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Abstract. Observations have shown that, prior to sub-
storm explosions, thin current sheets are formed in the
plasma sheet of the Earth’s magnetotail. This provokes
the question, to what extent current-sheet thinning and
substorm onsets are physically, maybe even causally,
related. To answer this question, one has to understand
the plasma stability of thin current sheets. Kinetic effects
must be taken into account since particle scales are
reached in the course of tail current-sheet thinning.
We present the results of theoretical investigations of the
stability of thin current sheets and about the most
unstable mode of their decay. Our conclusions are based
upon a non-local linear dispersion analysis of a cross-
magnetic field instability of Harris-type current sheets.
We found that a sausage-mode bulk current instability
starts after a sheet has thinned down to the ion inertial
length. We also present the results of three-dimensional
electromagnetic PIC-code simulations carried out for
mass ratios up to M;/m, = 64. They verify the linearly
predicted properties of the sausage mode decay of thin
current sheets in the parameter range of interest.

Key words. Magnetospheric physics (plasma waves and
instabilities; storms and substorms) - Space plasma
physics (magnetic reconnection)

1 Introduction

Magnetospheric substorms correspond to a configura-
tional instability of the magnetotail (e.g. Baker et al.,
1998) which is closely related with reconnection (Russell
and McPherron, 1973; Hones, 1979; Baker et al., 1996;
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Vasyliunas, 1975; Axford, 1984). The question is, what
triggers reconnection in the collisionless plasma of the
Earth magnetotail and whether it is the cause or the
consequence of substorm onsets. In the past, a sponta-
neous tearing mode instability of the tail current sheet
was considered to be a cause of substorms and
reconnection (Coppi et al., 1996). However, the colli-
sionless tearing mode alone, even ion tearing (Schindler,
1974) or the electron-chaos driven instability (Bilichner
and Zelenyi, 1987) is stable in two-dimensional tail-like
configurations (Pellat et al., 1991; Pritchett, 1994;
Pritchett and Biichner, 1995). The restrictions do not
apply, if one turns to the more realistic consideration of
all three spatial dimensions (Biichner, 1995). In addi-
tion, it is known from observations that thin current
sheets are formed in the near-Earth magnetotail just
prior to substorm onsets (Kaufmann 1987; Sergeev et al.,
1990; Mitchell, 1990; Pulkkinen et al., 1992; Schindler
and Birn, 1993; Sanny et al., 1994). In the past the
evolution of thinning current sheets has been described
in the MHD approach (see Wiegelmann and Schindler,
1995). The question has remained open, at which
threshold thin current sheets become unstable and what
is the mode of their decay? Since the observed sheet
thicknesses prior to substorm onset reach the charac-
teristic scales of the particle, at least of the ion motion, a
kinetic approach is necessary to describe the sheet
stability and its transition to instability. Both, from the
current stability and three-dimensionality of reconnec-
tion points of view the current direction should be a
special focus of future investigations.

In the past mainly local approaches to current
stability were used. Motivated by the search for possible
mechanisms of “anomalous resistivity”’, current insta-
bilities were thought to reduce the free energy of the
current flow. This could be, for example, the ion-
acoustic instability (Coroniti and Eviatar, 1977). Un-
fortunately, such electrostatic waves are damped away
in the magnetotail plasma where 7; > T,. Also, they
would be pretty much localized near the center of the
sheet. Their relevance for reconnection was, therefore,
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disregarded, as well as the concept of a resulting
anomalous resistivity (e.g., Coroniti, 1985). Alternative-
ly, gradient driven instabilities were considered (e.g.,
Huba et al., 1977). These would be due to the strong
density gradient at the edge of the current sheet which
provides another possible source of free energy in
current sheets. The resulting lower hybrid drift instabil-
ity is, however, damped away in the high-f, weak
magnetic field region in the center of the sheet, the
critical diffusion region of reconnection (Huba ez al.,
1980). Further, electromagnetic cross-field instabilities
were looked for (Kuznetsova and Nikutowski, 1994; Lui
et al., 1991). While all these investigations were based on
local instability analyses, plasma simulations automat-
ically take into account also non-local effects of the
current sheet decay. In their simulations Winske (1981a,
b), nevertheless, saw just the lower-hybrid drift insta-
bility at the edges of the sheet. Brackbill et al. (1984)
simulated the sheet evolution over a somewhat longer
time. They observed that after the lower-hybrid drift
wave, an unstable driftkink mode evolves. They inter-
preted it as a non-linear stage of the lower-hybrid drift
instability. More advanced multi-dimensional particle
code simulations found later that in thin current sheets
unstable bulk eigenmodes of the system can also evolve
on their own. This way both an asymetric-kink (Zhu and
Winglee, 1996; Ozaki et al., 1996; Pritchett et al., 1996;
Lapenta and Brackbill, 1997) and a symmetric-sausage
mode (Biichner and Kuska, 1996, 1997) were found. It
became obvious that whole, thin-current sheets decay in
an essentially non-local bulk mode, detailed properties
of which remained, however, unclear.

Non-local analytical investigation of the linear sta-
bility properties of thin currents sheets were carried out
by Pritchett and Coroniti (1996) in a two-fluid ap-
proach. They did not find the eigenfunctions of the
mode but solved the fluid equations as an initial value
problem. This approach takes into account such non-
MHD effects as the electron-ion cross-field streaming
and finite electron inertia. It is limited, however, to
longer wavelengths with wave numbers L.k < 1 (nor-
malized to L., the sheet’s half-width). For unequal ion
and electron masses the initial value solution of the two-
fluid equations revealed a complex eigenfrequency
o = w, +iy. The growth rate of the instability v
increases with increasing mass ratio from y = 0.25
for an artificial mass ratio M = M;/m, =4 to y — Qy;
for M ~ 100. The wave number of the fastest growing
mode was L.k ~2/y/M and the real frequency varied
between o, ~ 0.4 Qy; for M =4 and 35 €); for
M =100. This corresponds to a propagation speed
or/k=0.16...0.7 QL. for mass ratios between M = 4
and M = 100. Yoon et al. (1998) derived and solved the
two-fluid equations as an eigenvalue problem. Their
solution does not reconcile the results of Pritchett and
Coroniti (1996). It is, on the other hand, also restricted
to the short wavelength limit. The reason is that
resonance effects are not taken into account in fluid
approaches, However, particle resonance effects may
cause growth and damping of plasma oscillations in
collisionless plasmas. Hence, one has to consider the

cross-field instability kinetically, taking into account the
specifics of the particle motion in current sheets. A first
attempt to describe the consequences of the non-
gyrotropic meandering particle motion in current sheets.
A first attempt to describe the consequences of the non-
gyrotropic meandering particle motion in current sheet
magnetic fields (Speiser, 1965) in the framework of a
non-local current sheet instability theory was undertak-
en by Yamanaka (1978). They considered a compres-
sional plasma wave propagating perpendicular to the
magnetic field. Another attempt was reported by
Lapenta and Brackbill (1997). Although they did not
derive from the wave equations a dispersion relation as
an eigenvalue problem they obtained a symmetric
sausage-mode of the most unstable wave. In contrast
to their theoretical discussion, their simulations, how-
ever, resulted in an antisymmetric (kink-) mode insta-
bility.

We have now analytically derived a linear kinetic
dispersion relation of the cross-magnetic field instability
from the wave equations of a non-local mode propa-
gating in thin Harris-equilibrium current sheets. Here in
this paper we apply those results to mass ratios
M = M;/m, up to 64 to compare them directly with
high-resolution fully kinetic, electromagnetic kinetic
PIC-code plasma simulations. First, in sect. 2, we
describe our model and the results of the theoretical
analysis of the stability of thin current sheets. In sect. 3
we present the setup of our kinetic PIC code simulations
the results of which we discuss in sect. 4. Finally, in sect.
5 we draw conclusions for the onset of magnetospheric
substorms.

2 Theoretical results

For collisionless plasmas, where particle interactions are
permitted mainly by their collective electromagnetic
fields instead of binary collisions, the Vlasov equation
provides an appropriate tool for analyzing plasma
stability:

rov+2 (8428w renw -0 o)

m;

A plasma systems’ stability is investigated by linear-
izing Eq. (1) with respect to small perturbations of an
appropriate initial state. For such analysis, it is appro-
priate to integrate the action of a field perturbation
along the unperturbed particle trajectories which are
characteristics of the Vlasov Eq. (1). Particle trajectories
in current sheet magnetic field reversals are, however,
quite complicated (cf., Speiser, 1965). This applies more
to thin current sheets, where the ion Larmor radii are
comparable with the sheet thickness. In such configura-
tions, most of the free energy is stored and currents are
carried by particles which meander across the sheet
midplane. The motion on these orbits is nongyrotropic,
it can be quasi-adiabatic and even chaotic (Sonnerup,
1971; Blichner and Zelenyi, 1989). The velocity distri-
bution of these non-gyrotropically meandering particles
is well described by a drift Maxwellian. The Harris
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(1962) model describes an appropriate thin current sheet
equilibrium:

Joi(r,v)(r,v) = ny; - 2;/2]} - exp m};?}d]ﬂ
_ n@ exp{_ v; + (0 — Mf)2+vf} )
(2n)*? - v} 20
where
nj(Z) = ne(Z) = n{(Z) = n, - cosh <Lz) (3)
and

kB(Te"i_E) C

\/2mn,e?

Notice that here in our paper v; is determined as

Ugi — Ude

v = ,/ LT urther, e is the elementary charge, m; are

particle masses and Udj drift velocities in the current
direction. The indices j = e, i denote electrons and ions,
respectively. For example Te and T; are the electron and
ion temperatures. ¢ the speed of light, £z the Boltzmann
constant. The self-consistent magnetic field of a Harris-
equilibrium

B = B, - tanh (Z) - ey
L.

balances the plasma pressure of the sheet, i.e.

B,=\/8n-n, k- (T, +T;) . (5)

The thermal Larmor radius in this field is
Poj = Uij/Qoj - Qoj = eB,/mjc is the gyro-frequency in
the asymptotic field. If the electron and ion drift
velocities ug and uy; are related as wuge/ug; = —T,/T; the
electric field vanishes in a Harris equilibrium. In the
coordinate system, where this relation of the drift speeds
is fulfilled, the half-width of the Harris equilibrium can
be rewritten as

T, kg - T;
Lz'\/l +7:\/37,i
T, \/2nn,e? Udi

SV WA, BN SN, LNy (6)

Ugi Wp; Ugj Ugj

where 4; =c/wpy is the ion inertial length and

Jpi = \/kpT;/4nn,e? the Debye length based on the
maximum density n, and the ion temperature. Due to
the pressure balance Eq. (5) the sheet thickness is,
independent on the temperature ratio 7,/T;, directly
related to the thermal ion Larmor radius p,; as
L=2py 2t (7)
o Ugi

We have investigated the stability of the current sheet
by solving the Vlasov Eq. (1) for small (5f1j < fo))
perturbations 0/, of the equilibrium distribution func-
tion f,;(r,v) in response to appropriate field perturba-

tions, given in terms of small variations dA and d¢ of
the electromagnetic potentials. Since we look for a
resonant current instability we assume a propagation
parallel to the current flow with finite wave numbers
k = k,. To find the most unstable modes it is appropriate
to analyze the response of the Fourier-components of
the perturbed distribution function

The most probable polarization of the wave is charac-
terized by a perturbation of the Y-component of the
vector potential (Yamanaka, 1978)

04, = A\(Z) exp{—iwt + ikY} 9)

while a polarization with non-vanishing d4, is most
unlikely to grow. Since we are looking for waves
propagating slower than the electron thermal velocity,
we can neglect the perturbation of the electrostatic
potential, i.e. 0¢p — 0. The perturbation 04, immediately
follows from the Lorenz gauge condition VJA = 0.
With the particle trajectories being characteristics of the
Vlasov Eq. (1), the perturbation of the distribution
function f,;(r,v) is obtained by integrating the influence
of the field perturbations along the unperturbed particle
orbits. In general, there are two kinds of qualitatively
different orbits in Harris sheets, non-crossing the neutral
plane gyrations and those meandering across the neutral
plane (Speiser, 1965). The most important resonances
are due to interactions with the particles drifting on
meanderorbits. As a result the perturbation, the distri-
bution function §f1; consists of a reversible part § i
which is due to non-resonant interactions with the
inductive electric field and of an irreversible part ”’
which is due to resonant interactions with the meander-
ing particles. From the reversible perturbation 677" one
obtains the corresponding current perturbation

el
—T/dv 0,04 ug; (10)

BLj
v

5jreb —

while the resonant variation of the distribution function
ofi; i reveals the irreversible current perturbation

4ne; - fo,(Z)

5]11 = — f ( )_ CZC'kB]}
t
904, 954,
x /dt’{yy. b gy 8Y} (11)

As a result the Vlasov equation leads to a wave
equation for the Fourier component A4,(Z) of the
perturbed vector potential
d? co2 2

+ 3 Pt
dz2 L2 coshz(Z/L )
AnA(Z w— kud]
— Z / dvfo s (12)

CkB

41(2)




J. Biichner and J.-P. Kuska: Sausage mode instability of thin current sheets and magnetospheric substorms 607

Equation (12) is a nonlinear integro-differential
equation. In order to find the mode structure one can
solve it is an eigenvalue problem with respect to w?> for
which the eigenfunctions 4;(Z) have to be found. Notice
that the operator in the left hand side (1.h.s) of Eq. (12)
differs essentially from the corresponding operator in
the differential equation of the collisionless tearing mode
problem. It contains a finite real frequency w, # 0 and
a wave number k =k, instead of k. responsible for
sheet tearing. The right hand side (r.h.s.) of Eq. (12)
represents the irreversible current perturbations which
are due to wave-particle resonances described by
Eq. (11). For the further treatment of Eq. (12) we
expanded its r.h.s. to a power series with respect to w
around @ = 0. Terms higher then quadratic in » were
neglected. This approach revealed the following linear
wave equation (in dimensionless variables { = Z/L,,
v=Low/c,k= L. k where k = ky, w;=ugi/c, a; =v/c,

L n, e;

,u:e/MivX: cM; )
AY(Q) + [P(1 + g cosh*(0))
—K% + ¢, cosh ()] 4,(0) =0 (13)

with u = u;, g = 2 + Y% and

8my 2\/57[%14% —i+erfi (\/ga‘> \/ﬁ<i+erfi(ufT\/i)>
B KTO—? K20i3 ew/2a) * /2 af)

¢y =

From Eq. (13) we have derived the linear dispersion
relation by analytically solving the differential equations
for the eigenvalues v, with their corresponding eigen-
vectors Ag”)(z). In order to solve the generalized eigen-
value problem algebraically and to avoid the slab
approximation applicable only in the thick-sheet limit,
we applied a system of base functions which smoothly
cover the whole spatial domain of interest. In order to
compare with kinetic simulation results, let us here
consider solutions of this linear dispersion relation for
the first six eigenvalues in for mass ratios ranging from
M=u"'= M;/m,=1toM =64 and for T, = T;. For a
mass ratio p=1/64 the maximum imaginary part
max,(Imv), i.e., the maximum growth rate, is shown in
contour plot Fig. 1 as a function of the normalized wave
number L, k and of the inverse sheet thickness 1/L,,
normalized to the ion Larmor radius in the external field
po.;- The spacing of the contour lines in Fig. 1 can be
directly read from Fig. 2, where the (normalized) values
of the growth rate are explicitly given for p,;/L. = 1.05.
Figure 2 shows that darker regions in Fig. 1 correspond
to larger growth rates. White regions correspond to
negative y, i.e., to damping instead of growth. The black
island to the left of Fig. 1 corresponds to a resonance
with the lighter particles (the “electrons’). The “elec-
trons” resonance can be recognized only for artificially
small mass ratios much smaller than the real one. They
disappear for higher, more realistic mass ratios. The
black island to the right of the plot corresponds to ion
resonances. They reveal large positive y o< Imv which
remain even for the much higher realistic mass ratio (cf.
Fig. 2). The plot shows that the sheet becomes unstable

4
3
2
-~
;
0.
O 02 04 06 08 10 12 14
Py,
LZ

Fig. 1. Contour plot of maximum growth rates max,(Imv,) as a
function of wave number L.k and inverse sheet thickness, normalized
to the ion gyroradius p; (for a mass ratio u = 1/64)

(positive y o< Imv) due to ion resonances after it has
thinned down to L. = py ;.

Figure 3 depicts isocontours of the maximum growth
rate max,(Imv,) for marginally thin sheets (L./p,; = 1)
as a function of the mass ratio u (and of the normalized
wave number L.k). The figure shows that the damping

2.5

o~
/, hRN
/ \
20 P ~\
/ /4 N
= I \\
£ 15 !/ A\
£ !/ A\
= / \
3 ] \
g 1.0 ’ \
P \
L \
0.5 |
\
|
0] —
0 1 2 3 4
Lk

Fig. 2. The growth rate max,(/mv,) for marginally thin sheets
(Po;/L: = 1.05) as a function of the wave number, depicted by a
thick solid line, a thick dashed line, a thin solid line and a thin dashed
line for four different mass ratios M = pu~!=1,4,16, and 64,
respectively
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Fig. 3. Contour plot of maximum growth rates max,(Imv,) as a
function of wave number L.k and mass ratio x4 for a marginally thin
sheet (py; = 1.05L:)

influence of the negatively charged, lighter particles
“electrons™) on the wave growths is restricted to
artificially large relative mass ratios m./M; > 0.1. For
u < 0.1 the fastest modes and in the wave number range
Lk =12...2 already grow at the high rates, shown in
Fig. 2. This figure depicts the growth rate
max,(Imv,) - L,/c of the fastest growing modes for the
four different mass ratios M = u~! = 1,4,16 and 64 as a
function of the wave number L.k for a marginally thin
sheet py; = 1.05 L. This verifies the different influence of
electrons and ions on the instability. It confirms that for
realistic mass ratios the electron damping can be
neglected while the ion influence dominates the wave
growth. The wave number of the most unstable mode
shifts towards shorter wavelength, from L.k =1.0
towards 2. The propagation speed w,/k of the fastest
growing mode approaches the ion drift speed which
allows highly efficient ion resonances. From the sym-
metry of the eigenfunctions A<1">(Z) which correspond to
the fastest growing wave follows its symmetric about the
current sheet. This reminds the structure of the ideal
MHD sausage mode instability. Hence we called it a
kinetic sausage mode.

3 Plasma simulations

We have run our fully kinetic electromagnetic PIC-code
(Birdsall and Langdon, 1991) GISMO in extended
parameter regimes (cf. Biichner and Kuska, 1996) to
verify whether the linear dispersion analysis provides
correct hints at the fastest growing instability of thin
current sheets. GISMO integrates the classical equations
of relativistic particle motion selfconsistently with the
wave equations for the scalar and vector potentials ¢ and

A of the electromagnetic field. This has several advan-
tages. The most notable one is the easy implementation of
an implicit integration scheme and the simple formulation
of the boundary conditions. The field solver is implicit and
unconditionally stable for all step sizes. The boundary
conditions for the potentials at the edges of the simulation
box 0 <x </4,0<y<¥,0<z </, are given by

W(xvyaz):W(x—i-gx,y,Z) 5 (14)
w(x,y,z) = W(x’y_'_gyaz) y (15)
w(x,»,0) = w(x,y,4,) =0 . (16)

These are periodic boundary conditions in the x and y
directions. The potentials are zero at the upper and
lower boundaries. The Laplacian of the field solver is
approximated by a finite difference scheme. This yields a
sparse linear system of equations which is solved at
every time step by successive overrelaxation with a
conjugate gradient preconditioner. The iterative solu-
tion starts with the potential of the previous time step.
The initial guess for w1 is usually very close to the
solution, so only a few iterations are needed to obtain
the desired accuracy. Electric and magnetic fields are
calculated from the potentials by finite difference
expressions for the derivatives. The continuous electric
and magnetic fields are obtained by a trilinear interpol-
ation of the data between the mesh points. Since the
particle motion across the boundaries of the simulation
box violates the gauge condition

10¢

oy VA=0 (17)
the forces are corrected as soon as the error in the gauge
exceeds the error in the iterative solution of the field
solver. Charge density ¢ and current density j are
calculated from the positions and velocities of the
particles. The particle orbits are calculated by solving
the relativistic equations of motion. With the maximum
simulation box dimension ¢ = max{/,,?,, (.}, v¥ = v/c
and t = ¢t/c. The solution of the equations of motion is
obtained using an explicit embedded Runge-Kutta pair
of order 4(3) with step size control (Deuflhard and
Bornemann, 1994). This is the classical Runge-Kutta
method but with an embedded third order step. The
fourth order integration scheme ensures that the particle
gyration in the magnetic field is resolved properly.
GISMO controls the step size in the particle integrator.
In fact, the accuracy of the integration is an often
overlooked quantity in kinetic simulations. However,
the correct modeling of a dynamic system requires a
stable and accurate solution, the accuracy is even the
more important quantity. The step size control by
GISMO ensures both that the solution keeps stable and
that the local truncation error

€] = (&-¢&)/6 (18)
is lower than the desired accuracy for all trajectories (here
& and ¢&" are the fourth and third order approximations
obtained by the embedded Runge-Kutta pair). For the
modelling of an instability the step size control speeds up
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the calculation during the initial metastable phase of the
system evolution. Here the classical Runge-Kutta method
has the advantage that it can be implemented in a memory
efficient way. In addition to memory saving, the classical
Runge-Kutta method contains two redundant steps in the
middle of the integration interval and at the end. This
improves the convergence of the solution for the particle
motion. Higher order Runge-Kutta integrators (Cash and
Karp, 1990; Hairer et al., 1987; Verner, 1993) would not
improve the integration quality further since the force
term is calculated by a lower order interpolation. The
maximum local error of the integration was chosen to be
€ < 1-107°. Since the motion of the particles near the
boundary must be consistent with the fields periodic
particle boundary conditions are assumed in the x- and y-
directions. The few particles which reach the boundaries
in the z direction are randomly replaced inside the box in
accordance with the original distribution function.

4 Simulation results

We initialized a Harris-type equilibrium distribution
described by Egs. (2)—(4) to verify the properties of the
unstable decay of thin current sheets. We extended the
size of the simulation box up to 12L, x 121, x 6L,
gridplanes (where L, is the half-thickness of the sheet, cf.
Eq. (4)). In comparison with our previous simulation
runs (e.g. Biichner and Kuska, 1996, 1987) we enhanced
the grid resolution of the Debye length up to a factor of
three. The electromagnetic fields are calculated on a
mesh of 128 x 128 x 64 gridplanes in the X,Y and Z
directions, respectively, and the number of particles was
increased up to 6-10°. The main result of our higher
resolution simulations is that, as in our previous runs at
lower resolution with fewer particles and in smaller
simulation domains (Biichner and Kuska, 1996, 1987), a
sausage mode instability evolves, which is symmetric
about the current sheet. None of our simulations
without additional background plasmas showed a faster
growing of a kink mode. As an example, we present here
in this paper results obtained by simulating critically
thin sheets (L, = p,;) with equal initial electron and ion
temperatures (7, = T;), without additional plasma back-
ground for both a mass ratio of M = M;/m, = p~! =1
and M = u~' = 64. For three moments of time Figs. 4
and 5 depict snapshots of isodensity (density level: 2/3 of
the maximum) surfaces of the ions in an the evolving
bulk current sheet instability. Figure 4 corresponds to a
mass ratio 1 : 1 and Fig. 5 to 1 : 64. The box sizes are
given in terms of A=12L,. Our linear dispersion
investigations had shown that for a mass ratio M =1
the main contribution to the structure formation
corresponds to the lowest order eigenvalue vy. The real
part of vy vanishes in the range of 0.9 < L.k < 1.16.
Hence the last allowed wave vector £ value corresponds
to a wave number L,k =~ 0.9. Assuming that the most
important contribution corresponds to the eigenvalue
with the maximum imaginary part, the eigenvalues of
Eq. (13) suggest a wave length of the fastest growing
mode A= 2.2nL,. Since the box length in the current

1.0 1.00

X 0.75

1.00

Fig. 4. Instability of a three-dimensional Harris sheet equilibrium for
a mass ratio M = 1. The images show ion density isosurfaces at
tQy =14, 9.8 and 19.6, respectively. The left box side shows
isodensity contours for a cut through the box at x = 6L, = 0.5A.
The bottom plane shows isodensity contours for a cut through the box
atz=3L, = 0.25A

direction A =1 corresponds to 12L, it should accom-
modate about two wavelength. From Fig. 4 one sees
that the theoretically predicted wavelength agrees well
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1.00

1.00

Fig. 5. Same as Fig. 4, but for a mass ratio M = 64

with the result of the numerical modeling. For mass
ratios M > 1 the positive real parts of the eigenvalues v,
are not restricted to L.k values less than one and shorter
wavelength modes can grow. For M > 1 the maximum
imaginary part of the eigenvalues of the linear dispersion
relation corresponds to a wave number L.k ~ 2, this is a
wavelength A ~ 1.05nL,. Figure 5 shows that for a mass

ratio M = 64 the bulk mode wavelength of the spatial
structure is, indeed, close to 4/ fitting in a 121, long box.
This agrees well with the linear dispersion result L,k ~ 2.
The same can be said about the propagation speed and
the wave frequency: the wave propagates, as theoreti-
cally predicted, with the ion drift speed and the wave
frequency gets close to the ion cyclotron frequency. The
growth rate of the instability is of the order of the ion
cyclotron frequency, too. This makes the sausage mode
instability grow much faster than two-dimensional
collisionless tearing mode instability of thin current
sheets.

5 Summary, discussion and conclusions

We reported results of analytical and numerical kinetic
investigations of the influence of particle resonances on
the stability of thin Harris-type current sheets. In our
analytical investigations, we avoid the limitation of the
slab approximation, usually used in the theory of thick
current sheets. Instead we solved the generalized eigen-
value problem algebraically by applying an appropriate
system of base functions which smoothly cover the
whole spatial domain of interest. This also allowed us to
avoid the 4,(Z) = 4,(0) = const. approximation, usual-
ly used in the thick sheet tearing mode theory to describe
the resonance interaction in a narrow slab near the
center of the sheet. The eigenfunctions A§"> (Z) also
allowed us a determination of the symmetry properties
of the fastest growing unstable waves. We conclude that
the threshold of instability is reached as soon as the
sheet thickness becomes comparable with the thermal
ion Larmor radius in the external magnetic field, i.e.,
after the sheet has thinned down to the ion inertial
length. This agrees with the prediction of Yamanaka
(1987). We further found that, after the current sheet
half-thickness reaches the threshold a bulk current
instability of the whole sheet starts to grow. The fastest
growing mode is symmetric about the neutral plane. We
called it a kinetic sausage mode since it reminds the
similar ideal MHD instability. The resulting sausage
mode wave propagates in the current direction. Only for
artificially small values M = M;/m, = u~! < 10 growth
rate and wave length strongly depend (due to the
influence of the lighter particles, the “‘electrons’) on the
mass ratio M. For larger mass ratios the damping
electron influence disappears. The theoretically predict-
ed wave number of maximum growth is L.k ~ 2. The
symmetry of our analytical solution of the non-local
linear kinetic dispersion relation agrees with the numer-
ically obtained ones of Lapenta and Brackbill (1997)
and contradicts their theoretical results. Our investiga-
tions cannot be directly compared with those of
Pritchett et al. (1996), since they solved an initial value
problem and did not look for the natural eigenmodes of
the system. In the long wavelength limit our theoretical
results agree with those reached by Yoon et al. (1998) in
a two-fluid approach, but not for shorter wavelengths.
This is due to the neglect of resonance effects in the two-
fluid approach, which damp the shorter wavelength
mode growth.
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In the past, our kinetic PIC code plasma simulations
had already revealed a sausage mode in the mass ratio
M =1 limit and for relatively short boxes in the current
direction (Biichner and Kuska, 1996, 1997). In order to
verify these results and to compare with the linear
stability analysis, we have repeated these simulations
varying the box length in the current direction, the
number of particles, the temperatures, the spatial
(Debye length) resolution, the aspect ratio of the
simulation box and the size of the embedded current
sheet. We started with marginally thin (L, = p, ;) current
sheets in Harris equilibria. We did not include any
background plasma as it was done in other codes by
technical reasons. In this paper we have shown repre-
sentative results for mass ratios M =1 and M = 64. In
contrast to the simulations of Zhu and Winglee (1996),
Ozaki et al. (1996), Pritchett et al. (1996), Lapenta and
Brackbill (1997), our simulations confirm the prevalence
of the sausage mode bulk current instability over the
asymmetric kink mode. A comparison of the simulation
results with the theoretically obtained properties of the
bulk current instability shows that they correspond well
with the theoretical results.

We can only guess, at the moment, the reason for the
asymmetry of the (kink) mode in the other simulations.
Different reasons are thinkable, which may break the
symmetry and lead to sheet kinking instead of the
sausage symmetry. One group of possible reasons is
semi-physical. In the presence of a resting background
plasma a Kelvin-Helmholtz instability may grow at the
interface between the fast-flowing, current-carrying
particles at the edge of the current sheet. Indeed, many
simulation codes use a plasma background to avoid
numerical instabilities. Since the particle drifts are often
assumed to be artifically high (by technical reasons) the
threshold of a Kelvin Helmholtz instability can be
reached even for perturbations with wave vectors
perpendicular to the magnetic field direction. Another
group of reasons for symmetry breaking could be due to
technical asymmetries inherent, e.g., to the usually used
leapfrog methods. They take field values calculated
during different time steps when determining deriva-
tives. Other reasons might by effects of the high particle
velocities due to incorrect transformations of the super-
relativistic speeds due to plasma heating. The GISMO
code was intentionally developed to avoid these prob-
lems. All symmetry breaking effects thinkable should be
checked in order to verify the mode of the instability of
thin current sheets properly.

In separate papers we have shown that the non-local
bulk instability of thin current sheets accelerates three
dimensional spontaneous reconnection (Biichner and
Kuska, 1996, 1997). After verifying the sausage mode
instability both theoretically and by means of PIC-code
kinetic simulations, we can draw from these results the
following conclusions for the onset of reconnection in
the course of magnetospheric substorms. First, external
pressure and energy inflow cause a current sheet
thinning in the near-Earth magnetotail. As soon as the
threshold sheet-width comparable with the ion inertial
length or half the ion gyroradius is reached, a bulk

current instability starts. It heats the electrons above
their threshold of non-adiabaticity. This releases the
frozen-flux constraint for the electrons and allows a loss
of the current sheet equilibrium. Since the growth rate of
the instability, on the other hand, is controlled by the
ions, the ion scale determines the rate at which recon-
nection evolves (Biichner, 1998). Extrapolating the
kinetic plasma simulation results to realistic mass ratios
by using the predictions of the linear dispersion relation,
one obtains that the characteristic growth time of the
sausage-mode bulk current instability of marginally thin
sheets would be of the order of a minute. This agrees
well with the observed time-scale of substorm onsets.
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