bursty bulk flows. Russel et al. (1994) suggested
that BBFs can be triggered by the sudden changes in solar
wind dynamic pressure. Lakhina (1992, 1996) proposed a
mechanism for BBFs based on the bursty driven reconnec-
tion in the magnetotail. In contrast to the spontaneous re-
connection which occurs as a result of the resistive MHD
instabilities (such as tearing mode, kink mode etc.), driven
or forced reconnection is produced by external deformation
of the initially smooth magnetic field through perturbation
at the boundaries even when magnetic equilibrium is stable
against the resistive mode.

Recently, the formation of a thin current sheet in the pres-
ence of an electric field at the boundary (which mimics the
solar wind-magnetospheric interaction) has been investigated
by Birn et al. (1998). The problem of driven reconnection
has been investigated by several authors (Vekstein and Jain,
1998, 1999; Ishizawa and Tokuda, 2000; Browning et al.,
2001). The energetic aspect of driven reconnection has been
investigated analytically in the context of solar coronal heat-
ing by Vekstein and Jain (1998, 1999) and numerically by
Browning et al. (2001). These studies conclude that the heat-
ing of the current sheet is most efficient when the ongoing ex-
ternal driving frequency is of the order of a tearing time scale.
The numerical study of Browning et al. (2001) suggests that
a small deformation of the boundary can cause sufficient re-
lease of magnetic energy in the plasma sheet. In the present
work, we shall follow the approach of Vekstein and Jain
(1998) and investigate the energetic aspect of driven mag-
netic reconnection and its implication for plasma heating in
a two-dimensional current sheet (Birn et al., 1975) which ap-
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Fig. 1. Schematics of the Earth’s magnetotail: The magnetotail has
a characteristic dimension of 2L in the z-direction. The magne-
topause is perturbed byδ due to its interaction with the solar wind.
The z = 0 is the layer of singularity and has a width of twice the
ion-Larmor radius.

proximates the Earth’s magnetotail configuration fairly well.
The initial equilibrium state is perturbed by the solar wind
at the magnetopause boundary originally located atz = ±a.
We shall assume that the perturbation is slow compared with
the Alfvén time scale and therefore, the subsequent evolution
of the system is quasistatic in the “outer region”, i.e. the re-
gion external to the “inner region” where dissipative effects
are important.

2 The model

We consider a two-dimensional slab equilibrium for the
Earth’s magnetotail, as shown in Fig. 1 (Lakhina, 1992). The
field line lies in thex-z plane with thex-axis along the tail
and pointing away from the Earth, and thez-axis, which is
parallel to the dipole axis, is assumed perpendicular to the
Sun-Earth line. Dawn-dusk variation alongy is ignored.
The width of the plasma sheet is 2L and the magnetopause
boundary is situated atz = ±a. The disturbance in the solar
wind will deform the magnetopause boundary

z±

b = ± [a − δ(t) cos(kx)] , δ � a. (1)

Then the deformed flux function can be represented as

A(x, z, t) = A0(x, z) + A1(x, z, t), (2)

whereA0 andA1 refer to the equilibrium and perturbed quan-
tities respectively. The self-consistent equilibrium solution
A0(x, z) is obtained by solving the Grad-Shafranov equation
(Schindler, 1972; Birn, 1975) by assuming the slow varia-
tion of magnetotail quantities alongx in comparison with the
strong variation alongz and assuming that pressurep(A0)

has an exponential profile. Then

A0(x, z) = −B0L ln[cosh(z/L)] + B0L ln[p0/pb], (3)

wherep0(x) = p(A0(x, 0)) is the pressure on thex-axis
andpb = p(Ab) is the pressure at the magnetopause bound-
ary. We shall assume that the deformed boundary is a mag-
netic surface and thus, the flux function is constant there and
hence, the perturbed flux functionA1 must be of the form

A1(x, z, t) = A1(z, t) cos(kx). (4)

The deformation of magnetopause boundary takes place over
a few hours and thus, the external driving time scale of the
boundary will be very large in comparison with the Alfven
time scale which, in this case, is of the order of a few sec-
onds. As a result, the boundary deformationδ(t) is setup
slowly compared to the Alfv́en time scale. Then the evolu-
tion of A1(z, t) is quasistatic and can be described by follow-
ing Grad-Shafranov equation (Lakhina and Schindler, 1988;
Lakhina, 1992)[

d2

dz2
− k

2
+

2

cosh2 z

]
A1(z, t) = 0, (5)

wherez = z/L andk = kL. The boundary condition at the
deformed boundary is given by

A1(a) = −B0δ tanh(a), (6)

wherea = a/L.
Equation (5) describes two possible equilibria, which are

consistent with the boundary condition (6) (Lakhina, 1992).
The first equilibrium

Ai
1(z, t) = −

B0δ tanh(a)

81(k, a) sinh(ka)
81(k, z) sinh(kz), (7)

has the property that no flux crosses thez = 0 plane. The
second equilibrium

Ar
1(z, t) = −

B0δ tanh(a)

82(k, a) cosh(ka)
82(k, z) cosh(kz), (8)

has a different topology possessing islands of widthw ≈

−2a tanh(a)δk/[82(k, a) cosh(ka)]. Here,

81(k, z) = −k + tanh(z)/ tanh(kz), (9)

82(k, z) = −k + tanh(z) tanh(kz). (10)

Having these two solutionsAi
1 andAr

1, the transition from
the ideal equilibriumAi

1 to the reconnected equilibriumAr
1

occurs in several stages (Hahm and Kulsrud, 1985). Ini-
tially, after the deformation of the magnetopause, the sys-
tem approaches the ideal equilibriumAi

1 by developing a
surface current at the resonant surfacez = 0, where the cur-
rent density increases with time and thickness of the sheet
decreases. After sufficient thinning of the sheet, collision-
less damping becomes important and the transition toAr

1
takes place over aτ ∼ 1/|γ | time scale. The expression
for γ is obtained by matching the singular layer solution of
Eq. (5) (i.e. z < δi solution) with the solution in the ex-
ternal region (z > δi) at z = δi (Lakhina, 1992). Here,
δi =

√
aiL/2 andai = vt i/ωci is the ion Larmor radius and
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vt i =
√

2Ti/mi, ωci = (eB0/mic) are the thermal speed
and gyrofrequency of the ions,Ti is the ion temperature and
γ is given by

γ = g0

{ (
1 − k

2
)

Q −
k

3√
ai

ε2 (1 + Te/Ti)

[
(1 − η)

+
64η

105

(
1

εk

)3/2 ]}
, (11)

g0 =

√
2

π

ωciai
5/2 (1 + Te/Ti)(
1 + 2ai

2) , (12)

Q =
82(k, a)

81(k, a) tanh(ka)
. (13)

Here,ε = Bz/B0 is a small parameter andη is the fraction of
trapped electrons in the singular layer. The inductive electric
field generated during reconnection causes the plasma flow
along the tail axis given by,

vx = α0

(
1 − k

2
)

Qg0A
r
1(z = 0) exp(γ t)

εB
(14)

where

α0 = −
−82(k, z) cosh(kz)

k

+
82(k, a)81(k, z) sinh(kz)

81(k, a) tanh(ka)

−
B0δ tanh(a) sinh(kz)

81(k, a) sinh(ka)
(15)

where81,2 is given by Eqs. (9) and (10). Forγ < 0, the
driven reconnection lasts for a very brief period and hence it
is termed as a bursty type of reconnection. For the parameters
of the near-Earth plasma,|γ | is typically of the order of one
minute or so. The numerical simulation of driven reconnec-
tion by Birn et al. (1998) suggests that the maximum ampli-
tude of velocity perturbation is large for a short time scale,
which is in conformity with Eq. (14). For typical plasma
parameters, e.g. magnetic fieldB ∼ 25 nT, a ∼ 30RE ,
δi ∼ 104 km during a BBF, one can show (Lakhina, 1996)
that the Earthward flow with a bulk velocityvx > 400 km s−1

lasting for a few seconds and bulk flows with speeds of∼

100 km s−1 lasting for about one minute or so can be pro-
duced by the bursty driven reconnections.

Initially, the energy is stored in the current sheet in the
form of magnetic energy and as the reconnection sets in,
this energy is released and plasma is heated and accelerated.
Therefore, an important characteristic of the transition from
one equilibrium state to another,Ai

1 to Ar
1, from the point

of view of plasma heating and acceleration, is the amount
of magnetic energy released as this energy becomes freely
available. This energy can be estimated as the difference in
the magnetic energy of the equilibrium, namelyAi

1 andAr
1.

In order to calculate these energies,W i
B andW r

B , we consider

the energy balance. Energy of the initial magnetic fieldW0
B

(related to the unit area of the slab in thex-y plane) is

W0
B =

∫
B2

0

2µ0
dz '

∫
B2

0x

2µ0
dz

≈
B2

0a

µ0

[
1 −

(
2L

a

)
tanh(a/L)

]
. (16)

The total energy isWB = W0
B + W

(i,r)
B , whereW

(i,r)
B is the

work done by the external force (solar wind) in deforming
the magnetopause boundary which results in the perturbed
equilibriumA

(i,r)
1 . The force exerted by the solar wind has

to balance the magnetic pressure at the boundary surface,
B2/(2µ0). Therefore, the work doneW is

W =

∫ t

0

〈
B(z±

b )2

2µ0

dδ

dt
cos(kx)

〉
dt, (17)

whereδ(t = 0) = 0 is assumed and the angular bracket
inside the integrand means an averaging over the periodic
variation alongx-axis. As the deformation of the bound-
ary δ sets up slowly compared with the Alfvén time scaleτA

(τA = (a/VA), VA = B0/
√

2µ0ρ), the plasma will be in a
magnetostatic equilibrium at any given moment. Therefore,
in derivingW in Eq. (17), it is possible to calculate magnetic
pressureB(z±

b )2/(2µ0) usingA
(i,r)
1 . The deformed magnetic

field at the boundaryB = Bi +b, whereBi is the initial field
andb is the perturbed field, is given as

bx = −
∂A1

∂z
= −A

′

1(z, t) cos(kx), (18)

bz =
∂A1

∂x
= −kA1(z, t) sin(kx). (19)

Thus, the required magnetic pressure at the boundary is

B2(z±

b )

2µ0
=

B2
i

2µ0
+

1

µ0

[
− Bx0(a)A

′

1(a, t) cos(kx)

− kBz0(a)A1(a, t) sin(kx)
]
. (20)

Only the term proportional to cos(kx) makes a non-zero con-
tribution in Eq. (17)〈

B(z±

b )2

2µ0

dδ

dt
cos(kx)

〉
= −

Bx0(a)2

2µ0
A

′

1
dδ

dt
. (21)

Therefore,

W i
B =

B2
0

2µ0

δ2

2L
F(ka), (22)

and

W r
B =

B2
0

2µ0

δ2

2L
G(ka), (23)
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Fig. 2. The factorS(ka) plotted as a function ofka for L ∼ 6RE ,
a ∼ 30RE with |Bz| ∼ 25 nT andδi ∼ 104 km. We see from the
figure that for short scale lengthka ≥ 5 this function is positive.

where

F(ka) = tanh(a/L)

×

[
cosh−2(a/L)/ tanh2(ka) − kL tanh(a/L)/ sinh2(ka)

−kL + tanh(a/L)/tanh(ka)

+
kL

tanh(ka)
,

]
(24)

and

G(ka) = tanh(a/L)

×

[
cosh−2(a/L) tanh(ka) + kL tanh(a/L) cosh−2(ka)

−kL + tanh(a/L) tanh(ka)

+
kL

tanh(ka)
.

]
(25)

Next, we can calculate the energy released per unit volume
1W = (W i

− W r)/2δi which is

1W =
B2

0

2µ0

(
δ

δi

)2

S(ka), (26)

whereS(ka) = (δi/L) [F(ka) − G(ka)]. The above quan-
tity needs to be multiplied by a factor of 2 as we assume
symmetric perturbation atz = ±a.

We can draw certain conclusions from Eq. (26). By its
very physical meaning,S(ka) is positive as the energy re-
leased during the reconnection is thought to be responsible
for the heating of the plasma and their subsequent accelera-
tion. In order to plot functionS(ka), we note that close to
the midnight meridian, the plasma sheet has a typical thick-
ness of∼ 6RE (Baumjohann and Paschmann, 1990), which
remains unaffected during geomagnetic activity for the geo-
centric solar-magnetospheric distance|XGSM < 15RE . We
chose the magnetopause location at∼ 30RE (Sibeck et al.,
1986). Therefore, we choseL ∼ 6RE , a ∼ 30RE with
|Bz| ∼ 25 nT andδi ∼ 104 km. We plotS(ka) againstka

and see from Fig. 2 that for short scale lengthka ≥ 5, this
function is positive. Forka < 5, S(ka) becomes negative.

This happens because tearing instability of the current sheet
makes the perturbation approach applied here inappropriate.
Even a small deformation can trigger a substantial reconfig-
uration of the initial magnetic field. Therefore, the above
calculation is applicable only in theka ≥ 5 region.

To determine the instability threshold in the long wave-
length limit ka < 5, we rewrite Eq. (5) as a steady state
Schrodinger equation (Treumann and Baumjohann, 1997)

HA1 = EA1, (27)

where Hamilton’s operatorH = −d2/dz2
+ 2/cosh2 z, and

A1 can be interpreted as the wave function localized in the
interval(−a, a) with a potential energyV (z) equal to

V (z) = −
2

cosh2(z)
, (28)

and the energy eigenvalueE = −k
2

< 0. A potential well
V (z) has to be deep enough to accommodate the localized

state with a negative total energy ofE = −k
2
. Thus, lowerE

requires a deeper potential well. To determine the instability
threshold of the tearing mode, we calculate the discontinuity
in the logarithmic derivative ofA1, 1, defined below

1 =
1

A1(0)

[
dA1

dz

∣∣∣∣
z=+0

−
dA1

dz

∣∣∣∣
z=−0

]
, (29)

with 1 > 0 corresponding to the tearing instability. This
criteria yields

1 = 2
(1 − k

2
)

k
, (30)

i.e. 1 > 0 implieska < a/L. For parameters in Fig. 2,
a/L = 5, and we see thatka < 5 coincides with the negative
value ofS(ka). Physically it implies that when the equilib-
rium magnetic field is close to a magnetically stable state,
aska approachesa/L from above,S(ka) becomes positive.
When this happens, the tearing mode instability cannot oc-
cur.

Note thatγ < 0 implies that the driven reconnection will
last for a short periodτ ∼ 1/|γ | as within a fewτ , the re-
connected flux saturates due to the balance between colli-
sionless dissipation in the singular layer and the perturbed
surface currents due to boundary distortion (Lakhina, 1992,
1996). Such short period reconnection may provide the re-
quired energy for BBFs. The spatial behaviour of the growth
rateγ shows thatγ < 0 for kL ≥ 1 (curve 1, Fig. 2, Lakhina,
1992, 1996). This is consistent with the behaviour ofS(ka),
with ka aska ≥ 5 implieskL ≥ 1 for (a/L) = 5. Hence,
it is clear thatS(ka) > 0 would imply a parametric regime
where tearing modes are stable.

The implication on the energetics of reconnection is that
the energy is provided by the changes in the topology of the
magnetic field since topology controls the possible states of
equilibrium of the plasma. Hence, even a small perturba-
tion can trigger a significant relaxation in a marginally stable
state.
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3 Energy balance

For typical parameters in ICPS (Baumjohann and Treumann,
1997)ni ∼ 0.5 cm−3, ρH+ ∼ 5×10−25 g cm−3, we estimate
the kinetic energy density in a BBF per unit volumeρv2/2 ∼

10−9 erg cm−3 for v ∼ 600 km/s. A single reconnection
event causes the1W release of energy dissipated over a time
scaleτ ∼ 1/γ . Then, for a single reconnection event, for
B ∼ 10−4 Gauss withδ ∼ 0.3RE , a/L ∼ 5 andL =

6RE andS(ka) ∼ 1 with δi ∼ 104 km, we obtain1W ∼

10−9 erg cm−3. A part of the energy released due to a bursty
driven reconnection goes into heating the plasma and the rest
goes into acceleration. The energy going into acceleration
is manifested as BBFs. Therefore, the energy released in a
driven reconnection event is more than sufficient to explain
the kinetic energy of BBFs.

Following Vekstein and Jain (1998), we estimate the power
density emitted in an externally driven system. If external
forcing timeT is short compared to the transition fromAi to
Ar time τ ∼ |γ |

−1, a strong current sheet forms at the reso-
nant surfacez = 0. Hence all of the energy difference,1WB ,
is available for plasma heating and subsequent acceleration.
The heating rate is

Q =
1WB

τ
∼ |γ |

B2
0

2µ0

(
δ

δi

)2

S(ka); T < τ. (31)

If the external driving time is large compared to the transi-
tion time τ , the transition to the reconnected state is almost
complete and the current density inside the sheet is reduced
by aT/τ factor. Then, the dissipation rate is

Q =
1WB

τ
∼

B2
0

2µ0

(
δ

δi

)2 ( τ

T 2

)
S(ka); τ < T . (32)

The upper limit of dissipation is achieved atτ ∼ T , i.e.

Q =
1WB

τ
∼

B2
0

2µ0

(
δ

δi

)2

T −1S(ka); τ ∼ T . (33)

The numerical simulation results of Birn et al. (1998) sug-
gests thatT ∼ (10−40)τA. ThenQ ∼ 10−9 erg cm−3 sec−1.
This is the maximum power density in the inner plasma sheet
region due to driven reconnection.

4 Conclusions

In the present work we have studied the energetic aspects of a
driven reconnection model for bursty bulk flow. The total en-
ergy balance of a reconnection event suggests that redistribu-
tion in magnetic energy leads to the heating and acceleration
of the plasma. The released magnetic energy during a recon-
nection event is comparable to the observed kinetic energy
of BBFs, suggesting that the heating and acceleration of the
ICPS particles is taking place simultaneously. In view of the
above features, the driven reconnection model may provide a
plausible mechanism for the generation of the BBFs.

Present analysis indicates that the driven reconnection is
a possible candidate for triggering the BBFs. The driving

force can be either pressure pulses (Russel et al., 1994) or
quasi-steady fluctuations in the solar wind. However, ob-
servational constraints on the driving force and subsequently
on the fluctuation amplitude as well as features like the lo-
cal organisation of BBF events should be incorporated in a
self-consistent model and the present model does not include
these features. We shall address these issues in our future
work.

The recent investigation on driven reconnection (Vekstein
and Jain, 1999; Ishizawa and Tokuda, 2000) suggests that
the typical relaxation type of plasma heating depends on the
driving frequency. However, unlike solar coronal plasma,
where a constant driver is required for the constant heating
of the corona, in the bursty flows, which rise and fall over
a period of a second, a sudden deformation of the boundary
(i.e. a sudden change of pressure pulse) and the ensuing sin-
gle reconnection event is sufficient. In this sense, the driven
problem of solar coronal heating and bursty bulk flow are
dissimilar.
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