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Abstract. Using EISCAT radar data, we find that electrons
are strongly heated in the magnetic field-line direction during
high electric field events. The remote site data show that the
electron temperature increases in almost the same way in the
field-perpendicular direction; electron heating by E region
plasma turbulence is isotropic. We discuss the implications
of our observation for the “plasmon”-electron as well as the
wave Joule heating models of the anomalous electron heating
in the E region.
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1 Introduction

The knowledge and understanding of irregularities in the E
region was recently reviewed (Sahr and Fejer, 1996). Usu-
ally dominant is the modified two-stream (or Farley-Bune-
man) instability (MTSI). This causes echoes in the HF and
VHF ranges at angles nearly perpendicular to the geomag-
netic field. Coherent radars like the STARE and also Super-
DARN detect such echoes and measure geophysical parame-
ters such as the electric field. Understanding of the non-linear
plasma physics involved in the MTSI is not only essential for
the correct analysis of these radar data, the unstable E region
is also an important natural example of plasma turbulence.

The plasma in the E region is strongly influenced by col-
lisions between charged and neutral particles. This normally
enforces thermal equilibrium below about 110 km, i.e., tem-
peratures of neutrals, ions, and electrons,Tn, Ti , andTe, re-
spectively, are equal. Only at higher altitudes can selective
heat sources, like frictional heating of the ions or ionizing
solar radiation, raiseTi or Te aboveTn. Therefore, strong en-
hancements ofTe below 110 km, first reported by Schlegel
and St.-Maurice (1981) using the Chatanika radar, were un-
expected. Further observations were made with the EISCAT
radar (Igarashi and Schlegel, 1987; Williams et al., 1990;
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Jones et al., 1991). Davies and Robinson (1997) also showed
the electron heating in the E region on a statistical basis using
900 hours of EISCAT CP–1 and CP–2 data. Generally, it was
found thatTe starts to increase when the electric field strength
|E| exceeds the threshold for excitation of the MTSI,Eth. Te

increases approximately linearly with|E| − Eth.
St.-Maurice et al. (1981) first realized that the elec-

tron heating is due to electrostatic waves generated in the
MTSI. From in-situ observations with rockets, Primdahl and
Bahnsen (1985) argued that the heating can be explained by
assuming an anomalous collision frequencyν? for the elec-
trons drifting in the background electric field.ν? parameter-
izes all macroscopic effects due to waves. Also, Robinson
(1986) put forward a more self-consistent model where all
macroscopic effects can be parameterized by aν? represent-
ing collisions between electrons and “plasmons”. The model
is supported by mean-field turbulence theory (Sudan, 1983)
and was further extended (Robinson and Honary, 1990). Og-
awa et al. (1980) has shown that when the electric field is
strong, the effective collision frequency of electrons should
be enhanced by a factor of 6 to explain the observed as-
pect angle dependence of phase velocities of E region ir-
regularities. Because the wave fronts seen at VHF frequen-
cies are close to field-aligned, Farley (1985) has argued that
theν? applies only to the field-perpendicular direction. The
E region turbulent transport coefficient should be strongly
anisotropic.

St.-Maurice (1987) noted that extraordinary heating re-
sults from normal electron-neutral collisions when the elec-
trons are driven by the background electric fieldE0 as well
as by wave fieldsδE. For wave frequencies much less
than the electron gyrofrequency (as is the case for VHF
and HF waves), the electron motion would not become ther-
mal/random unless the electrons are scattered in collisions
with neutrals. This viewpoints contrasts to some extent with
a Kolmogoroff-type approach, where waves with random
phases (“plasmons”) thermalize electrons and cause the heat-
ing directly, (even if there are no electron-neutral collisions).

The in-situ observed VHF wave amplitudes and density
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fluctuations are often too weak to explain the heating rates
derived from radar observations if the electrons are driven
in the perpendicular direction only. St.-Maurice and Laher
(1985) postulated therefore the existence of a small wave
field component parallel to the magnetic field,δE‖. This
would greatly enhance the average Joule heating rate

We = 〈δj⊥ · δE⊥〉 +
〈
δj‖ · δE‖

〉
= σP

〈
δE2

⊥

〉
+ σ‖

〈
δE2

‖

〉
(1)

because the parallel conductivityσ‖ is much bigger than the
Pedersen conductivityσP , σ‖ � σP . The existence ofδE‖

was noted as an open question in the text book by Kelley
(1989).

Experimental studies of anisotropy have, so far, concen-
trated on the waves by using radar backscatter from the
ground. VHF radar echoes are observed at angles further
away from the perpendicular to the earth’s magnetic field
than expected from linear theory. Also, at higher frequen-
cies, 930 MHz, the backscattering is not only surprisingly
strong but occurs at aspect angles even further away from the
perpendicular (Moorcroft and Schlegel, 1988; Eglitis et al.,
1996). Obviously the E region plasma turbulence becomes
more isotropic at shorter wavelengths.

In this work we search for a directional dependence of
the electron temperature during heating events using tristatic
EISCAT UHF radar. If we find anisotropic temperatures, the
heating would have to be caused by perpendicular wave fields
directly because electron-neutral collisions heat isotropically
irrespective of the direction ofE0 and δE. On the other
hand, the finding of isotropic temperatures would be con-
sistent with St.-Maurice’s model as well as with Robinson’s
electron-plasmon scattering. However, for the latter view-
point, a finding of isotropic temperatures implies restrictions
which will be discussed later in this work. Thus our analysis
can potentially help to decide between two hitherto indistin-
guishable interpretations of experimental results.

In the next section, we present a comparison of electron
temperatures measured with different aspect angles to the
geomagnetic field,B. In Sect. 3 we interpret the results of
Sect. 2 and discuss the implications for the E region plasma
turbulence.

2 Observations

Figure 1 shows a summary of the data obtained by the EIS-
CAT CP–1–I experiment from 1200 to 1700 UT on June
12, 1990 ,when we found several distinctiveTe enhancement
events. The antenna of the transmitting and receiving site
in Tromsø, Norway, was directed alongB. The remote an-
tennas in Kiruna, Sweden and Sodankylä, Finland, measured
alternately a common volume at 278 km altitude for electric
field determination and six common volumes in the E region
that can be used to detect any plasma anisotropy. The dwell
times of the remote antennas are 50 to 60 s. For E region
measurements, the Tromsø site uses a five-pulse code with

a range resolution of approximately 3 km. The remote sites
receive a long pulse of 350µs. The height resolution of the
remote data is determined by the antenna beam width which
is 0.8◦. In the E region, this corresponds to approximately
2.9 km for the Kiruna antenna and 5.5 km for Sodankylä.
Thus the height resolutions of both Tromsø and remote data
are comparable.

During the period shown in Fig. 1, the electric fields mea-
sured in the F region are generally high, until 1555 UT. Strong
electron heating between 100 and 115 km, with amplifica-
tions at about 1240, 1450, and 1515 UT, are associated with
high |E|. In the most intense event,Te reaches about 1700 K
between 1454 and 1455 UT. Ions are heated up by frictional
(Joule) heating above 115 km. The electron temperatures in
the lower E region below about 115 km are generally en-
hanced over both the neutral and ion background tempera-
tures.

Using the E region measurements from the remote EIS-
CAT sites, we have checked the thermal isotropy of the elec-
trons and also the ions. Figures 2 and 3 show scatter plots
of temperatures obtained simultaneously from two different
sites using all the data from 0800 UT, June 12 to 1345 UT,
June 13, 1990. At 108 km, the aspect angle of the Sodankylä
data is 39◦ while that of Tromsø is 0◦. In Fig. 2 (left panel)
the electron temperatures from these two directions are com-
pared with each other. At the highestTe of 1700 K, observed
by Tromsø, no simultaneous observation by the remote sites
is available at this altitude; therefore the plottedTe reaches
only about 1100 K. In Fig. 2 (right panel) the ion temper-
atures from the two sites are compared. The comparisons
of the electron and the ion temperatures at 108 km, between
Tromsø and Kiruna where the aspect angle is 35◦, are shown
in Fig. 3 (left and right), respectively. Occasionally, some
preferentially transverse ion heating seems to occur even at
this low altitude but to a much lesser degree than the elec-
tron heating. The important point in this context is that the
plots indicate clearly the isotropy ofTe at all temperatures.
Although not shown here, comparisons at other altitudes are
similar.

3 Discussion

The E region plasma waves, which are assumed to be the
cause of electron heating, are highly anisotropic. From co-
herent radar observations it is known that at wavelengths
above about a meter the back-scattered wave amplitudes fall
off within aspect angles of about 2◦ away from the mag-
netic field. From this, one might expect anisotropic electron
temperatures. Nevertheless, our results show that theTe en-
hancement is clearly isotropic.

If electrostatic waves heat electrons directly, the wave-
lengths must be smaller than the electron gyroradiusrg
(∼1 cm). Otherwise the wave-particle interaction is ineffi-
cient in giving electrons enough energy to heat them up. For
long wave lengths (� rg) and low frequencies (� the elec-
tron gyrofrequency�ce ∼ 9 MHz) the electrons perform
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EISCAT CP1−I on 12/06/1990

Fig. 1. Overview of a data set with long periods of elevatedTe in the lower E region. The top panel shows|E| with a time resolution of 5
minutes. The approximate threshold of the MTSI is about 20 mVm−1. The middle and bottom panels show the electron and ion temperatures,
respectively.

alternating, deterministicE × B drifts. In-situ observations
show that the wave amplitudes at shorter wavelengths de-
crease substantially (Pfaff et al., 1984). Extrapolating this
trend to (unobserved) cm-wavelengths, we find that direct
heating by such waves is an unlikely explanation for our ob-
served isotropic enhancements ofTe.

If we also take into account electron-neutral collisions, the
strong but slow and anisotropic Farley-Buneman waves can
lead to isotropic electron heating. The electrons’ determin-
istic (E + δE) × B drift gets in each elastic collision with
a neutral completely and isotropically randomized. Due to
the huge mass difference between electrons and neutrals, an
electron loses practically no energy in elastic collisions but
the energy is converted from flow energy to heat. About ev-
ery 100th collision with a neutral is inelastic, exciting vibra-
tional and rotational modes of N2 and O2 molecules as well
as fine structure levels of O (Schunk and Nagy, 1978). In
an inelastic collision, the electron transfers typically a large
fraction of its energy to the neutrals. The efficiency of this
process ensures thatTe is hardly elevated above neutral tem-
perature in the lower E region even when there are DC elec-

tric fields of the order of 100 mV/m (which is typical for the
auroral zone). The amplitudes of Farley-Buneman wavesδE

do not become larger than the DC background field even in
the non-linear stage of the instability. Therefore, purely per-
pendicular waves cannot explain the large observed enhance-
ments ofTe. Consequently, St.-Maurice (1987) postulated a
field-parallel component ofδE, δE‖, which would heat elec-
trons very efficiently due to high parallel transportability as
discussed in the introduction. Our observation of isotropic
Te enhancements is in accordance with St.-Maurice’s model,
although we cannot add any quantitative estimates of the size
of δE‖.

4 Summary and Conclusion

We have shown that the electron temperatures observed in
the E region are clearly isotropic over aspect angles from
0◦ to about 40◦ even when they are strongly enhanced. If
the actual heating process is through electron-neutral col-
lisions which have no directional preferences, it is natural
to expect isotropicTe. The very high heating rates that we
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Fig. 2. Left panel: Scatter plot of the electron temperatures from different aspect angles observed with the Tromsø and Sodankylä EISCAT
sites. The errors in fitting to the IS spectra are also plotted. Right panel: The same as the left panel, but the ion temperatures are compared.(a) (b)
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Fig. 3. The same as Fig. 2, but Tromsø and Kiruna data are compared.

derive from the observedTe, using the standard model for
isotropic temperatures (Schunk and Nagy, 1978), suggests
that Farley-Buneman waves have an electric field compo-
nent both perpendicular and parallel toB as proposed by St.-
Maurice (1987). If, on the other hand,Te enhancement is due
to a direct scattering of electrons by wave fields not involving
electron-neutral collisions, our observation implies that these
waves should be isotropic.

We think that our result of isotropicTe is remarkable in
light of the known strong anisotropy of the Farley-Buneman

waves, the cause of heating. We feel that further clarifica-
tions of the underlying heating processes are needed in the
future.
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