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Abstract. In order to contribute to the understanding
of solar wind-magnetosphere interactions the multi-
fractal scaling properties of high-latitude geomagnetic
fluctuations observed at the Thule observatory have
been studied. Using the local observatory data and
the present experimental knowledge only it seems
hard to characterize directly the, presumably inter-
mittent, mesoscale energy accumulation and dissipa-
tion processes taking place at the magnetotail, auroral
region, etc. Instead a positive probability measure,
describing the accumulated local geomagnetic signal
energy content at the given time scales has been
introduced and its scaling properties have been
studied. There is evidence for the multifractal nature
of the so defined intermittent field ¢, a result obtained
by using the recently introduced technique of large
deviation multifractal spectra. This technique allows
us to describe the geomagnetic fluctuations locally in
time by means of singularity exponents «, which
represent a generalization of the local degree of
differentiability and characterize the power-law scaling
dependence of the introduced measure on resolution.
A global description of the geomagnetic fluctuations
is insured by the spectrum of exponents f(o) which
represents a rate function quantifying the deviations
of the observed singularities o from the expected
value. The results show that there exists a multifractal
counterpart of the previously reported spectral break
and different types of f(a) spectra describe the
fluctuations in direct dissipation or loading-unloading
regimes of the solar wind—magnetosphere interaction.
On the time scale of substorms and storms the multi-
fractal structure of the loading—unloading mode fluc-
tuations seems to be analogous to the simple multi-
plicative P-model, while the f(a) spectra in direct
dissipation regime are close but not equal to the
features of a uniform distribution. Larger deviations
from the multiplicative model are observed when the
influence of the solar wind fluctuations is examined.
On this basis it is expected that an extended multi-
fractal analysis of the singularity structure of near-
Earth plasma system fluctuations would lead to

improved geomagnetic diagnosis of the magnetospher-
ic dynamics.

Key words: Magnetospheric physics (magnetosphere—
ionosphere interaction; solar wind—magnetosphere
interactions; storms and substorms)

1 Introduction

After decades of effort the understanding of fully
developed turbulence occurring in geophysical, astro-
physical or laboratory flow systems is still far from
complete. One of the promising trends is represented by
hydrodynamic or MHD models describing turbulent
intermittency in terms of inertial range canonical
cascades of various nonlinearly conserved fluxes. An
adequate description of the deviations from Gaussian
statistics in intermittent fields, however, requires higher
order moments to be investigated. The departure from
Gaussianity at small scales and the scaling of higher
order moments is usually interpreted in terms of
multifractal processes (Frisch, 1995; Biskamp, 1993).
A widely used approach in solar wind studies is based
on g-th order structure functions computing ensemble
averaged g¢-th powers of absolute increments from
velocity, magnetic, temperature, etc. fields (Burlaga,
1991; Carbone, 1994; Tu et al., 1996), which typically
exhibit power-law scalings in the inertial range of scales.
Another approach is based on the examination of the
fluctuations of energy dissipation fields deriving non-
negative measures from the data first (Marsch et al.,
1996). The relation between the two approaches is
discussed in Frisch (1995).

As far as the intermittency of fluctuations of the
Earth’s magnetosphere is concerned the structure func-
tion method was used to describe the statistical prop-
erties of collisionless plasmas in the vicinity of the
Earth’s bow shock (Dudok de Wit and Krasnoselskikh,
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1996) and a generalization of the method known as
extended self-similarity (ESS) was applied to seek for
scaling laws from geomagnetic time series (VOros et al.,
1998). In these cases, however, due to the nonlinear
dispersion effects, presence of coherent wavefields, short
time recordings or triviality of ESS in a great variety of
stochastic fields, it was not possible to interpret the
results in terms of nonlinear cascade models. The
experimental structure function approach also has its
own limitations (Muzy et al., 1993).

In parallel, a multifractal measure derived from AE
index time series was characterized by the scaling
features of its coarse-grained weight and the occurence
of intermittence in ‘“‘magnetospheric turbulence” was
proven on the basis of anomalous scaling of the
corresponding partition function (Consolini et al.,
1996). The underlying multiplicative nature of the AE
index scaling seems to be well fitted by the p-model of
Meneveau and Sreenivasan (1987).

In the paper of Consolini et al. (1996) less than two
months of AE index data with 1-min time resolution
was analyzed. Here we analyze four years of 1-min data
from Thule observatory (77.47°N, 69.23°W) using the
method of continuous large deviation multifractal
spectrum (LDMS). This method was tested on both
synthetic and real data sets and has been proven to be
more precise than the Legendre spectrum and more
regular than the Hausdorff spectrum (Canus et al.,
1998; Véhel and Vojak, 1998). We note that the LDMS
method provides robust estimations of singularity
spectra even in a case of non pure multiplicative
processes.

Let us explain now in more traditional terms what
are we looking for. Our goal is to proceed with the
quantitative description of the irregular or ‘‘erratic”
nature of high-latitude geomagnetic fluctuations. We
are going to show that a positive measure, constructed
from Thule observatory time series, fails to have a
density and this singularity appears due to the
irregularity of fluctuations present over a range of
scales. Focusing on external fields, the irregularity
itself appears in consequence of the non-equilibrium
state of the magnetosphere-ionosphere (M-I) system
caused by bursty changes in solar wind forcing or
induced by internal M-I instabilities. It is appropriate
to mention geomagnetic substorms and storms in this
respect.

Let us consider at least several examples when
irregular fluctuations observed in a high-latitude ob-
servatory may be generated in the remote regions of
the magnetosphere. One of the causes of the near-
Earth signatures of substorm onset is the Earthward
high-speed flow in the neutral sheet. Shiokawa et al.
(1998) reported that these flows undergo abrupt
changes in speed at the boundary between tail-like
and dipolar fields. It was pointed out by Daglis ez al.
(1999), however, that some bursty fast flows, often
with short duration, may remain undetected on the
ground because of their localized nature. Of course,
there are other known sources which may cause erratic
substorm appearance in a high-latitude observatory
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such as M-I coupling reinforced by ionospheric
feedback (Kan, 1991), nonlinearity of the loading-
unloading cycle (Klimas et al., 1996), etc., all intensi-
fied during bursty space weather conditions. Truly
global substorms can be associated with a number of
nonstationary and nonlinear plasma processes in mag-
netospheric tail, inner magnetosphere and ionosphere
(Daglis et al., 1999). Hence, all these processes, even
those in remote regions, may contribute to the spec-
trum of geomagnetic fluctuations which can be ob-
served at a high-latitude observatory. Considering that
the local observatory signatures of the contributing
sources may differ from each other in amplitude,
frequency and other characteristics, accordingly, the
resulting local signal exhibits irregular and intermittent
fluctuations and we are searching for generic laws
which could be related to the scaling properties of
these fluctuations.

Without doubt, any kind of averaging somehow
distorts the scaling properties of a signal, laying stress
only upon dominant contributions from the most
significant sources and discarding the less representative
components. It was emphasized by Coles (1990) that
standard practices in geomagnetic observatories include
the formation of hourly, daily, etc. averages which lead
to considerable distortions of the signals. In this respect
the definition of the widely used geomagnetic indices
seems to be unsatisfactory, too. Let us consider, for
example, the auroral electrojet (AE) index which was
introduced to describe the global activity of the auroral
zone electric currents (Davis and Sugiura, 1966). The
AE-index is derived, after the substraction of base line
values, from evaluation of the variations measured at 12
stations located near the northern auroral zone. From
the recordings of all these stations the greatest (upper
envelope) and smallest (lower envelope) values are taken
at intervals of one minute and their difference defines
the AE index. The fluctuations with values between the
upper and lower envelopes are not taken into account at
all. Again, our expectation is that the singularity spectra
which characterizes the fluctuations over a range of
scales would provide a more complete description of the
processes involved. The fact that we analyze here data
only from one observatory can also lead to some loss of
important physical information. However, we do it
using the technique of large deviation multifractal
spectra which is more powerful than the methods used
for derivation of geomagnetic indices. As we are going
to analyze the distribution of local Holder exponents
(see later) over a longer period of time the description
provided by multifractal spectra is statistical which
focuses on long term generic characteristics of high-
latitude fluctuations.

2 Large deviation multifractal spectrum (LDMS)

In order to study the local irregularities of measures
derived from geomagnetic data we apply the method of
large deviations which provides a statistical description
of a singular measure. This method can describe



Z. Voros: On multifractality of high-latitude geomagnetic fluctuations

interwoven fractal subsets with singularities o and
dimensions f,(x) and it also allows us to characterize
irregular but otherwise arbitrary (non-fractal) signals
(Véhel and Vojak, 1998). A geometrical description of a
multifractal measure is based on the estimation of the
Hausdorff spectrum (f;) defined for the subsets having
the same Holder exponents. Last but not least, the
scaling of the g-th order moments of a measure allows us
to characterize the multifractality (f;) through Legendre
transforming of the exponent functions called Rényi
exponents. The latter approach was also used by
Consolini et al. (1996). Generally f, <f, <f;. In a
number of compound processes with non-concave
singularity spectra f; overestimates the true dimensions
while f; still provides reliable estimates (Véhel and
Vojak, 1998). Other methods based mainly on codimen-
sion formalism are outlined in (Schertzer and Lovejoy,
1993).

In the following we use the algorithm proposed by
Véhel and Vojak (1998) and by Canus et al. (1998). It is
not commonly used in geophysical literature, therefore,
we outline the basic assumptions of this approach. One
can find further details in their works. In the next
paragraph we will introduce a probability measure u
using a time series from the Thule geomagnetic obser-
vatory. Our intention is to provide robust estimations of
singularity spectra describing the scaling properties of u.
In order to introduce the continuous large deviation
multifractal spectrum (LDMS) (Véhel and Vojak, 1998;
Canus et al., 1998) we consider P = (P,),>1; the se-
quence of partitions P, of the unit interval [0,1). P, is
constructed as

P,=(* and 0<k<2"—1 (1)
with
IF=k-27" (k+1)-27") . (2)

As a following step we use the concepts of Holder
exponents and singularity spectra. The Holder exponent
(or singularity exponent, also crowding index) is defined
at a point xoeSupp(u) as a limit (Muzy et al., 1993):

a(xg) = lim w

3
n—0  logn ’ (3)

where By, (1) is the ball centered at xy, the size being #,
and Supp(p) denotes the support of the measure p. If pis
defined e.g. as a probability measure, Eq. (3) expresses
the power law dependence of probability measure on
resolution 7 with a set of Holder exponents a(xg) (Tél,
1988). In our notation n — oo as # — 0. In a number of
cases a measure can be characterized by its density
p(xo) = hmw _
n—0 n

An erratic behaviour appears in the absence of a
density for a singular u. In such a case p decays e.g.
roughly exponentially fast when # — 0 (the size of the
ball shrinks down to a point) and the exponent
function «(xp) could be thought of as a generalization
of the local degree of differentiability at x, (Riedi and

1275

Ribeiro, 1999). For a monofractal a(x) = const. for all
x, while in a case of multifractal measure (non-uniform
distribution) « changes from a point to point. For
instance, the fractional Brownian motion (fBm) or
continuous Ito processes represent self-affine fluctua-
tions governed by a single Holder exponent (Riedi and
Ribeiro, 1999).

The f(x) singularity spectrum of a measure u
associates to any given o, the Hausdorff dimension of
the set of all the points x, which are such that o(xy) = o

f (@) = di (xoeSupp(u), x(x0) = o) (4)

with the number of subsets N, with the same o (Tél,
1988):

Ny(n) ~ 7@ (5)

Now, for every interval I of size [I[|=7n let
oy(I) :==1logu(l)/logn be the coarse grain Holder
exponent of /. Then a Lebesgue measure is computed
being the reunion of all intervals of the same size for
which the coarse grain Hoélder exponent is equal to a
Holder exponent o. The Lebesgue measure is defined as
(Canus et al., 1998):

py(@) = [Ey(0)] (6)
where the set E), is
Ey(o) = J{1e0,1) : 1] = n, 040 (1) = o} . (7)

It is possible to introduce an ¢ precision for coarse grain
Holder exponent by

e > oy (1) — o (8)
and compute the Lebesgue measure as

e
wi= [ rwas . o)

for which the continuous (superscript ¢) LDMS is
(Canus et al., 1998)

log 75 () o)
logy '

We have already introduced in Eq. (4) the f(«)
singularity spectrum as a set of non-integer dimensions
describing the ‘sizes’ of interwoven fractal subsets with
singularity «. Now we recall the interpretation of the
same thing in terms of the large deviation principle
(Riedi and Ribeiro, 1999). Here f,(«) (Eq. 10) represents
a rate function which measures the deviation of the
observed o from the “‘expected value” & for which
Jfy(@) = 1. The smaller f,(«), the fewer points display
singularity o. It is obvious from the definition of «
(Eq. 3) that the singular measure at x¢ is of Dirac ¢ tipe
for a(n — 0) = 0. Also, the measure is more singular for
a(xg) < 1. In other words, smaller values of a(xo)
correspond to the more singular measures, that is, burst
of events around xjp, while regions where events occur
sparsely are less singular with higher value of « around
xo (Riedi, 1999).

Jy(@) =1~ lim lim
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3 Data analysis

We study here the 1-min mean Thule geomagnetic H-
component time series from 1994-1997 consisting of
2 102 400 data points. There were only short data gaps
(~0.04%) which were interpolated. The raw data were
transformed in several steps first to create the basic time
series for our investigation. In the first step we
differenced the data according to the relation

AH = H(t + 1) — H(1) (11)

This equation represents a kind of high pass filtering
process necessary to set off the fluctuations in the higher
frequency range. For a certain value of t a break in
scaling characteristics of geomagnetic data can be
observed which is related to the spectral break at about
several hours (Takalo and Timonen, 1994; V6rés et al.,
1998).

In turbulence studies usually the velocity difference
inside eddies is a positive and additive quantity defining
a measure. In these studies the time structure between
instants separated by 7 of the velocity field measured in
a point of the flow used to be related to the spatial
structure (eddy size) assuming Taylor’s frozen turbu-
lence hypothesis to be valid (Frisch, 1996).

In our case the energy content of the signal is
estimated by the squared value of AH: E = AH?, then
the data are normalized through
()= —£W__ (12)

>im E(1)
Finally, the integrated quantity defined by
J=iAT

e(j) = Z E(i)At (13)
is considered to be the probability measure of the
accumulated/dissipated signal energy during a time
interval T; (Ar=1). It is important to note that
Eq. (12) is not substituted directly into Eq. (13) but
the data normalization is performed in the first step.
Then the probability measure €(j) is computed which is
one data value at the end of every interval T'. This is why
Eq. (13) represents the aggregated signal energy accu-
mulated during 7. We can justify the introduction of the
parameter 7 and Eq. (13) in the following manner. The
majority of the bursty events in the near-Earth mag-
netospheric tail with clear signatures in high-latitude
observatory time series appear due to the energy and
mass accumulation-release processes (loading—unload-
ing cycle) on time scales larger than 20 (min) (Bargatze
et al., 1985) while the sampling interval of Thule data is
I (min). On the other hand, no bursty energy release is
expected on the time scales of <20 (min). Therefore, we
expect to observe different multifractal scaling laws, if
any, as the integration parameter 7' changes.

Naturally, it would be possible to introduce different
kinds of measures being more or less “sensitive” to the
various near-Earth plasma processes of interest. For
example, taking a positive cubic quantity £ = |AH|’,
used by a number of authors for the turbulent energy
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transfer rate in hydrodynamic or MHD flow systems,
another family of measures could be defined. The solar
wind-magnetosphere—-ionosphere system, however, is
not a “‘simple” MHD flow system and we have no
precise a priori knowledge about the energy transfer
rates or cascade processes interconnecting multi-scale
phenomena in the near-Earth magnetosphere. There-
fore, by way of precaution, we use here the multifractal
analysis first of all as a powerful signal processing tool
which could help, in analogy with turbulent flows, to
understand the scaling/singularity features of fluctua-
tions allowing a better geomagnetic diagnosis of the
multi-scale magnetospheric processes.

The introduction of the free parameters by the above
transformations (Eqs. 11-13) needs further physical
argumentation. Therefore, let us examine the effect of
these transformations on power spectral density (psd).
The upper curve on Fig. 1 represents a robust estima-
tion of the averaged psd computed from 1994-1997
Thule raw data with N = 2%! points, sampling frequency

fs = 1/60 Hz using a blackman window of 2!7 points.

The spectral break present on Fig. 1 was previously
reported from AE and AL index time series (Tsurutani
et al., 1990) as well as medium latitude observatory data
studies (Vords et al., 1998). The spectral break (or
transition region) is thought to be within the range of
1/(1.5 h) and 1/(5 h). It divides the whole spectrum into
the higher frequency part which is more intrinsic to the
magnetosphere (smaller values of 1) and the lower
frequency part being influenced mainly by turbulent

4

10 1

frequency [Hz]
Fig. 1. Power spectral density (psd). The upper curve represents an
averaged psd for 1994-1997 Thule raw data (N = 22! points total,
blackman window of 2!7 points, f; = 1/60 Hz). The denoted spectral
indices (<3) indicate that the field has stationary increments. The
lower curve, which has been shifted to ease comparison, represents
an averaged psd of differenced (t=20) and downsampled
(f = 1/600 Hz) data
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driving of the solar wind (larger values of 7, Takalo and
Timonen, 1994). Within the transition region the exter-
nal and the internal influences can be mixed (Vo6ros
et al., 1988) and towards higher frequencies (substorm
time scale) the best predictor of the magnetospheric
response is represented by nonlinear (local-linear) filters
(Klimas et al., 1996).

For our purposes is important to recognize that if the
analogy with the energy transfer in turbulent flows
works then from the values of the power law spectral
exponent /5 the following information can be drawn: (a)
if f < 1 the data are stationary; (b) if 1 < § < 3 then a
local spectrum corresponds to the stochastic intermit-
tent processes in multiplicative energy cascade models,
which means that most of the contributions to the
dynamically significant quantities are due to structures
with neighbouring wave numbers in Fourier space
(Schertzer and Lovejoy, 1993). If < 3 the field has
stationary increments and the small-scale gradient field
will be stationary (Davis et al., 1994). Indeed, the
spectral exponent for the differenced data (lower curve
on Fig. 1) is f~0.7 < 1. The energy accumulation
equation (Eq. 13) parametrized by the time constant
T leads to downsampling of the signal with a new
sampling frequency of f; = 1/(607) [Hz].

Let us examine now the effect of the transformations
(Egs. 11-13) on empirical probability distribution
functions (EPDF). The whole raw data set can be
characterized by scale (r) dependent EPDF (lack of
global self-similarity) and the results of Hinich hypoth-
esis testing (Hinich, 1982) we applied to the raw data
reveal that Gaussianity and linearity assumptions
should be rejected. Without going into the details here,
we note that, if the bispectrum of a process is not zero
then the process is non-Gaussian and if the process is
linear as well as non-Gaussian the computed bicoher-
ence is a non-zero constant. The EPDFs of the raw data
exhibit non-Gaussianity with long-tail wings (see also
Voros et al., 1998), but the “mean” or the expected
value of it still characterizes well the geomagnetic data,
especially during quiet conditions.

The EPDFs of the integrated data exhibit similar
characteristics as the EPDFs of the raw data but all
values are positive with a clear absence of an intrinsic
scale or a mean value. Figure 2 illustrates the power-law
scaling behaviour of the EPDF as calculated from 1994—
1997 Thule data for T = 10 and 7 = 20 (min). The slope
derived from a log—log scale plot of €77 is ¢ ~ 2.7 which
slowly changes with 7. A similar exponent (¢ =
2.54+0.2) for a large enough threshold discriminating
the Gaussian part from the long-tailed one has been
found previously from the EPDF plots of some
geomagnetic indices and other physical processes (VOoros
1998). A possible interpretation of these scalings was
offered by Chang (1992, 1999) who conjectured that the
dynamic nonlinear behaviour of the magnetotail being
the consequence of its self-organization into criticality is
responsible for the observed power laws. Self-organized
criticality (SOC) models explaining the scale invariance
property of global magnetospheric processes were also
offered by a number of authors (Consolini, 1997; V6ros,
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Probability

Fig. 2. Empirical probability distribution function of the integrated
energy for Thule 1994-1997 data

1998; Chapman et al., 1998). We emphasize that mul-
tifractal processes reach self-organized criticality
through generic first order phase transitions (Schertzer
and Lovejoy, 1994) which was demonstrated for geo-
magnetic fluctuations in Vorés (1998). Nevertheless,
much more effort is needed to provide unambiguous
evidences for SOC in magnetospheric dynamics. In any
case, the SOC model remains very promising because
of its robust scaling properties that provide a possible
explanation of the bursty nature of the transport in
magnetosphere in terms of plasma physics (Chang,
1999; Watkins, personal communication, 1999).

The f(x) singularity spectrum can be calculated
theoretically for a number of multifractal models. We
use the analytical expression for the P-model (Halsey
et al., 1986) which was introduced by Meneveau and
Sreenivasan (1987)

__logyp+ (w—1)logy(1—p)

w

fla) = ~_(w=1logy(w—1) —wlogyw

where w is a free parameter.

It was widely used in solar wind studies (Tu et al.,
1996) and it was also used to explain the AE-index
intermittence (Consolini et al., 1996). The P-model does
not allow multifractal phase transitions. This model
describes energy cascade processes in turbulent flows.
We outline only the basic assumptions of this model.
The largest turbulent eddy is assumed to be built up by
a specific energy flux per unit length. Then a scale-
independent space-averaged cascade rate is considered
and the flux density is transferred to the two smaller
eddies with the same length but different flux

w
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probabilities p; and p» (p1 + p2 = 1). This process with
randomly distributed p; and p, is repeated again and
again. Then the parameter p = p; = 1 — p, governs the
asymmetric breakdown in the fragmentation process.
The value of p=p; =p, =0.5 corresponds to the
homogeneous energy transfer rate with no intermittency
effects while p > 0.5 corresponds to an intermittent
flow.

We do not expect that the P-model will exactly
describe the energy cascading processes within the
magnetosphere. The P-model is suitable, however, for
a rough comparison of our results with the previously
obtained values in solar wind and magnetosphere
turbulence studies. Moreover, the corresponding f(«)
spectrum is a smooth concave function with a parabolic
shape like the symbol N, describing measures with
multiplicative rescaling structure. Any deviation from a
simple N shape would contain important physical
information about the system under study.

To characterize the multifractal behaviour, Eq. (10)
was employed to obtain the /(o) spectrum for different
values of 7 and 7. The f(x) spectrum was examined for
fixed values 7, T = 6, 60, 600 (min) respectively. When t
was fixed T was changed and vice versa.

Figure 3a shows the dependence of singularity
spectrum on t, while 7 is fixed to 6 (min). For the sake
of perspicuity, the parameter t has been changed from
10 to 100 (min) by 10 (min) steps, and from 100 to 1000
(min) by 100 (min) steps. All the curves are also
projected to the (o, f(2), T = 3000 min) plane. The point
symbols refer to the time lags 7 < 300 (min), while the
other curves correspond to the lags 1000 > z > 300
(min). It is discernible that these two subsets of curves
differ, namely for the first set (r < 300 min) there is a
clear increasing part (as o increases from right to left),
having practically no decreasing part. Vice versa, the
second set of the curves (r > 300 min) has a larger
decreasing part. Similar “‘left-sided” and “‘right-sided”
spectra were also useful in computer network studies for
distinguishing incoming and outgoing traffics (Riedi and
Véhel, 1997) on the basis of the multifractal technique.
On Fig. 3a, there is a difference between the expected
values of &, too. a(r <300)=1.218+0.001 and
a(t > 300) = 1.241 £ 0.007, respectively. The probabil-
ity of the singularity exponents within the interval
o € (0.8,1.6) is close to 1, and it is not possible to fit a
P-model to this distribution. For a uniform distribution
a(x) =1 for all x, therefore the observed curves on
Fig. 3a are close but not equal to a uniform u. For
7 > 1000 (min) and 7 < 300 (min) the spectra are similar
(not shown). From these facts the conclusion can be
drawn that, as t changes, the left-sided rate function
turns into the right-sided one at about 100--300 (min),
that is there, where the spectral exponent changes (see
the break point on Fig. 1). There were two spectral
exponents needed for describing the power-laws in psd.
In contrast with it a whole spectrum of singularity
exponents is required for more complete description of
the geomagnetic fluctuations. This “additional” infor-
mation, however, is hidden for second order statistics
(psd, autocorrelation).
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The first N shaped curve depicted with points on
Fig. 3a refers to the parameters 7' = 60 and t = 20 (min)
[actually 7 is shifted to the (a«,f(a),7 =0 min)] plane
and projected to the («, f (), = 3000 min) plane, too.
This curve is added to Fig. 3a in order to show how the
spectrum changes for a larger value of T. To this curve
the multiplicative P-model has been fitted using the
Levenberg-Marquardt nonlinear algorithm (Press et al.,
1996) resulting in p = 0.700 £ 0.005. In this case, the
rate function decreases more rapidly, and the deviations
of the observed a-s from & ~ 1.19 are smaller than in
previous case for smaller 7.

The simple multiplicative P-model, however, fails to
describe precisely the cases when Tjy.s is 60 (min), but
7> 20 (min). Figure 3b shows these cases with a step of
7 as earlier. The point symbols refer to the time lags
7 < 100 (min) and the other curves correspond to the
lags 1000 > 7 > 100 (min). The projection of the curves
to the (o, f(«), T = 3000 min) plane reveals two different
subsets of curves, well visible especially for larger values
of o. The projections of these two subsets of curves are

B L

3000

3 | e = -/ 2000

2 18 )
6 14 42 108 06 o4 ° 7 [min]

o
oo b) T =80 [min]

Hixed

©) Tiyeq 7000 [min]

3000

2000

0 7 [min]

Fig. 3a—c. Large deviation multifractal or singularity spectra as
derived for a range of the parameters v and 7. The individual curves
are projected to the («, f(«), 7 = 3000) plane. a Tjyq = 6 (min); the N
shaped curves (point symbols, shifted to the plane t = 0, 3000 (min))
correspond to the values 7' = 60,7 = 20 (min) and the fit (/ine) is
the P-model with p = 0.700 £ 0.005. b Tpq = 60 (min); the subset
A comprises the curves for € (30,1000 and B for
7 € (300, 1000) (min); ¢ Tjieq = 600 (min)
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marked by squares as well as capital letters A and
B. The expected value is & = 1.110 = 0.005 for the A and
o =1.13+0.01 for the B family of curves. The curves
exhibit the same qualitative behaviour as the spectra on
Fig. 3a, namely, there is a transition from A to B type of
curves at about 100=-300 (min), which is the multifractal
counterpart of the spectral break. As described earlier,
the second curve from the front, for t =20 (min) on
Fig. 3b, can be modelled by the P-model taking p ~ 0.7.
It is clearly visible that for the restricted range of

€ (0.7,1.4) the f(x) spectra exhibit the parabolic,
N shape and the P-model represents a good approxima-
tion of the observed curves with effective parameters
p~0.69 for the A and p ~ 0.71 for the B group of
curves. Outside this range the f(«) spectra are not
exactly N shaped and larger deviations from a simple
multiplicative model occur. The easiest way of model-
ling this property is to consider sums of multiplicative
measures of disjoint supports in which case the large
deviation multifractal spectrum is simply the maximum
of the individual spectra (Riedi and Véhel, 1997; Radons
and Stoop, 1996).

The non-parabolic shape of f(«) in our case gives
some evidence for the phenomenon of phase transition.
At the a values where the f(a) spectrum is out of
parabolic shape the major contributor to the observed
singularities changes from one measure to another. As
different physical processes may generate different
measures (distributions), possible models with similar
characteristics as the observed spectra may contain
physical information on the contributing remote mag-
netospheric sources. For example, the non-parabolic
shape of the less singular wing (o > 0.8) of the B-family
of curves in Fig. 3b could be described by a P-model
with p ~ 0.735, but it already overestimates the spectra
at the more singular wing (« < 0.8), that is, the observed
spectra are too complex and sums of simple multiplica-
tive measures usually fail to describe fully the observed
phenomena. Nevertheless, exactly the rich structure of
the large deviation spectra for changing parameters 7'
and T may reveal new types of relationships between the
geomagnetic data and remote magnetospheric or solar
wind processes.

For larger values of T the dependence of large
deviation spectra on t does not change substantially.
Figure 3c shows the curves for Tfyeq = 600 (min). As
Eq. (13) downsamples the signal, the differences be-
tween the Fig. 3b and c can be attributed to the
decreased sample size for large 7.

Figures 4a—c shows how the spectra change as T
increases for some fixed values of 7. The parameter
T changes from 6 to 18 (min) by 2 (min) steps (depicted
by point symbols), from 20 to 100 (min) by 10 (min)
steps (lines) and from 100 to 1000 (min) by 100 (min)
steps (lines). First, the transition region at about
T =100+ 300 (min) is absent. However, a sudden
change in the shape of the curves is present at about
T =15 (min). This change is also visible in Fig. 3a,
where the spectra for Tf.¢ = 6 (min) are compared with
the singularity spectrum computed for 7 = 60 and
7 =20 (min). The sudden change at about 7 =15
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Fig. 4a—. The dependence of the singularity spectra on 7 and r.
A Tfieg = 6 (Min); b Tpeq = 60 (Min); ¢ Teq = 600 (min). The thick
lines (shifted to the T = 0,3000min) on Fig. 4a, b represent the
P-model fit with p = 0.685 £ 0.005 a and p = 0.710 = 0.005 b

(min) can be explained in the following way. Equation
(13) represents a system with a kind of memory because
at the end of every interval 7 the aggregated value over
this interval is computed. Moreover, T is changed, that
is larger and larger intervals are considered. In this
respect Eq. (13) resembles linear filters which are defined
in discrete case as

ZH

where I(t), O(¢) represent the input and output time
series, H(j) is a linear filter (also weight function or
impulse response). Equation (14) brings into connection
the weighted inputs preceding the output by time lag
j-ot.

Bargatze et al. (1985) have analyzed the magneto-
spheric impulse response for many levels of geomagnetic
activity using the solar wind V- B; (V — solar wind
speed, B, the southward component of the magnetic
field) as the input data, and the magnetospheric AL
index as the output data. Two peaks in impulse response
were identified. One at about 20 (min) and another
about an hour. The first peak at 20 (min) arises in
consequence of the direct dissipation of the solar wind

I(t — jor) (14)
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energy within the M-I system. The second peak which
corresponds to the loading-unloading (or storage-re-
lease) mechanisms arises or disappears depending on the
geomagnetic activity level.

In Fig. 4a, b very different singularity spectra belong
to the parameter values 7 < 15 (min) and 7 > 15 (min).
The separation of these two regimes for Tgq = 600
(min) in Fig. 4c is smaller. On the basis of the
comparison with linear filter studies, we believe that
the f(a) spectra for T < 15 (min) describe the singular-
ity properties of the direct dissipation processes, while
the curves for T > 15 (min) correspond to the loading-
unloading regime.

Again, using the Levenberg—Marquardt algorithm
the P-model has been fitted to the singularity spectra
corresponding to the loading-unloading regime (7 >
15 (min) — thick curves at 7 =0 and 7 = 3000 (min)
on Fig. 4a, b). The intermittency parameters are
p=0.685+£0.005 for Tpe=6min and p=
0.710 £ 0.005 for 7/q = 60 (min). The deviations from
the parabolic shape are small and could be interpreted
as earlier.

Lastly, let us return to the manner in which the
measure used in this study is defined. We re-counted all
the spectra as earlier, but this time the positive cubic
quantity E = |AH|* was considered instead of E = AH2.
No qualitative changes were observed. As an example,
Fig. 5a shows the “cubic” counterpart of Fig. 3b, that
is, the dependence of the singularity spectra on t and
Tfixved = 60 (min). The only difference is that the spread
of o around « is larger on Fig. 5a and the corresponding
effective intermittency parameters are p ~ 0.79 for A
and p ~ 0.81 for B family of curves. As previously, these
values due to the deformed shapes of the spectra
represent rough estimates valid for the most probable
singularities.

Figure 5b shows the cubic counterpart of Fig. 4b.
Again the same qualitative behaviour, the sudden
transition from direct dissipation to the loading unload-
ing regime is clearly visible at about 7 = 15 (min). The
P-model intermittency parameter computed for the
curves within the interval 1000 (min) > 7 > 20 (min) is
p =0.790 £ 0.005 (thick lines at 7 = 0, 3000 min).

On this basis we conclude that geomagnetic fluctu-
ations seem to be more intermittent for the measure
derived from the positive cubic quantity E = |AH |3,
nevertheless, the singularity spectra exhibit the same
qualitative behaviour as for the measures derived from
the quadratic quantity E = AH?. Further physical
investigations and comparative studies including the
analysis of the solar wind magnetosphere input—output
system are needed for making decisions in favour of a
proper measure.

4 Discussion

We presented a multifractal analysis of singularity
spectra of the measures derived from high-latitude
observatory time series. Quiet and disturbed periods of
geomagnetic activity were not separated. There exist
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Fig. Sa, b. Singularity spectra for the measure derived from
E = |AHJ’. a Tjeq = 60 (min); b t/eq = 60 (min). The thick curve
on b (shifted to 7 = 0,3000 (min) represents the P-model fit with
p = 0.790 £ 0.005

several reasons for such an approach. First of all, our
goal was to understand the long term generic dynamical
behaviour of “geomagnetic turbulence”. A separation of
quiet and disturbed periods could destroy the global
character of intermittence. In fact, as the results
obtained by Consolini and De Michelis (1998) suggest,
the Earth’s magnetosphere regardless of its closed or
open configuration, always exists in a non-equilibrium
dynamical configuration characterized by non-uniform
and spotty dissipation in time.

Our intention was to prove the effectiveness of the
multifractal technique as a powerful signal processing
tool for describing the singularity spectra of high-
latitude geomagnetic fluctuations. To this end a measure
derived from the raw geomagnetic data was introduced
and its scaling properties and bursty structure were
examined using the LDMS. In analogy with spectral and
linear filter studies, the multifractal counterparts of the
spectral break and of the transition from direct to the
loading—unloading dissipation regimes were identified,
namely for the measures derived from quadratic
(Figs. 3a—c; 4a—) and for the measures derived from
positive cubic quantity (Fig. 5a, b). In this respect we
note, that the AE index of geomagnetic activity is also
known to be a compound index which mixes driven and
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loading-unloading effects (Kamide and Baumjohann,
1991).

In addition, it was shown that within the considered
interval of parameters, a whole spectrum of the
singularity exponents o with probabilities of occurrence
(rate function) f'(«) (or dimensions of sets with equal o)
is required for a more complete characterization of the
geomagnetic fluctuations. In a number of models the
local Holder exponent can only take a finite number of
values. For example, a simple fractal model, the
fractional Brownian motion (fBm) contains a simple
local Holder exponent which rules the long range
dependence of the fluctuations. In fact, Takalo er al.
(1994) have introduced, mainly on the basis of second
order statistics, an fBm type model, against which the
hypothetical low dimensional nonlinear (chaotic) be-
haviour of the magnetosphere should be tested. They
have found a clear resemblance between the geomag-
netic AE index data and bicoloured noise with two
exponents. The multifractal analysis, however, provided
extended characteristics of the geomagnetic data
which are hidden for second order statistics. The
results here show that the local Holder exponents are
time-dependent and the bicoloured noise model is not
relevant.

Multifractal models are used with success in turbu-
lence studies. The simple P-model describes how energy
flux can be transferred between scales with multiplica-
tive rescaling structure. In analogy with turbulence, but
with the mentioned restrictions in the mind, the P-model
has been fitted to the observed f () spectra.

First of all, the P-model is not suitable for the
description of the singularity spectra of fluctuations in
direct dissipation regime when 7 < 15 (min).

The P-model is close to the observed curves for
higher frequency (smaller 7) fluctuations in loading-
unloading regime 1000 (min) > 7 > 15 (min). These
fluctuations are presumably of magnetospheric origin
corresponding to the physical processes on the time scale
of substorms and storms. The estimated intermittency
parameters depend on t and on the way how the
measure is derived. For example p = 0.685 + 0.005 for
©=6(min), T > 15 (min) and E = AH? (Fig. 4a), while
p=0.790 £0.005 for 7 =60 (min), 7 > 15 (min) and
E = |AH?| (Fig. 5b).

As 71 increases (lower frequency range — mainly of
solar wind origin) the observed curves start to exhibit
non-parabolic shapes and these deviations from a
multiplicative process could be partially, but presum-
ably not fully, explained by sums of multiplicative
measures. We conjecture that this notion could be
helpful in identification of the sources of the geomag-
netic fluctuations. The estimated effective P-model
parameters are roughly between 0.7-+0.8, e.g.
p~ 0.735 for o > 0.8, B family of curves in Fig. 3b;
p ~ 0.81 for o > 0.8, B family of curves in Fig. 5b. The
former is close to the value obtained from the
multifractal analysis of AE index data p(4E) =
0.746 £ 0.002 (Consolini et al., 1996). In addition, in
high-speed Helios-2 solar wind streams the analysis of
f(a) spectra for turbulent energy transfer rate led to
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the value p ~ 0.87 for the time shift of t =81 (s) and
p~0.74 for 1 =684 (s) (Marsch et al., 1996). Struc-
ture function analyses of low-speed Helios-2 bulk
velocity data recorded in the inner heliosphere
(0.33-0.94 AU) provide a best fit P-model parameter
which is 0.714 < p < 0.743 with no clear radial evolu-
tion with heliocentric distance (Carbone et al., 1996).
According to Tu et al. (1996) the intermittency param-
eter computed from the solar wind velocity compo-
nents concentrates in the range 0.7 < p < 0.8, while for
the Alfvén velocity components the p-values are
distributed widely from p=0.64 to 0.89. Near the
current sheet at 1 (AU) for t € (81,1000) (s) p ~ 0.88
(Tu et al., 1996).

Naturally, it would be thoughtless to over-estimate
the coincidences between the corresponding parameters
describing the intermittency in the solar wind flow and
the singularity structure of high-latitude geomagnetic
field fluctuations. In the mentioned solar wind studies
the P-model parameter is usually obtained for the range
of 7 € (100, 1000) (s) while here the time shift v changes
from 10 to 1500 (min). The nature of spatial fluctuations
in the solar wind is usually analyzed invoking the Taylor
hypothesis supposing that turbulence is convected past
the sensors at nearly constant speed of several hundred
km/s. The application of the Taylor hypothesis within
the magnetosphere is limited (Dudok de Witt and
Krasnoselkhikh, 1996), besides, the appearance of
geomagnetic field fluctuations is connected with a
formation of structures, magnetosphere-ionosphere cou-
pling, etc., with characteristic speeds which are very
different from those observed in the solar wind. For
example, during a substorm expansion phase the plasma
convection speed toward the equatorial plasma sheet is
~13 (km/s) (Kan, 1991) which is much less than the
average velocity of the solar wind. Therefore, we expect
that the interaction of the solar wind plasma with the
geomagnetic field would change the singularity structure
of the penetrating solar wind fluctuations substantially.
This question seems to be analogous with the problem
of the penetration of upstream waves into the inner
magnetosphere leading, after several transformations,
to the generation of quasi-periodic Pc pulsations. The
understanding of the transformations, of wave-like
structures has led to improved diagnostics of the
MHD processes and structures in near-Earth plasma
system, though it remains an open field of research for
the future. Our expectation is that a similar analysis of
the singularity spectra describing solar wind and mag-
netospheric intermittent fluctuations and their evolution
would contribute to the understanding of the near-Earth
plasma processes as well.
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