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Abstract. Space observations in the solar wind and
simulations of high Mach number bow-shocks have
detected particle populations with two coexisting non-
gyrotropic ion species. We investigate the in¯uence of
these two sources of free energy on the stability of
parallel (with respect to the ambient magnetic ®eld) and
perpendicular propagation. For parallel modes, we
derive their dispersion equation in a magnetoplasma
with protons and alpha particles that may exhibit
stationary nongyrotropy (SNG) and discuss the charac-
teristics of its solutions. Kinetic simulations study the
behaviour of perpendicular electrostatic (Bernstein-like)
waves in a plasma whose ion populations (positrons and
®ctitious singly-charged particles with twice the electron
mass, for the sake of simulation feasability) can be time-
varying nongyrotropic (TNG). The results show that the
coexistence of two gyrophase bunched species does not
signi®cantly enhance the parallel SNG instability al-
ready found for media with only one nongyrotropic
species, whereas it strongly intensi®es the growth of
Bernstein-like modes in TNG plasmas.

Key words. Magnetospheric physics (plasma waves and
instabilities) á Space plasma physics (numerical
simulation studies; waves and instabilities)

1 Introduction

The frequent observation of nongyrotropic particle
species in space plasmas (i.e. populations whose unper-
turbed distributions exhibit some degree of gyrophase
organization) has motivated several studies on their
stability (references for these works on observation and
stability of nongyrotropy can be found in the papers

cited). In homogeneous media, two models of nongy-
rotropy have been explored: closed phase spaces with
unperturbed rotating time-varying distributions (TNG)
and open phase spaces (with sources and sinks) with
stationary equilibrium distributions (SNG). Both envi-
ronments can bring about for parallel propagation (with
respect to the ambient magnetic ®eld) linear coupling
among the eigenwaves of the associated gyrotropic
system (longitudinal electrostatic, tranverse electromag-
netic left- and right-hand circularly polarized modes),
enhance previously existing instabilities, and destabilize
otherwise thoroughly passive magnetoplasmas. For
perpendicular (oblique, in general) propagation the
nongyrotropic studies are scarcer, but they also demon-
strate the capability of gyrophase bunching to feed wave
growth in both TNG and SNG environments. All these
results have been derived for media with only one
nongyrotropic species and, in the case of the SNG
studies, assuming that the sources and sinks of that
species were not in¯uenced by the wave perturbations
(sources and sinks ``external'' to the system).

Here, motivated by (rarer and more recent) observa-
tions of di�erent coexisting nongyrotropic populations
[Astudillo et al. (1996) report alpha particles and
protons with gyrophase organization in the solar wind;
Manfred Scholer (private communication, 1998) has
detected coexisting populations of gyrophase bunched
protons and alpha particles in simulations of high Mach
number bow-shocks], we (i) extend previous investiga-
tions of the SNG stability of parallel propagation to this
situation, cast the results in a form that can be directly
generalized to an arbitrary number of nongyrotropic
species, adopt a very simple model to illustrate the
(strongly stabilizing) e�ects of ``internal'' sinks on the
complex dispersion of SNG systems, and (ii) use kinetic
simulations to assess the role of two coexisting TNG ion
species (positrons and singly positively charged particles
with twice the electron mass) on the perpendicular
propagation of electrostatic Bernstein-like waves.

The investigation shows that whereas the conse-
quences of the coexistence of two nongyrotropic pop-
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ulations can be qualitatively anticipated for parallel
SNG stability from the situations encountered with only
one gyrophase bunched species, the combined e�ects of
two nongyrotropic ion populations (with harmonically
related cyclotron frequencies) provide a very strong
enhancement in the perpendicular electrostatic wave
growth.

2 Parallel propagation

For the study of the parallel stability, we consider a
neutral, parallel-current free, homogeneous magneto-
plasma with an ambient magnetic ®eld Bo � Box̂ and
®ve particle populations whose parameters are identi®ed
by the subscripts e (electrons), p (gyrotropic protons), a
(gyrotropic alpha particles), b (nongyrotropic protons),
and d (nongyrotropic alpha particles). Denoting the
unperturbed number densities and parallel drift veloc-
ities by Nj and VDj ( j � e; p; a; b; d), respectively, one
should thus satisfy Ne � Np � Nb � 2�Na � Nd� and
NeVDe � NpVDp � NbVDb � 2�NaVDa � NdVDd�. The angu-
lar cyclotron and plasma frequencies of species j are
de®ned by

Xj � qjBo

mj
and x2

pj �
Njq2

j

�omj

where qe � ÿe and the remaining notation is standard.
With the attention focussed in parallel propagation,

the wavevector satis®es k � kx̂ and only the spatial
coordinate x enters the analysis. We adopt cylindrical
coordinates in velocity space (vx; v?;u) where the
gyrophase is de®ned by u � arctan�vz=vy�.

2.1 Gyrotropic medium

The gyrotropic species (l � e; p; a) have equilibrium
distributions Fol � Fol�vx; v?� that can be particularized
to (possibly drifting and anisotropic) Maxwellians

Fol � Ml�vtl; VDl;Al�

� exp ÿv2?=�Alv2tl�
� �
Al�

���
p
p

vtl�3
exp ÿ�vx ÿ VDl�2=v2tl
h i

with temperature anisotropies Al � T?l=Txl and parallel
thermal velocities vtl � �2Txl=mj�1=2.

2.2 SNG ions

In homogeneous media with closed phase spaces
(particle distribution functions obey homogeneous
Vlasov equations), the unperturbed (zero wave ®elds)
distributions of the nongyrotropic species must be time-
varying (TNG media). We shall be concerned here with
open phase spaces (source, S, and sink, L, terms on the
rhs of the Vlasov equation) where the unperturbed
nongyrotropic distribution can be homogeneous and
stationary (SNG environments) as shown, for example,
in Motschmann et al. (1997). Furthermore, we shall

assume that the sources and sinks of the nongyrotropic
populations are not a�ected by the small amplitude
wave perturbations so that their linearization,
� � � � �o � � �1, yields S � So and L � Lo
�S1 � L1 � 0�; they are ``external'' to the system. In
Appendix B we shall analyze and comment upon the
e�ects associated with simple BGK-like (proportional to
the nongyrotropic distribution functions) ``internal'' loss
terms (L1 6� 0).

Following the approach adopted in Brinca and
Romeiras (1998) for ``external'' SNG environments,
we assume the stationary unperturbed distributions of
the nongyrotropic ions (s � b; d) take the separable
form

Fos � Gos�vx; v?�Us�u� ;
with

Us�u� �
X1

n�ÿ1
/sneÿinu; /sn �

1

2p

Z
2p

Us�u�einu du ;

Us � 0; /sn � /�s�ÿn�;
Z
2p

Us�u� du � 1 � 2p/so

and, when their dependence on �vx; v?� is assumed
Maxwellian,

Gos�vx; v?� � 2pMs�vts; VDs;As�

2.3 Wave and dispersion equations

The original approach adopted in the study of parallel
wave dispersion in nongyrotropic magnetoplasmas was
established by Sudan (1965) for homogeneous time-
varying unperturbed nongyrotropic (TNG) populations.
The behaviour of the system is governed by the Maxwell
and Vlasov equations: their linearization and comp-
atibilization yields a matrix wave equation whose non-
trivial solutions require satisfaction of the dispersion
equation.

More recently, several space observations suggested
that there exist instances where the SNG model is more
adequate. The ensuing analyses of the stability of
stationary nongyrotropy (Cao et al., 1995; Motschmann
et al., 1997; Brinca and Romeiras, 1998; Cao et al.,
1998; Motschmann and Glaûmeier, 1998) were perform-
ed for a single SNG species. Here, with the motivation
described in the introduction, we study the dispersion
characteristics of a SNG magnetoplasma with two
(protons and alpha particles) nongyrotropic popula-
tions. The derivation of the relevant wave and disper-
sion equations for this case is an extension and
adaptation of the procedure used for the single SNG
population. As in Brinca and Romeiras (1998), we
assume that the source and sink terms in the Vlasov
equation do not depend on the wave perturbations
under study (the SNG populations are ``externally''
driven). The structure of the matrix wave equation is
independent of the number of SNG species,
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m�� m�x m�ÿ
mx� mxx mxÿ
mÿ� mÿx mÿÿ

0@ 1A �E�
�Ex
�Eÿ

0@ 1A � 0 ;

but the matrix elements de®ned in Appendix A contain
the contributions of all (gyrotropic and nongyrotropic
populations); �Eg stands for the complex amplitudes of
the wave electric ®eld components with

� �� � �� �y � i� �z�=2 :

Nontrivial ®eld solutions imply satisfaction of the
dispersion equation

det�mgm� � D�x � xr � ixi; k� � 0 :

The qualitative properties of the SNG dispersion
encountered for a single nongyrotropic species are
recovered here. In particular, recalling that mgg � 0
yields the dispersion equations of the gyrotropic parallel
eigenmodes (g � �, left-hand electromagnetic, g � x,
electrostatic, g � ÿ, right-hand electromagnetic) and
that the o�-diagonal terms originate in the SNG
populations, we notice that the introduction of nongy-
rotropy creates coupling among the parallel eigenwaves:
these interactions are mediated by the nongyrotropic
particles. The consequences of the coupling depend on
the parameters of the medium, with the unperturbed
nongyrotropic distributions in¯uencing the linear wave
dispersion through the values of the ®rst coe�cients
of their Fourier expansion /sn �jnj � 2; s � b; d�.
Coupling of the electrostatic eigenmode to the electro-
magnetic eigenwaves requires the existence of a ®nite
unperturbed perpendicular current (/s��1� 6� 0;
s � b and; or s � d) whereas /s��2� 6� 0 brings about
interaction between the transverse electromagnetic
modes.

Specialization of the unperturbed (gyrotropic and
nongyrotropic) particle distributions to (possibly drift-
ing and anisotropic) Maxwellians allows for the calcu-
lation of the matrix elements mgm, yielding

m�� � k2c2 ÿ x2 ÿ
X

j�e;p;a;b;d

x2
pj

� x
kvtj

1ÿ kVDj

x

� �
Z�nj�� ÿ

1

2
�Aj ÿ 1�Z 0�nj��

� �

m�x � p3=2

2

X
s�b;d

�����
As

p x
kvts

x2
ps/s��1�Z

0�ns��

m�ÿ � p
X
s�b;d

Asx
2
ps/s��2�Z

0�ns��

mx� � ÿp3=2
X
s�b;d

�����
As

p x2
ps

xkvts
/s�ÿ1�Z

0�nsx�

mxx � 1ÿ
X

j�e;p;a;b;d

xpj

kvtj

� �2

Z 0�njx�

mxÿ � ÿp3=2
X
s�b;d

�����
As

p x2
ps

xkvts
/s��1�Z

0�nsx�

mÿ� � p
X
s�b;d

Asx
2
ps/s�ÿ2�Z

0�nsÿ�

mÿx � p3=2

2

X
s�b;d

�����
As

p x
kvts

x2
ps/s�ÿ1�Z

0�nsÿ�

mÿÿ � k2c2 ÿ x2 ÿ
X

j�e;p;a;b;d

x2
pj

� x
kvtj

1ÿ kVDj

x

� �
Z�njÿ� ÿ

1

2
�Aj ÿ 1�Z 0�njÿ�

� �
where

nj� �
xÿ kVDj � Xj

kvtj
njx �

xÿ kVDj

kvtj

and Z�n� and Z 0�n� represent the plasma dispersion
function and its derivative.

2.4 Complex dispersion

Gyrotropic behaviour. The reference stable gyrotropic
magnetoplasma used in the study of the wave dispersion
in SNG media with coexisting nongyrotropic species has
non-drifting isotropic Maxwellian populations of elec-
trons, protons, and alpha particles with Bo � 5nT ,
Ne � 2Np � 4Na � 15:5 cmÿ3, Ae � Ap � Aa � 1, VDe �
VDp � VDa � 0, Te � 74 eV, and Tp � Ta � 5 eV, yielding
be � 19:24, bp � 0:65, ba � 0:325, and an AlfveÂ n
speed vA � Bo�lo

P
Nsms�ÿ1=2 � 22:6 km sÿ1. Its low-

frequency complex dispersion is shown in Fig. 1 for
the eigenmodes of parallel propagation. The longitudi-
nal electrostatic and transverse right-hand polarized
electromagnetic modes exhibit the expected stable
dispersion whereas the real dispersion of the left-hand
wave deviates from the qualitative behaviour found in
cold plasmas. Indeed, in cold magnetoplasmas with two
species of positive ions, as is the case under consider-
ation (protons and alpha particles), the real low-
frequency dispersion xr�k� of the parallel left-hand
modes has two branches: the lower frequency one starts
at the origin (xr � k � 0) and goes into a resonance at
xr � Xa for large wavenumbers while the higher fre-
quency branch evolves from a cuto� frequency xcf > Xa
to a resonance at Xp (for example, Mann et al. (1997)).
The deviations from this cold dispersion of the left-hand
mode in Fig. 1 are due to (®nite) temperature e�ects
encountered in the upper branch (no resonance occurs
and the curve xr�k�, started at xr � xcf , crosses
xr � Xp as k increases) and in the lower branch (the
resonance frequency Xa is not approached and, if the
increase in k were pursued farther, one would actually
observe a gradual decrease of xr); notice, however, that
these deviations in the left-hand branches coexist with
(very) large damping rates.

Nongyrotropic stability. To assess the destabilizing
in¯uence of the coexisting nongyrotropic populations
of protons and alpha particles, we analyze extreme
situations with respect to their density and gyrophase
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distribution. We assume that nongyrotropy was intro-
duced in all the ions (Np � Na � 0, 2Nb � 4Nd � Ne) of
the (previously gyrotropic and stable) reference magne-
toplasma and consider two possible types of 2p-periodic
gyrophase organization: either

Us�u� � 0; ÿp � u > p

with the gyrophases of the ions sharing a common value
(monochromatic gyrophases), or

Us�u� � 1
2 d�u� � d�uÿ p�� �; ÿp � u > p

with the gyrophases evenly distributed between two
values di�ering by p (dichromatic gyrophases). [As
already pointed out in previous work (Brinca and
Romeiras 1998), consideration of more realistic distri-
butions should not modify the qualitative results
obtained here.]

In the monochromatic case there occurs coupling
among the (left- and right-hand circularly polarized)
transverse electromagnetic eigenmodes and the longitu-
dinal electrostatic mode. The complex dispersion for the

resulting growing waves is displayed in Fig. 2: two
hybrid (because of the interaction among the eigen-
waves) modes have become unstable as a result of the
introduction of these gyrophase bunchings in the ions of
the previously thoroughly stable magnetoplasma. One
of the modes is unstable within a wavenumber band
bounded by 0:22 < kvA=Xp < 0:43, reaching a maximum
growth of xi=Xp � 0:015 at kvA=Xp � 0:29; the other
growing mode is weakly unstable at small wavenumbers
(maximum growth of xi=Xp � 0:0048 at
kvA=Xp � 0:044) and is also unstable in the band
1:38 < kvA=Xp < 2:68 with a maximum of
xi=Xp � 0:225 at kvA=Xp � 2:32. As already stressed,
these instabilities arise from the coupling, mediated by
the nongyrotropic particles, of the eigenmodes of
gyrotropic parallel propagation; for example, it becomes
clear from comparison of Figs. 1 and 2 that the
instability with the largest growth rate arises from the
interaction (made possible by the nongyrotropic species,
more speci®cally, by the existence of a nonzero ®rst
harmonic component in the gyrophase distributions of
these species) between the gyrotropic modes labeled in

Fig. 1. Real and imaginary low-frequency dispersion of the parallel
characteristic modes for the reference gyrotropic magnetoplasma:
electrostatic (X ), electromagnetic right-hand (R) and electromagnetic
left-hand (L1 and L2). Frequency and wavenumber are normalized to
Xp and Xp=vA, respectively

Fig. 2. Real and imaginary parallel dispersion of the reference
magnetoplasma (unstable modes) when the unperturbed gyrophases
of the protons and alpha particles are monochromatic. Normaliza-
tions as in Fig. 1.
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Fig. 1 by X (longitudinal electrostatic) and R (trans-
verse electromagnetic right-hand circularly polarized).
In order to identify the contributions of the two
nongyrotropic species to the mode exhibiting two
instabilities (solid line in Fig. 2), we analysed the
complex dispersion of similar media where the mono-
chromatic nongyrotropy occurred only in one species
(that is, we either gyrotropized the alpha particles or the
protons); as shown in Fig. 3, we found that both
isolated nongyrotric species can feed two instabilities,
albeit the nongyrotropic protons are the major contrib-
utors to the large wavenumber instability (large solid
line bump in the lower panel of Fig. 2), and the low-k
growth stimulated by the nongyrotropic alphas occurs
at somewhat higher wavenumbers when all the protons
are gyrotropic.

The dichromatic gyrophase distributions yield the
dispersion shown in Fig. 4. Now the electrostatic
eigenwave does not interact with the electromagnetic
eigenmodes; its unmodi®ed dispersion is given in Fig. 1.

The coupling between the left-hand and right-hand
eigenmodes brought about by the introduction of
gyrophase bunching also destabilizes the Maxwellian
medium: one of the modes grows from kvA=Xp � 0:17 to
0.88 with a maximum of xi=Xp � 0:0074 at
kvA=Xp � 0:49. The other mode is stable but displays
zero real frequency for large wavenumbers
(kvA=Xp > 0:4); an increase (by a factor of 2, for
example) of the densities of all the particle populations
would bring about a purely growing nonoscillatory
mode, as already found for one dichromatic species
(Brinca and Romeiras, 1998).

The analysis presented in Appendix B suggests that
the parallel wave growth found above for ``external''
SNG systems is strongly squelched when BGK-like
``internal'' sink terms are taken into consideration:
studies on the stability of SNG environments require
careful modeling of the (necessary) sources and sinks.

3 Perpendicular propagation

Oblique electromagnetic propagation in SNG magneto-
plasmas with one phase bunched population was

Fig. 3. Real and imaginary parallel dispersion of the reference
magnetoplasma (unstable modes) for three situations where the
gyrophase bunchings are monochromatic: (solid line) nongyrotropic
protons and alpha particles, as in Fig. 2; (long dashed line) gyrotropic
protons and nongyrotropic alpha particles, (short dashed line)
gyrotropic alpha particles and nongyrotropic protons. Normaliza-
tions as in Fig. 1

Fig. 4. Real and imaginary dispersion of the reference magnetoplas-
ma when the unperturbed gyrophases of the protons and alpha
particles are dichromatic. Normalizations as in Fig. 1.
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studied, for the cold plasma approximation, by Cao
et al. (1998) and Motschmann and Glassmeier (1998);
perpendicular electrostatic stability in the same envi-
ronment with extreme gyrophase organizations (but
without the restriction to cold plasmas) was studied by
Romeiras and Brinca (1999). Investigations of perpen-
dicular electrostatic propagation in TNG plasmas
started with Eldridge (1970) for very weak nongyrotro-
pies. All these approaches demonstrated that compre-
hensive analytical consideration of nongyrotropic e�ects
on oblique (perpendicular, in particular) propagation is
only feasible when adopting (sometimes drastic) simpli-
®cations. Recourse to numerical simulations of these
environments is thus an appealing alternative. However,
this tool has not yet devised a means of appropriately
generating a SNG magnetoplasma: recycling techniques
generate excessive noise that masks e�ects under
observation. To date, simulation results of perpendicu-
lar propagation in nongyrotropic media are only
available for TNG plasmas: they started with the work
of Brinca et al. (1998) that demonstrated the growth of
perpendicular electrostatic and extraordinary modes in
(otherwise passive) magnetoplasmas with TNG gyro-
phase bunched electrons. Here, using the same KEM-
PO1 code, we shall extend the simulation model of this
study to contemplate electrostatic perpendicular prop-
agation in TNG media with two coexisting nongyrotro-
pic ion populations.

3.1 Model

The envisaged neutral magnetoplasma has an ambient
magnetic ®eld aligned with the y axis (u � arctan vz=vx)
and three isotropic, maxwellian particle populations:
electrons, positrons (mp � me), and singly positively
charged ®ctitious ions with mf � 2me. The electrons are
always gyrotropic while each ion population
(Np � Nf � Ne=2) can assume dichromatic gyrophase
bunchings; their cyclotron frequencies satisfy
ÿXe � Xp � 2Xf . (This unrealistic choice of ion species
has to do with the penalization su�ered by the kinetic
simulations when trying to achieve appropriate tempo-
ral resolution in media with particles of very di�erent
masses but it does not hinder the illustration of the
e�ects under analysis; hybrid codes should be able to
handle realistic ion masses and qualitatively verify the
observed phenomenology.) Now the ambient magnetic
®eld is parallel to the y axis, and the wavevector and
(electric) wave ®eld of the studied modes are aligned
with the x direction, with the relevant parameters
adopted in the simulation runs listed in Table 1.

The results shown below arise from four basic
simulation runs. The reference state is obtained with
the three particle populations taken as gyrotropic; the
system is necessarily stable because the nondrifting
velocity distributions are isotropic maxwellians (run G).
Run F takes a dichromatic gyrophase distribution for
the ®ctitious ions (only the orientations of their
perpendicular velocities are organized; in particular,
their kinetic energies are unmodi®ed) and maintains

gyrotropy for the remaining particle populations.
Dichromatic gyrophases in the positrons and gyrotropy
in the other species leads to run P and, ®nally, run PF
introduces dichromatic gyrophases in the two ion
populations keeping the electrons gyrotropic.

Normalizations in time and velocity are made with
respect to 1=Xp and vtp (positron inverse cyclotron
frequency and thermal speed), so that distance (X ),
angular frequency (x), and wavenumber (K) are nor-
malized to vtp=Xp;Xp and Xp=vtp, respectively; other
plotted quantities below (electric ®eld and electric
energy density) have arbitrary units.

3.2 Simulation results

The temporal evolution of the electric ®eld wavenumber
spectra is shown in Fig. 5 for the four basic runs (from
top to bottom: G, F, P, PF) at discrete times. The mild
amplitude growth observed in runs F and P contrasts
with the robust increase stimulated in run PF which also
displays the narrower spectrum.

Figure 6 depicts the distribution of the perpendicular
velocities of the nongyrotropic populations at the
beginning and end of runs F, P, and PF. It is clear that
the gyrophase di�usion observed in run PF is much
more intense than the di�usion that could have been
anticipated from the superposition of the di�usions
obtained in runs F and P.

The real dispersion xr�k� of the wave activity
stimulated in the four basic runs and the corresponding
temporal evolution of the wave electric energy densities
are provided in Fig. 7. It is evident that (i) among the
unstable nongyrotropic runs (F, P, and PF) growth is
much more intense when the two gyrophase bunched ion
populations coexist (run PF) and (ii) the PF dispersion
could have not been inferred from the ``superposition''
of the dispersions obtained for one nongyrotropic ion
species medium (runs F and P).

In retrospect, this observed synergic enhancement of
wave growth due to the coexistence of two dichromatic
(in general, nongyrotropic) ion populations whose

Table 1. Simulation parameters

Parameter Value

Electron cyclotron frequency )1
Positron cyclotron frequency 1
Fictitious ion cyclotron frequency 0.5
Electron plasma frequency 2.8
Positron plasma frequency 2.0
Fictitious ion plasma frequency 1.4
Electron (k and ?) thermal speed 1
Positron (k and ?) thermal speed 1
Fictitious ion (k and ?) thermal speed 1
Grid spacing 0.25
Time step 0.02
System length 64
Number of super electrons 262144
Number of super positrons 262144
Number of super ®ctitious ions 262144
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cyclotron frequencies are harmonic (2:1 ratio in this
case) could probably have been anticipated. An electro-
static wave along the x axis in order to grow from the
free energy of a single dichromatic population must
organize itself in x and k so that at certain time intervals
can (on average) decelerate the gyrophase bunched
particles; adding to this environment another (in this
case) dichromatic species with a harmonic (for example,
2:1) cyclotron frequency, it seems reasonable that the
new particles can contribute to the growth of some of
the previously excited modes. Indeed, the Brillouin
diagrams on the left panel of Fig. 7 suggest that the

dichromatic positrons were able to enhance the growth
of some of the modes that had been excited by the
dichromatic ®ctitious ions. An imperfect analogy with
the underlying phenomenology is provided by the
lighting e�ect obtained with two stroboscopic lamps of
frequencies f and 2f .

4 Discussion

This theoretical investigation on the stability of two
coexisting nongyrotropic species shows that their e�ects

Fig. 5. Wavenumber spectra of the electric ®eld at t � 5:1 (left panel), t � 20 (middle panel), and t � 41 (right panel). Normalizations and runs as
de®ned in the text
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on parallel propagation in SNG magnetoplasma can be
qualitatively anticipated from the characteristics of
media with (the same two) single gyrophase bunched
populations: roughly, the two SNG species feed their
own instabilities and their coexistence does not bring
about new signi®cant interactions. In contrast, the
kinetic simulations carried out for perpendicular elec-
trostatic propagation in TNG magnetoplasmas suggest
the occurrence of very sizable synergic enhancements of
wave growth and particle di�usion, in association with
modi®cations of the complex wave dispersion, when the
two nongyrotropic populations with harmonic cyclotron
frequencies are made to coexist. These dissimilar e�ects
for parallel and oblique (perpendicular, in particular)
wave growth, bearing in mind that the free energy is
provided by the gyrophase bunched particles, are
compatible with the well-known characteristics of
wave-particle interactions: parallel waves sense only
the fundamental cyclotron resonances (and the Landau
resonance for the longitudinal electric ®eld) whereas
oblique modes can resonate with (any order) cyclotron
harmonics.

The extreme models adopted in the analysis (gyro-
phase organization, density of the nongyrotropic species
and, in the perpendicular stability studies, the masses of
the ions) are compatible with the objectives of this
investigation. Here we are not concerned with speci®c
plasma environments or the interpretation of wave

activity observations in space. Rather, we illustrate basic
physical e�ects originated in populations exhibiting
gyrophase organization that, bearing in mind the
prevalence of nongyrotropy in space plasmas and their
proclivity to feed wave growth, might bene®t the
understanding of future ®eld observations.

Appendix A

The matrix elements mgm of the SNG magnetoplasma
under discussion with ``external'' source and sinks are
given by

mÿ� � k2c2 ÿ x2 ÿ px

�
( X

l�e;p;a

x2
pl

Z1
ÿ1

dvx

xÿ kvx ÿ Xl

�
Z1
0

dv?v2? 1ÿ kvx

x

� �
@Fol

@v?
� kv?

x
@Fol

@vx

� �

�
X
s�b;d

x2
ps

Z1
ÿ1

dvx

xÿ kvx ÿ Xs

Z1
0

dv?v?2

� 1ÿ kvx

x

� �
@Gos

@v?
� kv?

x
@Gos

@vx

� �
/os

)

Fig. 6. Distributions of the perpendicular velocities of the nongyrotropic populations at the beginning (t � 0: upper panel) and end (t � 41: lower
panel) of the simulations (V-PERP/XY=VX). From left to right: runs F, P, and PF. Velocity normalization de®ned in the text
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Fig. 7. Simulation results for the four
basic runs: real dispersion diagram (left
panel) and temporal evolution of the wave
electric ®eld energy density (right panel).
From top to bottom: runs G, F, P, and
PF; energy density with arbitrary units
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Appendix B

The unperturbed distribution functions of the nongy-
rotropic species �s � b; d� satisfy the Vlasov equation,
possibly with source (S) and sink (L) terms on the
rhs,

@

@t
� v � @

@r
ÿ Xs

@

@u

� �
Fso � Ss ÿ Ls :

In closed phase spaces (Ss � Ls � 0), it is clear that
homogeneous unperturbed distributions must be time-
varying (TNG). Consideration of open phase spaces
allows for the existence of homogeneous and stationary
(SNG) solutions that depend on the choice of the source
and sink terms, as exempli®ed for instance in Motschm-
ann et al. (1997). The nature of these terms strongly
in¯uences the ensuing analysis of the dispersion and
stability of the nongyrotropic ambient.

If it is acceptable to assume that the sources (e.g.
models of cometary newborn ions) and sinks (e.g. pre-
existing turbulence that brings about di�usion in phase
space) are ``external'' to the system under analysis, i.e.
they are not a�ected by the small amplitude wave
perturbations considered in the linearization of the
system (Ss1 � Ls1 � 0), then they determine the unper-
turbed nongyrotropic distributions, Fso, but do not
intervene on the linear dispersion and stability of the
medium: we followed this approach above. To date, all
the available studies of SNG behavior have, explicitly or
implicitly, adopted the hypothesis of ``external'' sources
and sinks.

Consideration of the dispersion and stability e�ects
of ``internal'' terms requires their speci®cation and can
strongly modify the results obtained with the ``external''
model. To illustrate this point, we choose simple loss
terms of the BGK-type invoked by Cao et al. (1995) and
Motschmann et al. (1997), Ls � Fs=ss but, in contrast to
these authors who assumed implicitly to have Ls1 � 0,
we admit ``internal'' losses so that Ls1 � Fs1=ss.

The ``external'' source terms, as adopted by the
previous authors, are such that

Us�u� � eu=Ds

Ds�1ÿ eÿ2p=Ds�

in the interval (ÿ2p < u � 0) and 2p-periodic else-
where, with Ds � Xsss. The relevant Fourier coe�cients
become

/s��1� � /�s�ÿ1� �
1ÿ iDs

2p�1� D2
s �

;

/s��2� � /�s�ÿ2� �
1ÿ i2Ds

2p�1� 4D2
s �

:

and the matrix elements mgm for this new nongyrotropic
environment with Maxwellian velocity distributions in
v? and vx are given by
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� x
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x
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�
ÿ
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� x
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2
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�
;

where

~ns� �
~xs ÿ kVDs � Xs

kvts
; ~nsx �

~xs ÿ kVDs

kvts
;

and ~xs � x� i=ss.
Going back to the SNG medium underlying the

results for parallel propagation shown in Fig. 2, but
now assuming the nongyrotropic proton and alpha
particle populations to have gyrophase distributions
Us�u� associated with ``internal'' loss terms as above,
and using sb � sd in the solution of the new modi®ed
dispersion equation, we realize that the most unstable
choice (sbXp � sdXp � 2:3) is only barely able to bring
about wave growth in one hybrid mode (positive growth

rate in the band 2:76 < kvA=Xp < 2:87, with a maximum
of xi=Xp � 0:0019).

The adopted ``internal'' loss term thus strongly
squelches the instability of the system: while large ss
generates distributions approaching gyrotropy and
hence with Fourier coe�cients /sn of small magnitude,
small ss do bring about robust gyrophase bunching but
introduce (the equivalent of) large damping rates in the
contributions of the nongyrotropic species (arising from
the perturbed Vlasov equation) to the wave dispersion.
We stress, however, that this ``internal'' loss model is
rather crude and inconsistent. Indeed, the decrease in
the number of nongyrotropic particles of species s
(brought about by gyrophase mixing) should coexist
with a corresponding increase in the number of gyro-
tropic particles of the same species (meaning that a
source term should be added to the Vlasov equation of
this gyrotropic population).

These results draw attention to the importance of
adequatelymodeling the source and sink terms associated
with the SNG species: further research on the genesis of
gyrophase bunching in open phase spaces is warranted.
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