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Abstract. The variations of the ®rst mode of Schumann
resonance are analyzed using data from Kola peninsula
stations during the solar proton event of 6 November
1997. On this day the intensive ¯ux of energetic protons
on GOES-8 and the 10% increase of the count rate of
the neutron monitor in Apatity between 1220 and 2000
UT were preceded by a solar X-ray burst at 1155 UT.
This burst was accompanied by a simultaneous increase
of the Schumann frequency by 3.5%, and the relativistic
proton ¯ux increase was accompanied by 1% frequency
decrease. These e�ects are explained by changes of the
height and dielectric permeability of the Earth-iono-
sphere cavity.
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1 Introduction

The cavity between the Earth and ionosphere is a
resonator for electromagnetic waves. The Schumann
resonance frequencies cover several Hz. The simplest
vacuum model con®ned with two concentric perfectly
conducting spheres yields the frequency (Schumann,
1952)
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where n is an integer number, c is the light velocity, a is
the radius of the inner sphere, h = a ) b is the distance
from the inner sphere to the outer one, and b is the

radius of the outer sphere. Expression (1) can be
rewritten as follows (taking into consideration h� a)
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The simplest model predicts the ®rst order frequency
f1 � 10.6 Hz. Observations yield on average
f1 � 7.8 Hz (Balser and Wagner, 1962). The frequency
became smaller because the ionosphere is not a perfect
conductor. Introducing the impedance Z of the upper
edge (r = b), the following equation results for the
resonance frequencies (providing jZj � 1, h� a)
(Bliokh et al., 1980)
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If the dielectric permeability at r > b is equal to
e = const, the impedance is:

Z � 1��
e
p : �4�

For an isotropic ionosphere, the dielectric permeability
has the following form

e � 1ÿ x2
0

x�xÿ im� �5�

where x is the wave frequency, x = (4pe2N/m)1/2 is the
electron plasma frequency, e and m are the electron
charge and mass respectively, N is the electron number
density, m is the frequency of collision of electrons with
neutrals and ions. One can choose such values of e and h
that several resonance harmonics calculated with the
help of Eq. (3) coincide su�ciently well with the
observed ones. A more complicated distribution of e
with the height allows us to explain the observed width
of the resonance band related to the resonator quality.
The ionospheric D region (heights from 60 to 90 km)
appears to determine the resonance spectrum.

In the real ionosphere, e varies both with the height
and in horizontal directions. In addition, the dielectric
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permeability of the ionospheric plasma in the geomag-
netic ®eld at heights above ~75 km is a tensor. Hence Z
in Eq. (3) presents some integral parameters.

The waves in the Earth-ionosphere cavity are gener-
ated by lightning discharges. At the same time, the
Schumann resonance intensity is controlled not only by
thunderstorms but also by the solar and geomagnetic
activity. Sentman and Fraser (1991) showed the depen-
dence of the observed resonance power on the e�ective
height of the ionospheric D region at the observation
point. The dependence of the ®rst and second order
resonance modes on solar activity was discovered by
Fullekrug and Fraser-Smith (1996). They found 27-day
amplitude variations coinciding in phase with the solar
spot number. From the measurements made in Hunga-
ry, Marcz et al. (1997) found similarities between the
resonance amplitude and the atmospheric electric ®eld
despite the local character of the latter. The similarities
are observed at di�erent temporal scales, from six
months to several hours.

Diurnal variations of the resonance frequencies
caused presumably by the eccentricity of the geomag-
netic dipole were found by Balser and Wagner (1962) at
the very start of the investigations. Sao et al. (1973)
reveal that the ®rst mode frequency depends not only on
the zenith angle of the Sun along the signal propagation
path from a lightning ¯ash to the observation point, but
also on the planetary magnetic disturbance. Choosing
Ap as a disturbance index, Sao et al. (1973) found that
the second order mode frequency decrease at 0.2 Hz by
Ap increases from 0 to 50. They found also a noticeable
positive correlation of the ®rst order mode frequency
with 1±8 AÊ solar X-ray intensity.

According to Eqs. (3) and (4), the Schumann
resonance frequency depends on the dielectric perme-
ability of the ionospheric D region. The powerful agent
disturbing this region is solar protons penetrating into
the atmosphere during solar proton events (SPEs). In
this study we examine variations in the ®rst order
frequency of the Schumann resonance during such
events.

2 Data

The ®rst resonance frequency behavior has been studied
for SPE of November 6, 1997. The event was preceded
by another SPE on November 4 related to the class 2
optical ¯are at a region with heliocoordinates S14 W33.
GOES spacecrafts registered an increase of X-ray ¯ux at
0552 UT that maximized at 0556 UT and ended after
7 h. Solar protons with energy more than 10 MeV
started at 0830 UT, reached a maximum at 1120 UT and
ended at 1123 UT on November 5.

On November 6 the ¯are under consideration 2B/
X9.4 occurred in the region S18 W63 on the Sun. The
intensities of the solar X-rays and of the energetic
proton ¯ux obtained from GOES-8 satellite are shown
in Fig. 2a. The 1±8 AÊ X-ray burst with impulsive pro®le
started at 1149 UT and reached its maximum of
7.5 á 10)4 W/m2 at 1155 UT. The proton ¯ux with

energy of more than 100 MeV started to increase at
1245 UT, maximized at 1640 UT and remained high till
24 h later.

The ®rst Schumann resonance behavior was studied
with the help of data from four ¯uxmeter channels in
Lovozero (68.0°N, 35.1°E). The magnetic induction
coils consist of 250 000 turns wound over ferrite rods.
All the channels have a bandwidth between 1±10 Hz.
Two channels with numbers 10 and 11 registered D- and
H-components correspondingly and two others, 14 and
15, registered the circularly polarized components, left
and right correspondingly. The calibration monochro-
matic signal advanced at a frequency of 5 Hz. Signals of
all four channels were registered in digital form with a
50 ms time step.

To obtain the time variations of the ®rst Schumann
resonance frequency, the spectra of two-minute inter-
vals, containing 2400 points, were calculated with the
FFT method for all four channels. The typical example
is shown in Fig. 1a as a sweeping dotted curve. The
thick line is its approximation by a Gaussian function
inside the interval of 5.8±9.6 Hz with four unknown
parameters: the frequency of maximum, halfwidth,
amplitude and the constant level. The frequency of the
maximum is about 7.4 Hz. This too low value and
asymmetrical slope structure of the peak are caused by

Fig. 1. a The spectrum of 2-min ¯uxmeter record (dotted line), its
approximation by Gaussian function (thick line) and the amplitude
versus frequency characteristic of ¯uxmeter (thin line). b The spectrum
after frequency correction and its new approximation
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the roll-o� of low pass ®lter. The thin line in Fig. 1 is the
amplitude versus frequency characteristic of the chan-
nel. Its peak is located at 6.9 Hz. To correct the signal,
spectra were divided this characteristic, and the Gauss-
ian approximation was applied to improved spectra, see
the Fig. 1b).

3 Experimental results

Figure 2b shows count rates of the neutron monitor in
Apatity, and the ®rst SR frequency in the tenth channel,
D-component, displayed both by points for every 2 min
interval, and by a running-average smoothed curve. The
length of the smoothing is 11 points. The peak of the
neutron monitor increase is marked by the dotted
vertical lines. Its greatest height exceeds the pre-event
background by 10%.

The daily mean value of the frequency in Fig. 2 is
about 7.9 Hz. Except for stochastic scattering, there are
long-term variations of the frequency. Augmentation of
the neutron monitor count rate is accompanied by the
resonance frequency decrease. The greatest decrease is
between 0.05±0.1 Hz, i.e., about 1% of the resonance
frequency. It can also be seen that the X-ray ¯are at
1145 UT was accompanied by an increase of the
resonance frequency by 0.3 Hz or by 3.5%.

A statistical scatter of the frequency values is
comparable with magnitude of these mentioned e�ects.
One of the causes of the great scatter is a too rough
digitizing frequency Dt = 0.05 s, so the Nyquist fre-
quency fN = 1/2Dt = 10 Hz is only a little greater than

the resonance frequency 7.8 Hz. Reliability of the noted
frequency deviations may be con®rmed by comparison
of the frequency variations shown in Fig. 2 with others.

Figure 3 shows all four channels of the ¯uxmeters.
The frequency decrease after 1230 UT can be seen on all
of them. The short-lived frequency increase, simulta-
neous with the solar X-ray burst near 1150 UT, is
present also on all channels.

Reliability of the ®rst SR frequency decrease after
onset of the energetic proton precipitation is con®rmed
by comparison of the frequency variations in the tenth
channel for November 5, 6, and 7 as shown in Fig. 4.
For every day the frequency value of 7.8 Hz is shown by
the dashed lines. On all three adjacent days the
frequency increase takes place almost at 5 h UT and
after midday the frequency increase to 8.0 Hz is
observed only on November 5 and 7. On the SPE day
it is absent, the frequency remaining near 7.8 Hz.

No response of the SR amplitude to the SPE is
found. Figure 5 shows the amplitude variations for 5, 6,
and 7 November in arbitrary units, determined from
Gaussian approximation. The vertical dashed lines pick
out the active interval 1230±1700 UT, as in Fig. 2b. The
diurnal variations of the SR amplitude for all three days
are similar and rather strong (with the magnitude nearly
30%). However, the active interval for 6 November
shows no essential distinctions from the same intervals
for adjacent days.

We have estimated the stochastic scatter of the
frequency values in Fig. 2 as the square mean deviation
of data in the interval 0500±1100 UT after excluding the
linear trend. It is r = 0.11 Hz and plotted as a bar at
0600 UT. Let us use this value to estimate the
signi®cance of the maximum at 1145. The mean value

Fig. 2. a Proton E>100 Mev ¯ux and solar X-ray 1±8 AÊ intensity
from GOES-8 data. b The count rate of Apatitian monitor (thin line)
on 6 November, 1997 and the variation of frequency of the ®rst
Schumann resonance (thick line and points) are shown

Fig. 3. Variations of the ®rst Schumann resonance frequency on 6
November, 1997 at all four ¯uxmeter channels
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of the frequency for the X-ray burst interval 1146±1214
UT is 8.18 Hz, the number of points in this interval is
n = 15. Thus the di�erence between the daily mean
value of 7.90 Hz and the mean value of the peak 8.18 Hz
exceeds the standard error E = r=

���
n
p � 0:028 by ex-

actly 10 times.

4 Discussion

Expression (3) allows us to obtain the resonance
frequency variation. Assuming jej � 1; m � const,
x� m, neglecting the second term under the radical,
and taking into consideration Eqs. (4) and (5), we obtain
the variation of the real part of the frequency:
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According to Eq. (3), the ®rst order frequency Re
f1 = 7.8 Hz takes place under the following condition
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Substitution of Eq. (7) into Eq. (6) yields the variation
of the ®rst order frequency
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Expression (8) shows that the frequency can change due
to both electron density variations in the ionospheric D
region and variation of the altitude of the D region's
lower edge. X-rays and solar protons a�ect the iono-
sphere in di�erent ways. Growth of the X-ray ¯ux
enhances the electron density without a signi®cant
change of the ionosphere altitude. The 3.5% increase
in the Schumann resonance frequency observed at 1155
UT on 6 November 1977 could be caused by the density
variation dN/N � 19% averaged over all the Earth.
Since X-rays a�ect the dayside ionosphere only, the
observed 3.5% frequency increase requires ~38%
increase in the dayside electron density. This estimate
is within the range of possible density variations during
X-ray events. According to calculations by Curto et al.
(1994), a solar X-ray burst of class X9.4 raises the
electron density at the altitude of 100 km, i.e., near the
top edge of the cavity, twice or three times.

Solar protons penetrating deep into the atmosphere
ionize regions lower the normal D region that corre-
sponds to a decrease of the ionosphere altitude.
According to Eq. (8), the 1% decrease in the resonance
frequency observed from 1220 to 2000 UT could be
caused by the global decrease of the ionospheric
altitude dh/h � )2.8%. Assuming the protons precipi-
tate at latitudes above 60°, means that the precipitation
area is about 1/8 of the whole ionospheric surface and
the required altitude variation in the high latitudes is
dh/h� )2.8% ´ 8 � )22%. If the normal altitude of
the Schumann cavity is h = 75 km we obtain h � 58 km
in high latitudes during the SPE on 6 November, 1977.
These estimates are very rough, of course, but

Fig. 4. Variations of the ®rst Schumann resonance frequency on 5, 6,
and 7 November, 1997 in the tenth channel

Fig. 5. Variations of the ®rst Schumann resonance amplitude on 5, 6,
and 7 November, 1997 in the tenth channel

1296 V. C. Roldugin et al.: Changes of the ®rst Schumann resonance frequency



nevertheless they are consistent with commonly
observed ionospheric e�ects of solar protons (e.g.,
Mitra, 1974).

5 Conclusion

The decrease of the frequency of the ®rst Schumann
resonance is found for the relativistic proton precipita-
tion in the SPE of 6 November, 1997. Its value is about
1%. The frequency increase of about 3.5% coincides
with the strong solar X-ray burst lasting 10 min. Both
e�ects are explained by changes of the dielectric
permeability in the Schumann cavity.

Topical Editor D. AlcaydeÂ thanks a referee for his
help in evaluating these pages.
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