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Abstract. Low frequency electrostatic waves are studied
in magnetized plasmas with an electron temperature
which varies with position in a direction perpendicular
to the magnetic field. For wave frequencies below the
ion cyclotron frequency, the waves need not follow any
definite dispersion relation. Instead a band of phase
velocities is allowed, with a range of variation depending
on the maximum and minimum values of the electron
temperature. Simple model equations are obtained for
the general case which can be solved to give the spatial
variation of a harmonically time varying potential. A
simple analytical model for the phenomenon is present-
ed and the results are supported by numerical simula-
tions carried out in a 21-dimensional particle-in-cell
numerical simulation. We find that when the electron
temperature is striated along By and low frequency
waves (0 < Q) are excited in this environment, then
the intensity of these low frequency waves will be
striated in a manner following the electron temperature
striations. High frequency ion acoustic waves (@ > Q)
will on the other hand have a spatially more uniform
intensity distribution.

Key words: Ionosphere (plasma temperature
and density) — Radio science (waves in plasma) —
Space plasma physics (numerical simulation studies)

1 Introduction

The propagation of low frequency electrostatic waves in
magnetized plasmas represents a classic study in low
temperature laboratory plasmas. In one of the most
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versatile experimental set-ups, the Q-machine, extensive
investigations were reported on the propagation of low
frequency ion sound waves along an externally imposed
magnetic field, i.e. in an essentially one dimensional
geometry (Motley, 1975). Ideally, the conditions in the
direction transverse to the magnetic field were assumed
constant, but in reality the plasma density as well as the
ion and electron temperatures can vary in these exper-
iments and in similar ones. Also, it may be a rule rather
than an exception that the electron as well as the ion
temperatures are spatially inhomogeneous in naturally
occurring plasmas out of equilibrium (Penano etal.,
2000). In the present study we investigate some conse-
quences of a spatially varying electron temperature. The
study is carried out in a slab geometry with a homoge-
neous magnetic field along the z-axis and 7, = T,(x).
This electron temperature variation is assumed to be
given a priori. We find, for instance, that in cases where
the electron temperature is striated along By and low
frequency waves (v < Q) are excited in this environ-
ment, for instance by a plasma instability, then the
intensity of these low frequency waves will be striated in
a manner following the electron temperature striations.
High frequency ion acoustic waves (o > Q) will, on the
other hand, have a spatially more uniform intensity
distribution. These effects should be readily noticeable
by, for instance, an instrumented space craft. The basic
physical principles underlying the analysis are quite
simple, and the phenomena addressed in the present
work can have importance for the interpretation of, e.g.
ionospheric or magnetospheric plasma phenomena.

2 Analytical results

For the present study we are primarily interested in
waves with frequency well below the ion cyclotron
frequency. However, this problem contrasts in an
interesting way with its high frequency counterpart.
Both cases are therefore discussed. In the linearized
analysis used in the present study, a density gradient will
be immaterial, since the linear sound velocity does not
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depend on the plasma density. The investigations are
therefore mainly concerned with variations in the
electron temperature.

2.1 The low frequency case, ® < €

In this section we consider a simple analytical model
which seems to account for the essential parts of our
findings. The model assumes a vanishing ion tempera-
ture 7; = 0 in the quasi-neutral limit where n, =~ n; = n.
The basic equations are the ion continuity and momen-
tum equations as well as the z-component of the electron
momentum equation where the electron inertia has been
neglected. These equations are respectively, in their
linearized form

0
a—’j+nov.u ~0 (1)
Ou
ME e~V +ux By) = 0 2)
op 0 -
—e”0§+§[nTe(x)] =0, (3)

where n and u are the density and velocity perturbations,
T, is the electron temperature, ¢ the -electrostatic
potential (E = —V¢), By the magnetic field, e and M
the ion charge and mass, respectively. Assuming that the
relevant frequencies are well below the ion-cyclotron
frequency Q.;, we iterate Eq. (2) in order to obtain the
standard approximation for the ion velocity component
perpendicular to the magnetic field

_Vid)XBo_ 1 6VL(]5 (4)
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The first term is the E x B drift velocity and the second
term the ion polarization drift. With a little standard
algebra and in the relevant two spatial dimensions
(x, z), we obtain a differential equation for the electro-
static potential

e ¥ 1 D) e
T,(x) 0*  ByQ.; 0 0x> M 0z?

The By-perpendicular component of the electron dy-
namics does not enter the analysis with the assumption
of Boltzmann distributed electrons, see also a brief
discussion in Appendix A. As mentioned, we here
assume that the ion temperature is vanishing for
simplicity. The results for 7; # 0 are not significantly
different, as demonstrated in Appendix B.

For a homogeneous plasma with constant electron
temperature 7,, we find the standard dispersion relation

u, =

=0. (5)

k2C?
w2 — z s - (6)
TGy
for o® < Q%, where C, = /T,/M is the ion sound

acoustic velocity and Cy/Q,; takes the role of an effective
Larmor radius. The dispersion relation is shown in
Fig. 1 (upper panel), together with a vectorial presen-
tation of the group velocity v,, deduced from Eq. (6)

Dispersion relation
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Fig. 1. In the upper panel, the dispersion relation w = w(ky, k,) given
by Eq. (6) is shown for @ < Q. In the lower panel, the corresponding
group velocity v,. The field of the group velocity is represented by
small arrows that give direction and relative magnitude. The results
apply for w? < le.

(lower panel). We note that k-v, = kC,/(1 +k2C?/
Qgi)S/ ?, and the directions of k and v, are different. In
Fig. 2 we show the variation of the angle between the
wave vector and the group velocity for varying wave
vector components, k, and k.

Retaining the spatially varying electron temperature,
we can still take the Fourier transform in time and in
space, along the z-axis, to obtain
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Fig. 2. The variation of the angle between the wave vector and the
group velocity for varying wave vector components, k, and k.. The
point (ky, k.) = (0,0) is singular. The results apply for &* < le,i
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In the limit where we ignore the ion polarization drift,
the left side of Eq. (7) vanishes, and the result is
w_z o T, (x)

K M

(8)

Physically, Eq. (8) implies that in this limit each
magnetic field line supports oscillations with the local
sound velocity, irrespective of what happens at another
field line. The system has a local, but no global
dispersion relation. If excited externally, the system will
support a continuum of phase velocities in the range
determined by the minimum and maximum values of the
electron temperature. In many ways this low frequency
limit of magnetized plasmas has similarities with Lang-
muir oscillations with cold electrons in spatially varying
plasma densities (Barston, 1964), and also with Alfvén
waves propagating in inhomogeneous magnetic fields
(Uberoi, 1972).

For a more general analysis of Eq. (7) it is advan-
tageous to introduce the normalized variables
7 = Mw?/(Tok?) and & =xQ,,;/Cy, in terms of a refer-
ence temperature Ty. The reference temperature can be
defined as Toz%(Tl +T»), where T» and T are the
maximum and minimum values the electron tempera-
ture attains. We find

d*¢ < Ty 1)
Y —— . 9
2 " \n@ 7/ ®)
For later reference we define k% =1/y> - Ty/T; in the
case where y> < T;/T) and 1//1% = Ty/T; — 1/y* other-
wise, with j = 1,2. The relation Eq. (9) can be inter-

preted as an operator equation with ¢ being the
eigenfunction and 1/9? the corresponding eigenvalue.

2.1.1 Monotonic electron temperature variation. Let us
assume first that the variation in the electron temper-
ature is monotonic, decreasing from 75 at £ — —oo to T}
at £ — oo. For a given value of (w, k.), we require that
Eq. (9) has physically acceptable solutions which are
bounded at infinity. For the case where y> > T5/T; this
is not possible, since the solution for ¢ diverges either at
&—o00 or ¢— —oo. In the case where 7§ < T/
Ty < T»/Ty we have solutions of Eq. (9) with ¢ — exp
(ikr, &) for & — o0, and ¢ — exp(ikp, &) for ¢ — —oo. In
the case where y? = T,(&) /T, for some value of &, we find
solutions for ¢ which decay as exp(—¢/Ar) when
¢ — o0, and oscillate for ¢ — —oo. Physically this result
implies that the preselected value of the phase velocity
/k, must resonate with the natural sound velocity at a
certain point to have such an acceptable solution. As
long as such an internal resonance point exists, i.e. that
Ti/Ty < y* < T»/Ty, it is possible to obtain physically
acceptable solutions for any combination of w and k..
For an arbitrary temperature profile 7,(&), the solution
for ¢ can only be obtained numerically for the general
case. In Fig.3 we show examples for numerical
solutions, assuming an electron temperature described

T©)/T,. v
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Fig. 3. Numerical solution of Eq. (9), assuming a monotonically
decreasing electron temperature variation 7,(¢)/Tp = 1/(2+
arctan(¢)). The first and third panels show the relative value of 7>
compared to the temperature profile 7.(&)/Ty. The second panel
presents solution for the electrostatic potential ¢ for y> = 0.4, 0.5 and
0.6 while the solution in the fourth panel has parameter 7> = 0.2

by Ty/T.(¢) = 2+ arctan(¢) and in Fig. 4, an electron
temperature described by T.(¢)/Ty=1—-1A+ Aexp
(—&/W?). Some local solutions can however be found
analytically. Assume for instance 7p/7.(¢)~ ¢ in a
certain interval, then we readily find ¢ = 4i(¢ — 1/7?)
locally, in terms of the Airy function Ai.

2.1.2 Compact electron temperature variation. Let us next
assume that the electron temperature variation is
compact, first with a local enhancement with a maxi-
mum value 75 at ¢ =0, and 7,(¢) — T for |¢]| — oo. For
y*> > T» /Ty there are no physically acceptable solutions.
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Fig. 4. Numerical solution of Eq. (9), assuming an electron temper-
ature profile given by T.(&)/Ty =1 — A/2 + Aexp(—&2/w?), with
w=>5 and A=—1/4. The wave guide mode solutions for the
potential are plotted for 9> = 1.03327 and 72 = 0.91094

In the case 7> < Ti/Ty, we have solutions of Eq. (9)
with ¢ — exp(ikr, &) for |€| — oo, having the form of
“radiating” solutions. If on the other hand, Ti/7, <
7> < T»/ Ty, it is possible to obtain wave guide modes for
selected values of y. Examples are shown in Fig. 4. The
ratio between the two phase velocities is approximately
0.93. The basic, universal, features are the evanescent
solutions at large |¢|, and the possibility for oscillations
around the maximum temperature region at £ ~ 0. Note
that a local analytical solution can be obtained by
assuming spatial variations of the temperature as
To/T.(¢) ~ &

The physical reason for the Airy function-like solution
iseasy to explain. Taking y> = 1, we have a resonance with
the local sound velocity at £ = 0 with k; = 0. For the local
phase fronts at £ < 0 to follow those at £ = 0, we require
that the local component of the phase velocity parallel to
the magnetic field should be equal at all £. Since here C; is
increasing for £ < 0, we must require a local wave number
ke # 0 here, according to Eq. (6) to compensate the
increase in 7,. On the other hand, for & > 0 there is no
possibility to have local phase velocities matching that at
¢ = 0, and the solution for ¢ must be evanescent.

If the variation of T,(£) can be characterized by a
single length scale ¢, the continuum limit is recovered
for ¥ — oo. Here, the density of the eigenvalues
becomes larger with % increasing and form a contin-
uum in the limiting case, irrespective of the actual
functional form of T,(¢).

Using Eq. (9) we find, by a simple manipulation the
relation

d (dp\* (T  1)\d¢?
d_f<d_§) - (mw—z)d—:- (10)

From Eq. (10) we find, for instance, that at a zero
crossing of ¢ we have a local extremum of (d¢/d¢)?, in
general, irrespective of T,(&).

Parts of the foregoing discussion assumed a compact
local temperature enhancement. The discussion for a
local depletion is entirely similar, with the result that
“radiating” solutions at |¢| — oo will here exist also for
the case where 7> = T,(¢)/Ty for some value of &. An
example is shown in Fig. 5.

2.2 The high frequency case, o > Q;

Within the simple fluid model discussed here, we might
also consider the case of waves with frequency well
above the ion cyclotron frequency. The plasma is still
magnetized and can support the spatially varying
electron temperature, but due to the assumed high
frequency we can consider the ions as unmagnetized. The
basic equations are trivially obtained from Egs. (1)-(3)
but by omitting the magnetic force u x B. The resulting
differential equation for the potential becomes

which is basically the same as Eq. (7), apart from a
difference in a numerical coefficient and an important
change in sign. The physical arguments are readily
reformulated to account for this case as well. The
resulting radiation pattern is similar to the one anticipat-
ed by Huld et al. (1990) from the coupling between a beam
mode and the background acoustic mode in a plasma,
where the injected ion beam has a finite cross-section.

3 Numerical results

We carried out a numerical investigation in order to
study elements of the analytical results. The numerical
simulations are carried out by using a particle-in-cell
(PIC) code (Dawson, 1983; Birdsall and Langdon,

T(&)/T,,Y=1.05

()

L3 0 50

Fig. 5. Numerical solution of Eq. (9) assuming a localized depletion
in electron temperature given by T.(&)/To=1+A/2-A
exp (—x?/w?) with the parameters w = 5 and A = 1/4. A solution
has been calculated for y> = 1.05
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1985). Its basic elements is described elsewhere (Borve
etal., 2000). We use typically 6.10° simulation particles.
In order to improve the signal to noise ratio in the low
amplitude, linear fluctuations analyzed in this study, we
average over 10 realizations, all with the same bulk
plasma conditions, but with different initialization of the
random number generator for the initial position of
the particles. The essential feature of the code is the
assumption of the electrostatic potential of the electrons
being Boltzmann distributed at all times, in the present
case at the temperature 7, = T,(x). This simplification is
achieved at the expense of a nonlinear Poisson equation.
The code is in 2% dimensions, i.e. it allows the ions to
perform the full gyro motion, but assumes that all
spatial variations are restricted to the (x, z)-plane. With
these numerical restrictions, waves propagating in the
direction of the electron diamagnetic drift, i.e. perpen-
dicular to the (x, z)-plane of the simulation, will not be
manifested. We use 75/T) = 6 and T;/7; = 3, in terms of
the maximum and minimum values of the electron
temperature, 77 and 73, for a constant ion temperature,
7;. Axes are in units of the ion Debye Ilength

Jpi = /e T;/e*ny in all cases.

3.1 The low frequency case, @ < Q;

3.1.1 Monotonic temperature variations. First we consid-
er frequencies w < Q. In Fig. 6 we show the results for
a harmonically varying density perturbation of 10%
introduced at z=0, in a plasma where the electron
temperature varies monotonically along the x-axis as
T,(x) ~ arctan(x/A) with A = 7.125. The density pertur-
bation is parallel to the x-axis at z=0 and has a
Gaussian shape centred in the bounded x-direction. The
conspicuous features are readily noted. The phase fronts,
which are parallel by construction at the position z = 0,
are tilting for z > 0 due to the variation with x of the
phase velocity. Due to the resulting change in direction
of the group velocity, see Fig. 1, the wave-field moves
with the group velocity towards the region of enhanced
electron temperature. Figure 6 shows two such numer-
ical simulations, with two x-positions for the maximum
of the density perturbations with respect to the electron
temperature variation. The excitation at the boundary is
not the one corresponding to a solution of Eq. (9), but
we note that the perturbation seems to evolve towards
such a solution. In particular we recognize the local
maximum of the fluctuating potential in the vicinity of
the steepest electron temperature gradient.

3.1.2 Localized temperature variations. In continuation
of the foregoing results we carried out a simulation with
a localized enhancement of the electron temperature
described by a Gaussian T,(x) ~ exp(—x>/2A?), with
parameter A = 11.875. In Fig. 7 we show the variations
along the magnetic field of the wave pattern at a fixed
position x = 33. The waves are excited by a harmonic
10% density excitation at z = 0. The solid line corre-
sponds to the case where the excitation has a profile
along the x-axis as on ~ exp(—x?/A?) and the dashed

T (x), n(x) T (x), dn(x)
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Fig. 6. Numerical simulation of the potential ¢ that results from a
harmonically varying density perturbation introduced at z = 0. The
electron temperature 7, is assumed to vary as arctan in the x-direction
(solid line in the upper panel). In the right panel, the density
perturbation dn is maximum in the middle and decreases as a
Gaussian (dashed line in the upper panel) while in the left panel, the
density perturbation dn is moved half way left. The magnetic field
points in the z-direction. The applied frequency is w = 0.2nw),; while
Q. = wy; and 7 represents time normalized to the ion time scale 1/,

Te(x) , on(x)

0 50 1010/7» 150 200

Di

Fig. 7. Numerical simulation of the potential variation along the
z-axis, i.e. parallel to the magnetic field, for a fixed x. The electron
temperature enhancement is localized as a Gaussian in the x-direction,
i.e. transverse to the magnetic field, for two wave guide modes. In the
upper panel and in arbitrary units, we sketched the temperature profile
(dashed line) as well as the two different density perturbations
on ~ exp(—x2/A*) (solid line) and on ~ xexp(—x>/A?) (dash-dot
line). The dotted line is the reference density level without perturba-
tion. The applied frequency is w = 0.2nw,; while Q,; = ),
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line to the case of a profile as dn ~ xexp(—x>/A?). We
recognize two different phase velocities corresponding to
the two different waveguide modes being excited. The
ratio of the two phase velocities is approximately 0.89.

As another feature of the localized electron variation
we consider the same conditions as in Fig. 8, but now let
the density perturbation be given as don ~ exp(—x?/A?)
and on ~ 1 —exp(—x?/A?) for the two cases shown by
solid and by dashed lines, respectively. The interesting
point is here that the phase velocity of the two modes are
virtually identical, but they have somewhat different
damping length, even though the two curves are
obtained at the same spatial position and at the same
excitation frequency. The reason for the difference can
be understood by the result from Fig. 6. Due to the
variation in phase velocity the phase fronts are tilted at
the positions with the strongest gradient in electron
temperature. Also in this case we have a flow of wave
energy by the group velocity, which here enters the
region of density enhancement from both sides. In
the first excitation, there is little wave energy outside
the high electron temperature region, and in this case the
wave evolution is entirely dominated by the local ion
Landau damping. In the latter case the Landau damping
is still effective, but part of the energy loss is compen-
sated by energy inflow from the outer regions which in
this case are excited stronger.

3.2 The high frequency case, w > Q;
Figure 9 shows the variations along the magnetic field as

well as a two-dimensional picture of the waves for the
same temperature and excitation conditions but with

Te(x) , on(x)
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Fig. 8. Numerical simulation of the potential variation along the z-
axis, i.e. parallel to the magnetic field, for a fixed x. The electron
temperature enhancement is localized as a Gaussian in the x-direction,
i.e. transverse to the magnetic field, for two different excitations. In
the upper panel and in arbitrary units, we sketched the temperature
profile (dashed line) as well as the two different density perturbations,
on ~ exp(—x2/A?) (solid line) and on ~ o — exp(—x>/A?) (dash-dot
line). The dotted line is the reference density level without perturba-
tion. In the lower panel, the corresponding variations of potential, the
dash-dot line curve has been multiplied by approximately 4 for
readability. Note the difference in damping distance. The applied
frequency is @ = 0.2mw, while Q,; = @,
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Fig. 9. The second panel from top shows numerical simulation of the
potential variation along the z-axis, i.e. parallel to the magnetic field,
for a fixed x =47.5. The electron temperature enhancement is
localized as a Gaussian in the x-direction, the excitations are identical.
In the upper panel and in arbitrary units, we sketched the temperature
profile (dashed line) as well as the density perturbations
on ~ exp(—x2/A?) (solid line). The dotted line is the reference density
without perturbation. The difference is the magnetic field strength.
The solid line is for magnetized while the dashed line is for a very
weakly magnetized. The two lowest panels present the variations in
two dimensions of the electrostatic potential. We have w = 0.2nw,; in
both cases while w;/Q, = 0.05 and w.;/Q, =1 in the lowest left
and right panels respectively

different magnetic field strength, i.e. in one case with
o < Q. and in the other case w > Q.. The conspicuous
difference between the two cases is evidently the
difference in damping. For the case where w > Q,;, the
explanation of the rapid deployment of the wave
amplitude is quite simple; due to the x-variation of
the ion sound speed, the phase fronts curve to become
convex, and the local group velocity obtains an
x-component, which leads to a depletion of the energy
density on axis, in excess of what would be obtained due
to the linear ion acoustic Landau damping alone. For
the case where w < Q;, the situation is the opposite.
With hindsight, it may actually seem surprising that
results from laboratory experiments often show a
remarkable agreement with predictions from a simple
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theory based on homogeneous, uniform plasmas. Usu-
ally such a good agreement is obtained by fitting one or
more free parameters, which in a way serves to ‘“hide”
the effects of inhomogeneities.

To make the effects discussed in this section more
conspicuous, we kept the applied frequency constant
(and thereby the wavelength A = 2nC/w) and varied the
externally applied magnetic field.

4 Nonlinear waves

The foregoing analysis was based on a linear approx-
imation for ion acoustic waves. A complete analysis of
the nonlinear evolution of these waves for the present
geometries is outside our scope. Basically, we expect low
frequency ion acoustic waves to steepen towards break-
ing, as simple waves in fluids (Kadomtsev and Karp-
man, 1971; Whitham, 1974).

It seems, however, that one particular nonlinear effect
can be readily discussed on the basis of the linear results.
The problem we have in mind is concerned with the case
where the wave frequency, i.e. the fundamental frequen-
cy w is below the ion cyclotron frequency, o < Q;, while
on the other hand all harmonics are higher, nw > Q; for
n>1. This implies that as the wave steepens, it
generates higher harmonics, but these harmonics will
have properties different from the fundamental. In
particular, the higher harmonics will be able to couple
to the plasma surrounding the high electron temperature
channel, as in Fig. 9, and thereby delay or even inhibit
the wave breaking. In Fig. 10 we show the evolution of
the wave field for the case where w = 0.1nw, with
Q. = w,;/2, for amplitudes increasing from on = 0.1ny
to 0.5n¢ by step of 0.1n. In Fig. 11 we have one example
of the (x, z)-variations of the electrostatic potential for
the amplitude on = 0.5ny. The x-variation of the electron
temperature and the density perturbation at z=0 are
the same as used in for instance Fig. 9. We see a rather
complicated deformation of the phase fronts, clear signs

-1.5 : ‘
0 50 lOZO/

150 200
}\'Di
Fig. 10. The evolution of the electrostatic potential along the z-axis
for increasing amplitudes on from 0.1ny to 0.5ny. Here, we have
Q. = wp;/2 while the applied frequency is @ = 0.17w,
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Fig. 11. The (x, z)-variation of the electrostatic potential for the
amplitude on = 0.5ny is shown for Q; = w,;/2 in the left panel and
for Q. = w,; in the right panel

of harmonic generation, and also a systematic decrease
of the phase velocity for increasing amplitudes.

If we now increase the magnetic field in such a way
that Q. = w,;, implying that the first and second
harmonics of the applied frequency are now below the
ion cyclotron frequency. An example for the wave
evolution is shown in Fig. 12, for the case of maximum
amplitude in Fig. 10. In this case we find a quite
standard, almost text-book like, steepening and forma-
tion of N-waves, as for weakly damped one-dimensional
nondispersive waves. The (x, z)-variation of the elec-
trostatic potential for this amplitude is shown in Fig. 11.
In the evolution of the harmonics of the fundamental
frequency, the wave damping is competing with the
growth of the harmonic content away from the plasma
boundary at z=0. To lowest approximation, the n-th
harmonic increase (Blackstock, 1962; Pécseli, 1985) as
>-n(2/n0)J,(no)sin(n(wt — kz)) with normalized dis-

0 50 1(360/ 7‘Di 150 200

Fig. 12. The evolution of the electrostatic potential along the z-axis
for perturbation amplitudes increasing in units of 0.16n/ny, with
Q. = wy;, and applied frequency w = 0.17w,;
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tance, o = z(w/Cs)(dn/ng), expressed in terms of the
Bessel functions J,. This solution (often termed the
Fubini solution) accounts for the lowest order nonlin-
earity, up to a relative applied amplitude in the
excitation of approximately 0.2-0.3 in Figs. 10 and 12.
For larger amplitudes we note an enhanced initial
damping and an increasing asymmetry between the
positive and negative parts of the wave. In this large
amplitude limit, the particles trapped in the first half
period of the oscillations escape as a weak beam in the
second half, in a way similar to the one discussed by
Sato etal. (1976). The wave amplitude is then dimin-
ished by an amount corresponding to the energy carried
by these particles.

The conclusion of this analysis in this section is
almost self evident; as long as the fundamental and first
few harmonics are below the ion cyclotron frequency
we may in effect consider the wave guide modes as
almost one dimensional nondispersive waves also in
their nonlinear evolution. If, however, the higher
harmonics are above Q., the coupling to the sur-
rounding plasma effectively depletes the wave energy to
delay the breaking. The observed change in phase
velocity can, seemingly, not be explained simply within
this model.

In support of our interpretation of the numerical
results summarized here we draw attention to the
reduced damping of the nonlinear waves in the case
where o < Q.;, compared in Figs. 10 and 12. This is
consistent with the expected reduction in loss of energy
from the wave harmonics to the plasma surrounding the
high temperature channel.

We have also studied a linearly unstable case where
an ion beam is injected from one end of the plasma along
the magnetic field, in conditions where the electron
temperature is increased in the central part of the spatial
domain, as in Figs. 7 and 8. We considered two cases,
one with Q. = w, and another where Q. = 0.05w,;.
Also in these cases we observed a clear ducting of the
wave energy, but point out that the interpretation of
these cases is complicated by the linear instability
conditions being electron temperature dependent.

5 Conclusions

We described results from investigations of low fre-
quency ion sound waves in magnetized plasmas with a
spatially varying electron temperature. In the linearized
analysis used in the present study, a density gradient will
be immaterial, since the linear sound velocity does not
depend on the plasma density. If the present analysis is
generalized to the full three dimensional magnetized
case, the situation is different, since electrostatic drift
waves can then be excited with properties determined by
the combined effects of the scale-lengths for density and
electron temperature (Kadomtsev, 1965). These waves
will, however, be propagating in a direction perpendic-
ular to the wave-field considered in this study.

We demonstrated by direct numerical PIC-simula-
tions that the basic features of the observations in these

simulations can be described adequately by a simple
differential equation, which at low frequencies, o < Q,,
contains the essential features with the exception of the
ion Landau damping. We demonstrated the existence of
a wave guide mode, and also illustrated some conse-
quences of the anisotropy of the group velocity at
w < Q. Thus, if the electron temperature is striated
along By and low frequency waves (o < Q) are
excited in this environment, for instance by a plasma
instability, then the intensity of these low frequency
waves will be striated in manner following the electron
temperature. High frequency ion acoustic waves
(o > Q) will on the other hand have a spatially more
uniform intensity distribution. These effects should be
readily noticeable by for instance an instrumented
space craft. Also, we expect our results concerning the
nonlinear evolution of a wave in Sect. 4 and the
dependence of the harmonic spectrum on the ratio
®/Q. to have relevance for the understanding of the
nonlinear saturation of low frequency instabilities in
magnetized plasmas. As an example relevant for space
plasmas, we can refer to observations of low frequency
ion—ion beam instabilities in the solar wind (Feldman
etal., 1973).

When an efficient mechanism for the transfer of ion
acoustic wave energy to the electrons can be found, the
observations of entrainment of wave energy into a
localized region by the anisotropy of the group velocity
allows for the possibility of a nonlinear self-focusing of
ion acoustic waves. The mechanism for the process is
self evident (Kadomtsev and Karpman, 1971), and will
be effective only for low frequency waves, o < Q.

The results summarized have applications to many
physical phenomena, since temperature gradients in
magnetized plasmas can occur in a variety of naturally
occurring conditions in the Earth’s ionosphere (Nilsson
etal., 1998) as well as in the Solar corona (Drago etal.,
1991). Gradients or striations in the electron tempera-
ture of the ionospheric plasma can also be induced
artificially by ionospheric heating experiments, using
intense radio waves (Das and Fejer, 1979; Dysthe et al.,
1983). Ion acoustic waves propagating in such an
environment will be expected to be subject to the
evolutions described in the present work, where we
considered the electron temperature variation to be
given a priori.

Localized, ducted, low frequency ion acoustic waves
have been observed by instrumented space-craft, as
reported by for instance Wahlund ez al. (1994a, b, 1998),
and we believe such observations deserve closer scrutiny
in the light of the models for wave evolutions discussed
in this study.

In order to produce clear illustrative results we chose
large ranges of variation for the electron temperatures in
our analysis. The basic physical properties are, however,
unaffected by the actual values of the temperature
ranges, and our basic analytical results can readily be
applied to given conditions. We might add that the basic
physical arguments are quite general and applies equally
well to, for instance, shallow water waves propagating
over ducted surfaces (Whitham, 1974).
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Appendix A

It might be appropriate to add a few comments concerning the
absence of the By-perpendicular electron dynamics in the analysis.
Ignoring electron inertia, as usual for low frequency ion acoustic
waves, we have

enV¢ — V(nT,) + enu x By =0 (12)

As an illustration we first take the case where 7, = constant, but
the unperturbed plasma has a density gradient in the direction
perpendicular to By, i.e. ngp = no(x). For the By-parallel component
of Eq. (12), we have Eq. (3), which gives the Boltzmann distributed
electrons n = ny(x) exp(e¢/T,). By insertion of this relation into
Eq. (12) we find the component perpendicular to By as
enpu X By = T,V ng, giving u, = (T,/eBy)dInny(x)/dx, which is
nothing but the electron diamagnetic drift associated with the
unperturbed plasma density gradient. The equations have not been
linearized to obtain this result. The electron density can be
fluctuating as well as the plasma potential, but there will not be
any electron fluid velocity component in the direction perpendic-
ular to By. We have an exact cancellation of the fluctuations in the
electron diamagnetic drifts and the —V¢ x By/B3-drifts associated
with the fluctuations in plasma density. We now take ny = const.
and T, = T,(x). The By-parallel component Eq. (12) is unaffected,
giving again the Boltzmann distribution of electrons now with a
varying electron temperature. Using this in Eq. (12), we find again
without any linearization that wu, = (1 —e¢/T.(x))(T.(x)/eBy)
dInT7,(x)/dx = (1 —Inn/ng)(T,(x)/eBy)dIn T,(x)/dx. In this case
there is a fluctuating component of the bulk electron velocity, but
its direction is here along the phase fronts of the ion acoustic
waves, and therefore it does not contribute to any charge
separations.

Appendix B

We considered the modifications of the results in Sect. 2 due to
finite ion temperatures, and included for generality also a collision
frequency v for ions colliding with a neutral component. Rather
than Eq. (2) we now have

0

a—l;zfen(beu x By) — V(nT;) — nMvu . (13)
After some simple algebra, we find the modifications in the
expressions for the ion velocity due to the finite ion pressure, and
we end up with a new differential equation for the electrostatic
potential

nM

(s B0 + 10 - )

L()(w+iv) & LT\ _
TM@ = (w+ ) & (sl ml) =0 4

Basically, the finite ion pressure adds to the electron pressure, but
in addition 7; # 0 has some other consequences by changing the
character of the differential equation for the linearized potential. In
order to apply a fluid model, as done here, we implicitly assume
T;/T. < 1, implying that the new terms appearing in Eq. (14) are
small. With v# 0 we have now complex eigenvalues for the
equation, but this is merely describing the wave damping due to the
collisions.

With a little work, the simple results for 7; = 0, Egs. (9) and
(10) can be generalized somewhat. Assuming as before that the
electrostatic potential varies only in the z- and x-directions, we can
obtain the full ion velocity from the linearized equations, and
ultimately find the relation

d? 2 M
E(f:(wz_g(zri)(w_z_m)d% (15)

or in dimensionless units

¢ o (1T
FER 1)<v2 Te(é)>¢’ 1o

now with the two new dimensionless parameters Q = w/Q,; and
1/92 = (Ty/M)(k./®)*. For the simple case with a simple temper-
ature proportionality, 7, (x) = aT;(x), with o = const. and v = 0, the
result Eq. (14) is an almost trivial modification of Eq. (15). For
the sake of simplicity, the discussions in Sect. 2 are based on the
simpler case with 7; = 0.

These equations contain the foregoing results of Egs. (9) and
(11) as special limits, but the derivation may not be as transparent.
Egs. (15) and (16) have one interesting implication, however. If we
assume that y is constant, Eq. (16) can still have physically
acceptable solutions with finite ¢ for all values of Q, except for only
one singular point at Q = 1. These solutions disappear in case
T =T, =T, implying T,(¢) = Ty and consequently y = 1, where
then only a potential ¢ independent of ¢ is acceptable. For either
sign, the factor (Q? — 1) will formally act as to re-scale the ¢
variation of a solution of Eq. (9) or (11). We have also investigated
these cases by the particle in cell simulations, but the results will be
discussed in a different context, as they are not directly relevant for
the central ideas of this work.
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