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Abstract. Equator-S frequently encountered, i.e. on
30% of the orbits between 1 March and 17 April
1998, strong variations of the magnetic ®eld strength of
typically 5±15-min duration outside about 9RE during
the late-night/early-morning hours. Very high-plasma
beta values were found, varying between 1 and 10 or
more. Close conjunctions between Equator-S and Geo-
tail revealed the spatial structure of these ``plasma
blobs'' and their lifetime. They are typically 5±10� wide
in longitude and have an antisymmetric plasma or
magnetic pressure distribution with respect to the
equator, while being altogether low-latitude phenomena
��15��. They drift slowly sunward, exchange plasma
across the equator and have a lifetime of at least
15±30 min. While their spatial structure may be due to
some sort of mirror instability, little is known about the
origin of the high-beta plasma. It is speculated that the
morningside boundary layer somewhat further tailward
may be the source of this plasma. This would be
consistent with the preference of the plasma blobs to
occur during quiet conditions, although they are also
found during substorm periods. The relation to auroral
phenomena in the morningside oval is uncertain. The
energy deposition may be mostly too weak to generate a
visible signature. However, patchy aurora remains a
candidate for more disturbed periods.

Keywords. Magnetospheric physics (plasma convection;
plasma sheet; plasma waves and instabilities)

1 Introduction

Equator-S had a very short lifetime, and not all of the
instruments functioned as planned. The available data
set is thus incomplete and restricted to the period 16

December 1997±30 April 1998, and a local time interval
from 11 MLT to 02 MLT. In spite of these rather severe
limitations, the mission produced some novel data. This
is mainly due to the low inclination (3.9�) and eccentric
orbit (apogee 11:5RE geocentric, perigee 500 km alti-
tude). Not only did this orbit allow the study of the
prenoon magnetopause and low-latitude boundary
layer, but the spacecraft was also subsequently, i.e. after
about 1 March, carried into one of the least explored
regions of the outer magnetosphere, the low-latitude
plasma sheet between 9 and 11:5RE and 07 and 02 MLT.
Because of their higher inclination, most earlier magne-
tospheric satellites on eccentric orbits missed this region
or, when it was encountered, the investigators concen-
trated on the more spectacular magnetopause crossings.
Therefore, little was added to the pioneering work of
Heppner et al. (1967) based on the OGO-A ¯uxgate
magnetometer measurements.

OGO-A could explore the local time sector from
04:30 to 06:30 at geomagnetic latitudes between �15�
out to and beyond the magnetopause on a number of
inbound passes. The main ®ndings were: (a) a vanishing
gradient of the total magnetic ®eld between 11RE and
the magnetopause, (b) in a number of cases little
contrast between the behavior of magnetospheric and
magnetosheath ®elds, and (c) at times higher ®elds
outside rather than inside the magnetopause. Based on
these ®ndings, Heppner et al. (1967) concluded that the
low-latitude region between 11RE and magnetopause
was characterized by a high value of the plasma beta
�b � 2lop=B2 � 1�. Furthermore, on a number of out-
bound passes at latitudes >24� and inside the magne-
topause, they found intervals of up to 2-min duration
during which the magnetic ®eld changed greatly, and
suggested the existence of ``some degree of blobbiness''
of the plasma and ®eld structure, without being able to
characterize these features more accurately. Equator-S
data can now throw more light on this region.

It will be subsequently shown that in one third of all
orbits, between about 9.3 and 11:5RE and SM latitudes
below about 13�, extended periods are found duringCorrespondence to: G. Haerendel, e-mail: hae@mpe.mpg.dc
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which magnetic-®eld magnitude and direction change
dramatically for intervals of several up to 15 min. In a
subset of these events, we were able to determine the
plasma pressure and found high-beta values, sometimes
exceeding 10 in the ®eld depressions. Following the
language of Heppner et al. (1967) we name these
depressions ``plasma blobs''. Their longitudinal dimen-
sions are of order 1RE.

Complementary information on these blobs may be
derived from the conjugate morningside aurora. As will
be shown, the locations of their occurrence were
conjugate with the equatorward region of the morning-
side auroral oval between 03:30 and 08:00 MLT. The
most characteristic auroral phenomenon of this region is
the patchy aurora, typically appearing about 10±30 min
after substorm onset in the midnight section with typical
sizes of 100±200 km Akasofu et al. (1966), but also
existent during quieter conditions Oguti (1981). The
shapes of the patches are quite irregular, and they drift
slowly eastward with speeds of a few 100 m/s. Oguti
(1981) interprets the movements as manifestations of
real plasma drifts in the magnetosphere.

Our presentation of plasma blobs will ®rst deal with
individual observations and characterize their plasma
and ®eld structure. Then we will analyze their spatial
scales and motions, which was made possible through a
few conjunctions of Equator-S with Geotail. Next we
will discuss the occurrence of these events in space and
according to magnetic activity. Field-line tracing yields
the conjugate sites in the ionosphere and leads to a
discussion of the relation with the morningside aurora.
Finally, we will speculate on the origin of the plasma
blobs.

2 Instrumentation

The Equator-S magnetic ®eld instrument is fully de-
scribed in Fornacon et al. (1999). It consists of two units
with a pair of three-axes ¯uxgate magnetometers each.
The sensors of the primary and the redundant units are
mounted on two rigid booms, with the main sensor
located at the end of the 1.8-m boom and the other 50
cm further inboard. The sampling rate is 128 vectors/s in
normal mode, when only the outboard magnetometer is
used, and 64 vectors/s for dual mode operation. The
amplitude resolution is 16 bits, and the ranges are
selected automatically in steps of 4 between 256 and
64000 nT. The data used in the present study are mainly
128 Hz data, all sampled with a resolution of about
10 pT in the 256 nT mode.

The Ion Composition Instrument (ICI) measures the
3-dimensional distribution functions of the major ion
species in the magnetosphere and magnetosheath over
the energy per charge range 20±40000 eV/e Kistler et al.
(1998). It is a combination of a top-hat electrostatic
analyzer followed by post-acceleration of 15±18 kV, and
then a time-of-¯ight measurement, similar to the CIS1
instrument designed for CLUSTER (ReÁ me et al., 1997)
and the TEAMS instrument on FAST (MoÈ bius et al.,
1998). It can resolve the major ion species, H�, He��,

He�, O��, and O�. In the high-rate mode of the data
acquisition, full velocity distributions are obtained every
spin period (1.5 s), in low rate every 6 s. The onboard
moments are calculated every spin period.

3 Nature of the plasma blobs

A common observation of Equator-S in the morningside
plasma sheet outside about 9RE and at SM latitudes
below 13� is that of large semiperiodic ¯uctuations of
magnetic ®eld strength and orientation with durations
of several minutes. On about one third of all orbits
between 1 March and 17 April, i.e. between 07 MLT and
02 MLT such large-amplitude ¯uctuations were ob-
served. Figure 1 shows a striking example.

The plasma data obtained with the ICI Kistler et al.
(1998) show corresponding variations of the plasma
pressure, in antiphase with the magnetic pressure, albeit
with much smaller relative amplitude. The long time-
scales of the variations in the presence of magneto-
acoustic speeds of the order of 1000 km/s suggest
magnetostatic rather than dynamic equilibrium between
the high and low (magnetic) pressure regions. The
observed ¯ow velocities of a few tens of km/s con®rm
this suggestion. The widely di�erent relative amplitudes
of the magnetic and plasma pressure variations can only
be reconciled if the plasma beta is larger than unity. A
direct derivation of the plasma pressure from the ICI
using e�ciencies determined from ground calibrations
gives densities which are too low to produce the
expected pressure equilibrium. The reasons for these
discrepancies are still being resolved. To overcome this
impediment, the following procedure has been em-
ployed.

We assume approximately constant total pressure
over an extended time interval, typically 1 h, and try to
match the measured magnetic ®eld and plasma pressure
values with

Fig. 1. Large-amplitude ¯uctuations of magnetic ®eld strength and
orientation near the apogee of Equator-S during early morning hours
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for a number of individual pressure variations. This
means that we disregard the contribution of magnetic
shear stresses, which will be justi®ed in retrospect, when
we have analyzed the spatial structure of the blobs.

The calibration procedure can be brie¯y character-
ized as an attempt to ®t the magnetic �pB�, thermal �pth�
and total pressures �ptot� to the equations:

pB � apth � ptot : �2�
If our assumption of magnetostatic equilibrium with
negligible shear stresses is valid and if pth were measured
reliably, one should ®nd a � ÿ1. This is invariably not
the case, ÿa exceeds unity typically by factors of 2±5.
But extrapolation of a linear ®t of the scattered data to
pth � 0 yields ptot. We then correct the measured data of
pth by multiplying them with ÿa.

One can regard the temperature determination from
the energy distribution of the protons as much more
reliable than the density derivations. Therefore, the
correction �ÿa� should apply to the density values. In
the few cases of close conjunction with the Geotail
spacecraft this conclusion is supported by a comparison
with its density measurements.

Figure 2 shows plasma and magnetic ®eld measure-
ments and derived quantities from an outbound orbit of
Equator-S on 18 March, 1998. At about 9RE (14:37
UTC) a change in the character of the magnetic ®eld is
observed. It exhibits short-term (i.e. few minutes)
variations, a slight drop in magnitude and increasing
directional variations. This behavior is obviously con-
nected with an increase in plasma pressure followed by a
rather sudden jump shortly before 15:00 UTC. While the
spacecraft moves outward and B decreases, the plasma
beta grows well above unity. Outside about 10 RE, beta

undergoes strong variations, which become quite regular
between 18 and 19 UTC. It is this period that we used to
®x the correction factor ÿa (=4.1) by postulating
constant total pressure. Applying this factor throughout
the whole data period, we ®nd a remarkable constancy
of the pressure outside about 9RE.

Figures 3 and 4 present further examples of strong
variations of the magnetic and plasma pressures. Den-
sities and temperatures are in the same range as in
Fig. 2. However, not always can one ®t the data of a
long period with constant total pressure. Temporal
changes as seen in Fig. 3 after 13:33 UTC are not
uncommon. But nearly constant total pressure for 1 or
2 h is normally a non-con¯icting assumption.

All examples shown demonstrate that the strong
variations of magnetic pressure are embedded in a very
high-beta environment. Even in the maxima of B, beta
hardly ever falls below unity, whereas in the minima
beta reaches or even exceeds 10. This ®nding led to the
choice of the name plasma blobs. Obviously, a high-beta
plasma (on average b � 3) is injected into the morning-

Fig. 2. Plasma and magnetic-®eld measurements plus derived quan-
tities on an outbound orbit of Equator-S on 18 March 1998. Outside
about 10RE, large-amplitude variations of magnetic ®eld strength and
orientation are found in a high-beta environment

Fig. 3. Recalibration of measured plasma pressure so as to yield
approximately constant total pressure for 1 h (see text) and
corresponding plasma beta �2lop=B2� on 9 March 1998. After
13:34 UTC, there is a drop in total pressure
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side plasma sheet at low latitudes and arranges itself
spatially in a way that regions of very high b �� 10�
alternate with a region of b � 1. The easiest way to
establish such a con®guration is by redistribution of the
hot plasma along magnetic ®eld lines. We will return to
this point after having analyzed the spatial structure.

Similar high-beta plasma variations had already been
observed by Geotail in the early morning sector, a few
RE further outward than reported here and have been
interpreted as slow mode or mirror mode waves Nishida
et al. (1997).

4 Spatial structure

The magnetic structure of the plasma blobs can be
divided in two classes, regular and irregular. The data of
18 March shown in Fig. 2 are an example of the ®rst
class. Figure 5 presents an example of the irregular class.
The latter has not yet been subjected to the pressure
balance analysis described in the previous section,
however, rough inspection con®rms also here the high-
beta nature. The regular variations are the rarer class.
They were observed on about 40% of the periods with

strong magnetic variations, mostly for only part of these
periods.

Typically the drop in magnetic ®eld strength is
accompanied by a characteristic change in ®eld direction
in the following sense. With decreasing B also the polar
angle, H, decreases, i.e. the magnetic vector steepens
with respect to the (SM) equatorial plane. The azimuthal
angle, /, changes little, while B is decreasing, but then,
in the bottom of the magnetic depression, it changes
signi®cantly. Figure 6 shows one out of many examples
from the 9 March period (cf Fig. 1). Figure 7 summa-
rizes in a sketch the most commonly observed variations
of B, H, /, within the regular class. The polar angle, H,
drops typically by about 20� inside the ®eld depression
(plasma blob). The change of azimuth (depending on the
value of H) is mostly, but not always negative, i.e. the
®eld vector is tilted by typically 20� sunward.

The change in polar angle, as B is dropping and the
plasma pressure is increasing, must be related to an
inhomogeneous accumulation of the plasma. There are
two possibilities. In principle, dense plasma could be
supplied from lower altitudes and, while in¯ating the
®eld, steepen the magnetic vector. The other possibility
is that plasma ¯ows in from high altitudes, i.e. lower
latitudes or from the opposite hemisphere and assembles
non-symmetrically with respect to the equator. The
question can be answered by analyzing the parallel
component of the plasma ¯ow. For demonstration, we
choose data from Geotail for one of the conjunctions
with Equator-S. On 9 March the closest approach of
GTL and EQS occurred at 12:15 UTC. EQS was at
R � 11:4RE and 12:1� northern SM latitude, whereas
GTL was south of the equatorial plane, at a latitude of
ÿ5:8� and slightly further inward, i.e. at R = 10.97RE.
Figure 8 shows, for a 1 h period around the time of
conjunction the mostly ®eld-aligned z-component of the
plasma ¯ow and the magnitude of B as measured by
Geotail. (The actually measured vz has been shifted by
�20 km/s, so as to yield an almost vanishing mean
velocity. Such a shift of the zero-line is well within the

Fig. 4. Same as Fig. 2, but without total pressure, for 3 April and 9
April 1998

Fig. 5. Large-amplitude irregular variations of the magnetic ®eld (15
March 1998)
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errors of the velocity determination.) With a phase shift
of about 90� vz maximizes before the maximum of B.
This also holds for the times before and after the interval
shown. Because of the anticorrelation of p and B, this
means that the ¯ow is towards the equator �vz > 0�
when p decreases and away from the equator as p is
building up. The velocity amplitude ranges between
about 20 and 40 km/s. The transverse velocity compo-
nents are too small to be reliably interpreted.

These ®ndings imply that the mass reservoir must be
at lower latitudes or beyond, in the opposite hemisphere.
This is consistent with Heppner et al. (1967) who found
the high-beta region to lie below about 15� latitude. At
the position of the spacecraft, plasma is arriving from
the equator, the ®eld is in¯ated and the elevation angle
steepens at the low-latitude side of the blobs.

Figure 9 provides a plausible interpretation of plasma
movements, ®eld in¯ation and elevation increase. But it
goes a step further by implying a N-S antisymmetry. The
existence of such an antisymmetry is revealed by
simultaneous measurements north and south of the
magnetic equator along essentially the same ¯ux-tube,
which were possible during the conjunctions of EQS and
GTL on 9 March and 25 April. Figure 10 shows B for
both, EQS and GTL, of 9 March for 4 h around the
time of conjunction. Within �15 min of 12:15 UTC
(closest approach of EQS and GTL in longitude), the

strong variations of B at both spacecraft are clearly in
antiphase. Taking B as a proxi for p we ®nd a pressure
maximum at EQS when the magnetic pressure has a
maximum at GTL and vice versa. Figure 11 is an
attempt to visualize this antisymmetric ®eld-plasma
distribution.

The antisymmetry of B and p with respect to the
equator and the observed ¯ow directions suggest that
the blobs owe their existence to a rearrangement of the
high-beta plasma alternatingly northward and south-
ward of the central plasma sheet. Build-up of magnetic
pressures on one side seems to accelerate the plasma
towards the other side of the equator, where it piles up
under in¯ation of the magnetic ®eld.

What is then the reason for the observed quasi-
periods of B and p? Do they show growth and decay of
the blobs or rather a convected spatial structure? The
conjunctions of EQS and GTL provide the answer.
Looking again at Fig. 10, one notices that the variations
of B on both spacecraft change from being in antiphase
at the time of (longitudinal) conjunction to being in
phase at about 1 h before and after. At these times, EQS
and GTL were separated by about 4:5� in SM longitude.
At the equator this corresponds to a separation of 0.85
RE or �5500 km. Because of the N-S antisymmetry this
distance must indicate the half width of an individual
blob. The same evaluation for the 25 April conjunction

Fig. 6. An example of the detailed variation of magnitude (B), polar
angle (theta), and azimuth (phi) of the magnetic ®eld in one of the
®eld depressions (plasma blobs) observed on 9 March 1998. Theta
and phi are plotted versus B, decreasing phase indicated by thick line

Fig. 7. Summary sketch of typical variations of B, theta and phi
within a plasma blob

1596 G. Haerendel et al.: High-beta plasma blobs in the morningside plasma sheet



yields about 8000 km. If we take as typical width
�10 000 km and take into account that EQS or GTL
see about seven blobs per 1 h on 9 March, one derives

an average transport velocity of �20 km/s with respect
to the spacecraft (vGTL � 2:8 km/s). This is quite consis-
tent with the average vx-component (essentially perpen-
dicular to B) measured with GTL within the uncertainty
of about 20% with which such low velocities can be
measured. The positive value of �vx means sunward
transport, quite in agreement with the general direction
of plasma convection in the morning sector.

The consistency of the above determination of the
transport velocity from width and passage time with the
local ¯ow measurements testi®es that the blobs have a
lifetime substantially longer than the passage time past
the satellite. Therefore, if we want to assess the
implications of the observed ®eld-aligned ¯ow compo-
nents of 20±40 km/s, we must consider transport times
well beyond the passage time of 2±4 min for the rising or

Fig. 8. Phase relation between magnetic ®eld magnitude (dotted line)
and ®eld-parallel ¯ow component (full line) as observed by Geotail
during the conjunction with Equator-S on 9 March 1999. vz is
directed equatorward when B is rising, i.e. when the plasma pressure
south of the equator is decreasing and vice versa

Fig. 9. A view of the ®eld distortions in the meridional plane due to
the concentration of plasma and accompanying ®eld in¯ation at o�-
equatorial latitudes

Fig. 10. Phase relation between the magnetic ®eld magnitudes at EQS
(thin line) and GTL (thick line) and s/c positions in SM coordinates
near the conjunction on 9 March 1998

Fig. 11. Sketch of the antisymmetric packing of ®eld in¯ation and
compression caused by the high-beta plasma blobs. The longitudinal
separation at �11RE is of order 1±2RE
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falling part of a typical blob. We should expect that
build-up of a blob requires the displacement of the
plasma by a distance exceeding that of Equator-S from
the equator, since an asymmetric plasma pressure
distribution with respect to the equator has to be
established. As the typical steepening of the ®eld
elevation angle is found up to SM latitudes of 10� and
beyond, an average ®eld-parallel plasma displacement of
3RE should represent a lower limit. Dividing this length
by the above parallel velocity range yields build-up times
between 500 and 1000 s, which would correspond to
lifetimes at least twice as long, i.e. 17±35 min, and
substantially longer than the passage time. An upper
limit of the lifetimes cannot be easily established. It
would need tracing of individual blobs.

In summary, we have identi®ed the high-beta plasma
blobs in the morningside plasma sheet as being created
by rearranging dense plasma in a semi-periodic and anti-
symmetric way (with respect to the equator). Lifetimes
are long, substantially longer than the magnetic varia-
tions of order 5±10 min seen by the satellites. To call
these variations Pc5 is thus not appropriate. They are
certainly no ®eld-line resonances or compressional
oscillations. The identi®cation as mirror mode waves
inside the magnetosphere Nishida et al. (1997) appears
to be more appropriate. The slow sunward drift suggests
that the ultimate origin of the high-beta plasma is the
tail plasma sheet in the late night sector.

With the thus achieved insights into the spatial
structure of the plasma blobs, we can now justify the
neglect of the magnetic shear stresses in Eqs. (1) and (2).
Inspection of Figs. 1±6 and 10 shows that the magnetic
®eld strength mostly drops rapidly, typically within
1 min, and varies more slowly around Bmin. With a
convection speed of about 20 km/s this amounts to a
gradient length of the plasma pressure of the order of
1000 km. Even where the ®eld is locally in¯ated, its
curvature radius is still of the order of several RE. The
pressure balance is therefore essentially maintained by
the magnetic normal pressure.

5 Occurrence

Large-amplitude magnetic ®eld variations are a com-
mon phenomenon in the morningside plasma sheet.
EQS encountered such variations on 30% of the orbits
between 1 March and 17 April 1998. Figure 12 shows
their occurrence in a SM latitude versus geocentric
distance diagram. They are clearly a feature of the outer
magnetosphere, outside �9RE and restricted to low
latitudes ��15��. The latter statement is based on the
observations of OGO-A Heppner et al. (1967), since
the EQS orbit is con®ned to low latitudes. Also based on
the OGO-A and Geotail Nishida et al. (1997) ®ndings
we conclude that these ¯uctuations exist outside the
EQS apogee of 11:5RE, out to the magnetopause/
boundary layer. At the present state of data reduction,
we can, however, not be certain that all of the large-
amplitude magnetic ¯uctuations, regular and irregular,
occur in a very high-beta plasma, but it is a natural

expectation. This is why we will also use the designation
plasma blobs for the periods of large-amplitude mag-
netic variations, without having the actual evidence
from the plasma measurements in each individual case.

A very revealing aspect is the geomagnetic activity at
the times of blob encounter. Of 48 data periods of
varying length, 13 took place during Kp = 1 condi-
tions, 22 during Kp = 2, 12 during Kp = 3, and 1
during Kp = 4. The blob occurrence clearly appears to
favor geomagnetic quiet conditions, as the distribution
over Kp = 1 to 4 was 6:7:3:1. Of the class of regular
variations, 7 in total, 5 occurred during Kp = 1 and 2
during Kp = 2.

It is rather surprising that the intrusion of very high-
beta plasma and its quasi-periodic spatial organization
in the outer morningside magnetosphere should be most
e�cient during quiet magnetic conditions. That this
plasma was a residue of an earlier injection during
disturbed, e.g. substorm, conditions, is rather unlikely in
view of the observed sunward ¯ow with a speed of
typically 20 km/s. A convection through the midnight-
to-dawn sector at 11RE would take only 1.5 h. By
contrast some of the most pronounced blob periods, e.g.
1 April 1998, were encountered after 4±8 h of extremely
quiet magnetic conditions. Therefore, one is led to
conclude that it is the preservation of the high-beta
nature and of the blobby structure that determines the
occurrence rate. During disturbed periods, the magne-
tization of b� 1 plasma may just proceed more rapidly.

6 Relation to the aurora

The role of the plasma blobs as a potential source region
of the aurora is an interesting question. The high-beta
plasma inside themagnetosphere does not only in¯ate the
magnetic ®eld, but it appears to be convected sunward
against the friction exerted by the ionosphere on the
corresponding ¯ux-tubes. So, ®eld-aligned currents are

Fig. 12. Segments of the EQS orbit in SM coordinates during which
plasma blobs were observed
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generated, and auroral phenomena may be associated.
Figure 13 exhibits the traces of the orbital segments with
blob occurrence (see Fig. 12) in the conjugate northern
ionosphere, superposed on the location of the statistical
auroral oval of Feldstein (1963). The tracing was
performed by using the 1989 Tsyganenko model (Tsyga-
nenko, 1989) for the actual values of Kp. Since the ®eld
in¯ation due to presence of the high-beta plasma at low
latitudes is not incorporated in the Tsyganenko model, a
correction of the conjugate latitude by about 1� or so,may
be appropriate, but was not applied. Figure 13 thus seems
to suggest a concentrationof the blobs to the equatorward
side of the auroral oval, but one has to remember the
11:5RE apogee of EQSwhich did not allow to explore ®eld
lines with conjugate magnetic latitudes beyond �71�. If,
as suspected above and con®rmed by the Geotail
measurements of Nishida et al. (1997), the high-beta
plasma with blobby structure exists out to the magneto-
pause, they should have conjugate traces all over the
morningside oval.

Projection of longitudinal extent and the transport
velocity of the plasma blobs to the conjugate ionosphere
yields E±W scales of �200 km and drift speeds along the
oval of �400 m/s. These numbers as well as the
occurrence in the morning sector are reminiscent of
the patchy aurora found in the auroral oval near dawn
Akasofu et al. (1966). However, there are crucial di�er-
ences. The patchy aurora typically appears some
15±30 min after the onset of a substorm in the midnight
sector, it develops out of a homogeneous arc at the

equatorward edge of the oval and is hardly ever
observed poleward of dip latitudes of 70�. The plasma
blobs, on the other hand, do not seem to be restricted to
the inner edge of the plasma sheet, more importantly,
they favor quiet conditions. They can even exist during
long periods of Kp = 1, whereas in the morningside
oval ``quiet and homogeneous arcs are common auroral
forms'' Akasofu et al. (1966).

On the other hand, the occurrence of aurora in the
dawn sector is not restricted to substorm recovery. Oguti
(1981) describes the existence of patchy aurora poleward
of 70� at dawn during 0 � Kp � 1. Davis (1963) found a
high occurrence rate (�67%) at Byrd, Antarctica (ÿ70.6
geomagn. lat.) until about 05 local time, which drops
drastically during subsequent hours. The aurora exhibits
rayed arcs on the southern (i.e. poleward) side, di�use
homogeneous arcs further north, and equatorward
thereof di�use surfaces. Eastward motions prevail.
Often these motions are seen to cease while the aurora
is still observable for several tens of minutes. Sometimes
a westward reversal occurs during late-night hours.

While a detailed auroral counterpart of the plasma
blobs can not be identi®ed at this stage of our
investigation, we can conclude that there are observable
auroral signatures in the conjugate ionosphere, but they
seem to fade rapidly at local times beyond about
05 U.T. This implies that the energy content of the
blobs is decreasing during these hours until they do no
longer give rise to auroral particle acceleration. A quick
estimate con®rms this suspicion.

A projected drift speed of 400 m/s corresponds to an
essentially southward pointing electric ®eld of 20 mV/m
in the auroral ionosphere. Even at quiet times at sunrise,
there is a high Pedersen conductivity (up to 8 mho)
created by di�use aurora, but it falls o� rapidly with
increasing latitude Newell et al. (1996). Rp � 6 mho may
be a good assumption, not more than probably an upper
limit. So, underneath the blobs an integrated Pedersen
current, Jp, of 0.12 A/m may ¯ow. If the N±S scale, `N ,
of the blobs is not dissimilar to the E±W scale, this
current should connect to a ®eld-aligned current of
Jp=�0:5 � `n�, which is at best 1.2 lA=m2, if `N is only
�200 km. Such ®eld-aligned current strengths are only
marginally su�cient to set up an auroral acceleration
region. Without post-acceleration, the associated ¯ux of
plasma sheet electrons, whose temperature should be of
order Tp=7, i.e. �400±500 eV, would be close to 0.6 ergs/
cm2 s, too low for a visual signature. However, plasma
blobs of higher energy content may be the magneto-
spheric origin of patchy aurora during the recovery
phase of a substorm, or of the rayed aurora typical for
dawn during quieter hours [Hallinan, 1999; private
communication].

7 Summary and discussion

We have presented data from the Equator-S mission,
supplemented by measurements of the Geotail satellite,
showing the existence of very high-beta plasma blobs as
a common phenomenon in the morningside plasma

Fig. 13. Traces of the orbital segments shown in Fig. 13 in the
northern polar ionosphere superposed on the statistical auroral oval
of Feldstein (1963)
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sheet. The plasma beta ranges from about 1 to 10 and
more. The plasma and magnetic pressure distributions
are antisymmetric with respect to the magnetic equato-
rial plane, their E±W extent is 1±2RE and their lifetime at
least 1000±2000 s. They drift slowly east- and sunward
at speeds of typically 20 km/s. They have a preference
for magnetically quiet periods, in particular the more
regular variations, but can also exist during substorm
conditions. Their overall occurrence rate is near 30%.
One additional and perhaps surprising feature is that in
spite of the large variations in magnetic ®eld strength
(and beta) the orientation of the ®eld is still reminiscent
of a dipole geometry and, far from being chaotic,
exhibits very systematic deviations from the model ®elds
which, of course, do not incorporate the existence of
such blobs.

There are essentially two questions raised by the
discovery of these blobs. What is their nature and what
their origin? Taking the high beta for a moment for
granted, we should ®rst concentrate on their lifetime and
the N±S antisymmetry. The lifetime of 15±30 min
minimum precludes the interpretation as Pc5-type
®eld-line resonances Jacobs (1970) coupled to or excited
by compressional waves, since the travel times of AlfveÂ n
waves between the two conjugate hemispheres, which
constitute an upper limit to the periods, are at best
5 min. For instance, the AlfveÂ n speed in the high
pressure, low ®eld part of a blob �Bmin � 12 nT,
nmax ' 2 cmÿ3� is about 200 km/s. A ®eld-aligned extent
of the pressure maximum of 6RE is certainly an upper
limit. An AlfveÂ n wave would need about 3 min to
traverse this part of the ®eld line, while the higher
latitudes need no more than additional 2 min. The
considerably longer lifetime found testi®es that we are
dealing here with long-lived plasma intrusions reminis-
cent of the mirror mode waves found, also by Equator-
S, in the magnetosheath adjacent to the magnetopause
(e.g. Tsurutani et al., 1982; Lucek et al., 1999).

In earlier studies of Pc5 waves encountered at or near
geostationary orbit, e.g. Brown et al. (1968); Lanzerotti
et al. (1969); Takahashi et al. (1985), and further out-
ward Hedgecock (1976); Yumoto et al. (1983); Greens-
tadt et al. (1986); Takahashi et al. (1987), the authors
attributed the oscillations either to ®eld line resonances
(AlfveÂ n waves) or compressional magnetosonic waves
excited either by the Kelvin-Helmholtz instability or by
the drift mirror instability. Having excluded ®eld line
resonances on the grounds of the long lifetimes derived
in this study, there remains the possibility of non-
oscillatory mirror waves Price et al. (1986) excited by an
internal plasma instability, like the drift mirror insta-
bility of Hasegawa (1969) or ballooning-mirror insta-
bility Cheng and Qian (1994). Because of lack of full
information on all dominant plasma constituents and
their anisotropies, we can not check whether the
conditions for this instability are ful®lled. However,
the structuring in longitude and the antisymmetric
distribution in latitude may well be the result of the
high-beta plasma ®nding a lower energy state. Indeed,
the antisymmetry implies that several degrees o� the
magnetic equator the ¯ux-tubes are ordered in a way

that ``belly'' and ``neck'' are alternating, similar to the
®ndings from simulations by Price et al. (1986; their
Fig. 8a). This is intuitively the most ``economic'' pack-
ing of in¯atable ¯ux-tubes in a dipole geometry. Also
Southwood (1976) found for such a geometry instability
only for antisymmetric perturbations, albeit for the
AlfveÂ n mode and b� 1, so not directly applicable here.
Cheng and Qian (1994) showed that when energetic-
trapped particle-kinetic e�ects are taken into account,
symmetric ballooning-mirror modes are stabilized and
antisymmetric modes become most unstable. The mode
structure is similar to those observed by Takahashi et al.
(1987) and reported here.

While the spatial structuring may well be a conse-
quence of some sort of mirror instability, this does not
explain the origin of the very high beta plasma. Very
high beta values, up to 70, have been found in the
midnight sector at the end of the growth phase of a
substorm and one may wonder what happens to this
plasma after substorm onset. Haerendel (1999a) pro-
posed on the basis of a ®rst inspection of the here
reported measurements that the morningside blobs may
be residues of this pre-substorm high-beta plasma near
Earth. This may, indeed, be the case for periods
following substorm onsets in the midnight sector, but
it is hard to believe that this is an explanation for the
blobs found during quiet periods with no substorm
preceding for many hours.

Hedgecock (1976) made the interesting proposal that
the origin may be in the low-latitude boundary layer
which was just discovered in those days. If we also take
into consideration the occasional encounters of a reverse
magnetic pro®le at the morningside magnetopause, as
reported by Heppner et al. (1967) and also seen by
Equator-S Haerendel (1999b), we have a high-beta
plasma regime inside the magnetosphere on the morning
side. (The evening magnetopause seems to be less prone
to develop such an equilibrium with the magnetosheath
plasma.) So, we may speculate that a high-beta low-
latitude boundary layer, somewhat further tailward and
pervaded by closed, but highly stretched ®eld lines is the
source of the plasma blobs. The ¯ux-tubes after having
separated from this layer may move sunward under ®eld
contraction, thereby compressing the plasmas and
increasing beta Erickson and Wolf (1980), and accumu-
lating in the late night/early morning sector of the outer
magnetosphere ��9RE�. While proceeding their sunward
convection, internal energy has to be expended in order
to overcome the friction with the ionosphere. So, beta is
slowly decreasing in this late phase of convection.
During late morning hours we should thus ®nd a less
pronounced blob structure. And, indeed, this appears to
be the case and will be quanti®ed in a subsequent study.

An auroral signature of the plasma blobs has not
been clearly established. At more disturbed times, in
particular during substorm recovery, they may be the
cause of patchy aurora. At quieter times they may
manifest themselves by isolated rayed structures or have
no signature altogether. The decreasing auroral occur-
rence rate near dawn may just indicate the decay of the
blobs (magnetization) at these hours.

1600 G. Haerendel et al.: High-beta plasma blobs in the morningside plasma sheet



The high-beta plasma blobs in the morningside mag-
netosphere are a new plasma regime in near-Earth space.
At this time, we can only speculate about their origin, the
reasons for their spatial structure, the conditions for their
appearance and, last not least, their overall con®nement,
which typically requires the equivalent pressure of a
50-nT magnetic ®eld, i.e. 1.0 nPa. Such pressures are not
commonly found in the magnetosheath on the morning
¯ank. Further and deeper studies are needed in order to
shed light on all these topics.
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