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Abstract. The ionospheric signature of a ¯ux transfer
event (FTE) seen in EISCAT radar data has been used
as the basis for a modelling study using a new numerical
model of the high-latitude ionosphere developed at the
University of She�eld, UK. The evolution of structure
in the high-latitude ionosphere is investigated and
examined with respect to the current views of polar
patch formation and development. A localized velocity
enhancement, of the type associated with FTEs, is added
to the plasma as it passes through the cusp. This is
found to produce a region of greatly enhanced ion
temperature. The new model can provide greater detail
during this event as it includes anisotropic temperature
calculations for the O� ions. This illustrates the uneven
partitioning of the energy during an event of this type.
O� ion temperatures are found to become increasingly
anisotropic, with the perpendicular temperature being
substantially larger than the parallel component during
the velocity enhancement. The enhanced temperatures
lead to an increase in the recombination rate, which
results in an alteration of the ion concentrations. A
region of decreased O� and increased molecular ion
concentration develops in the cusp. The electron tem-
perature is less enhanced than the ions. As the new
model has an upper boundary of 10 000 km the topside
can also be studied in great detail. Large upward ¯uxes
are seen to transport plasma to higher altitudes,
contributing to the alteration of the ion densities.
Plasma is stored in the topside ionosphere and released
several hours after the FTE has ®nished as the ¯ux tube
convects across the polar cap. This mechanism illus-
trates how concentration patches can be created on the
dayside and be maintained into the nightside polar cap.

Key words. Ionosphere (ionosphere-magnetosphere
interactions; polar ionosphere). Magnetospheric physics
(magnetopause, cusp and boundary layers).

1 Introduction

Polar patches, or localized increases in the high-latitude
plasma concentration, have been observed for a number
of years. They are seen to drift with the background
magnetospheric convection velocity and have a non-
local source of plasma. Weber et al. (1984) were amongst
the ®rst to provide evidence for the existence of patches
using all-sky images of the 6 300 AÊ airglow. Since then
many observations have been made using a variety of
instrumentation, including optical, HF and incoherent
radar, digital ionosondes and satellites (Buchau et al.,
1985; Weber et al., 1986; Buchau and Reinisch, 1991;
Rosenberg et al., 1993; Rodger et al., 1994a).

The processes involved in polar patch formation,
structure and evolution are still controversial and
several means of patch formation have been suggested.
In situ production by soft electron precipitation was
suggested by Kelley et al. (1982), although most recent
mechanisms now support plasma transport rather than
in situ formation. Weber et al. (1984) suggest that
patchy precipitation in the auroral region with subse-
quent convection over the polar cap may produce
patches. Anderson et al. (1988), Lockwood and Carlson
(1992) and Idenden et al. (1997) favour the rapid
expansion of the polar cap boundary to lower latitudes
bringing higher concentration plasma into the polar cap
as a mechanism. Patches may also be associated with the
ionospheric signature of a ¯ux transfer event (hereafter
referred to as FTEs) which are associated with recon-
nection on the dayside. FTE structures in the ionosphere
have been observed by Pinnock et al. (1993) using HF
radar. Rodger et al. (1994b) proposed that FTE features
cause one of the mechanisms by which the polar
ionosphere is broken up into regions of depleted and
enhanced plasma concentration. It is this mechanism
that we attempt to model here.

A new model of the high-latitude ionosphere is used
in conjunction with recent observations of the cusp and
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polar cap regions made with the EISCAT radar. The
EISCAT data set studied show a short-lived localized
region of enhanced velocity. These features are thought
to be the ionospheric signatures of FTEs (Pinnock et al.,
1993). The formation and evolution of this type of
structure is modelled using an enhanced velocity in the
cusp region to simulate a FTE feature.

The new high-latitude model has been developed by
the Upper Atmosphere Modelling Group at the
University of She�eld. It was developed as a tool to
investigate the processes occurring in the cusp region
of the polar ionosphere and the consequences these
have for the structure of the high-latitude ionosphere
as a whole. Major new features of the model, in
comparison with other models (e.g. Valladares et al.,
1996; Idenden et al., 1997), are the ability to study the
topside ionosphere by raising the upper boundary to
10 000 km and the inclusion of anisotropic tempera-
tures for O� ions respectively. Both of these features
add new detail to the complex processes occurring in
the ionosphere during an FTE-type event. The Shef-
®eld high-latitude model is described in the next
section.

2 The She�eld high latitude (SHL) model

The SHL model is based on the high-latitude model
described by Quegan et al. (1982). The model has been
considerably updated and improved and now includes
full solutions of the continuity and momentum equa-
tions for O�;H�;He�;NO�;O�2 and N�2 ions and
electrons. The energy balance equation is solved for
O�;H�;He� and electrons, with anisotropic tempera-
tures parallel �Tk� and perpendicular �T?� to the
geomagnetic ®eld being calculated for O�. This provides
greater detail during speci®c events and allows more
accurate comparisons with observational data. Calcula-
tions are performed for a single tube of magnetic ¯ux
drifting under the in¯uence of the magnetospheric
convection electric ®eld. Thermal plasma is contained
within this ¯ux tube in the F-region and topside
ionosphere (Kendall and Pickering, 1967), although
currents ¯ow due to ion-neutral and electron-neutral
collisions. This approach is taken over the more global
type of modelling because it has the advantage of
allowing localized e�ects on an individual tube of
plasma to be studied without details being lost over a
larger region. A future development of the model will be
to include a set of tubes which convect together to
provide greater coverage. The ¯ux tube has a top
altitude of 10 000 km, which allows both topside and F-
region e�ects to be examined. TIROS (Fuller-Rowell
and Evans, 1987) and DMSP satellite data are used as
inputs to the model to determine precipitation levels for
the auroral and cusp regions. The MSIS86 thermos-
pheric model (Hedin, 1987) provides the neutral atmo-
sphere concentrations. Thermospheric wind values are
obtained for compatible runs of the She�eld/UCL/SEL
coupled thermosphere-ionosphere-plasmasphere (CTIP)
model (Millward et al., 1996).

2.1 Boundary conditions

The di�usion equation is solved for O�;H�;
He�;NO�;O�2 and N�2 ions and electrons. The velocity
of the ions at the top of the plasma tube acts as the
upper boundary condition. The H� upper velocity is
based on extrapolation of satellite data from lower
altitudes (Ho�man and Dodson, 1980), while the O�

and molecular ions have zero velocity at the top of the
tube (10 000 km altitude). The He� upper velocity is
either set to zero or put equal to the H� value; zero was
taken for this study.

The energy balance equation is solved for O�;H�
and He� ions and electrons. The molecular ion temper-
atures are put equal to the averaged O� ion tempera-
ture. As the ®eld lines are open in the polar ionosphere
the magnetospheric electron heat ¯ux has to be taken
into account and provides the upper boundary condi-
tion for the electron energy balance equation. Electron
temperature is found to be highly sensitive to this upper
heat ¯ux condition, which is highly variable and poorly
measured. The values used in this present model vary
according to position in the polar cap and are based on
the modelling work of Schunk et al. (1986) who studied
a period of similar solar and geomagnetic conditions.
The auroral region is considered to be the hottest, the
dayside has an intermediate heat ¯ux value and the
polar cap is taken as being the coldest region having no
magnetospheric heat ¯ux. Values for each region are
shown in Table 1.

2.2 Anisotropic code

The SHL model has recently been adapted to take into
account the O� temperature anisotropy along the
geomagnetic ®eld lines and follows the method of
Mo�ett et al. (1993). The model frictional heating term
�Fin� is partitioned into the parallel and perpendicular
components according to ion frictional heating partition
coe�cients Bk and B?. These depend on the composition
of the ion and neutral gases and are based on the values
of the ion temperature coe�cients bk and b? given in
Winkler et al. (1992). BkFin and B?Fin are included in the
parallel and perpendicular ion energy balance equations
respectively. Typical values of Bk and B? (Jenkins et al.,
1997) are shown in Table 2.

The partitioning of the ion distribution allows the O�

ion distribution to become anisotropic according to
equations given in, for example, Ganguli et al. (1987)
and Gombosi and Rasmussen (1991). The isotropic
temperature, which is output from the model for
H�;He� and electrons, is calculated from the energy

Table 1. Values for the downward magnetospheric electron heat
¯ux

Cusp 3 ´ 1014 eVm)2 s)1

Dayside 1 ´ 1014 eVm)2 s)1

Nightside 0.5 ´ 1014 eVm)2 s)1

Polar cap 0.0
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balance equation described in detail by Bailey and Sellek
(1990). For the O� ions this is now replaced by

3

2
kN

dT k
dt

� jk
@2Tk
@s2
� 1

A
@

@s
�jkA� ÿ 3

2
kNVk

� �
@Tk
@s

ÿ 3kN
@Vk
@s

Tk � Qk � BkFin

ÿ 3j?
1

A
@A
@s
@T?
@s
� 1

A
@A
@s

� �2T?
Tk
�Tk ÿ T?�

( )
�1�

for the O� parallel temperature (where an error in Eq. 2
of Mo�ett et al., 1993 has been corrected) and by
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for the perpendicular temperature component, where
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and V? is the E � B drift velocity, Q is the heating rate,
Fin is the frictional heating rate, A is the cross-sectional
area of the ¯ux tube and jk and j? are the thermal
conductivities. Uneven partitioning of the energy occurs
as the anisotropic temperatures are not symmetrical:
pressure anisotropy and the diverging magnetic ®eld
a�ect T?, while perpendicular heat ¯ow a�ects Tk. This
can have important consequences during heating events.
The average three-dimensional temperature is given by

Ti � 1

3
�Tk � 2T?� �4�

This is the value used for the molecular ion temperature.
Greater detail of the method used to calculate aniso-
tropic temperatures is given in Mo�ett et al. (1993).

3 The ¯ux transfer event: experimental data

The model FTE feature was based on an event observed
by the EISCAT radar as it scanned northward in beam

splitting mode on 29 March, 1992. The data come from
EISCAT special programme SP-UK-CONV; in this
experiment the UHF beam points at 20� elevation along
the geomagnetic meridian. This gives measurements of
the poleward component of the ¯ow, providing the ®eld-
aligned ¯ows are negligible. During an FTE type of
event this may not hold and errors of the order of
100msÿ1 may occur. The VHF radar points at 15� to the
east of the geomagnetic meridian at an elevation of 30�.
The separation of the two radar beams lies between 100
and 200 km at the range of interest. The line-of-sight
velocities of the two radars can be combined to produce
velocity vectors. This makes the assumptions that the
¯ow between the radars is roughly L-shell aligned and
constant between the two beams. The time resolution of
the measurements is approximately 10 s.

The radar data show a region of greatly enhanced
plasma velocity (Fig. 1a) in the latitude range 72� to
77�N. Associated with this is a region of reduced
electron concentration (Fig. 1b). The altitude of the
measurements varies with the radar range from approx-
imately 200 km to 600 km. Within the enhanced region
the measured velocity is observed to increase to a
maximum of 2:5 km sÿ1; the ion and electron tempera-
tures are seen to rise to over 2200 K and 2900 K
respectively. The event lasts for approximately 7 min.

To model a FTE-type feature, an additional velocity
is added to the model convection velocity. The velocity
enhancement occurs as the ¯ux tube passes through the
cusp region of precipitation. This is within the range 74�
to 76�N latitude. The model FTE feature has a maximum
velocity enhancement of 2:5 km sÿ1 which builds up
linearly over 100 s, lasts for 5 min and then decreases
linearly to the unperturbed level over 10 s. This is
consistent with other observations of FTEs (e.g. Pinnock
et al., 1993). The EISCAT data are used as a basis for this
velocity enhancement structure but a direct case study is
not attempted. An exact match of model and data details
(e.g. UT, latitude and longitude) is therefore not made;
instead a general study of this type of feature is made.

Figure 2 illustrates the path the model ¯ux tube
follows as it convects under the in¯uence of the
magnetospheric electric ®eld. The regions of velocity
enhancement (dashed area) and cusp precipitation
(boxed area) are also shown. In the following section
results are presented for two points on this path. Point A
at 9:23 UT is in the cusp and is at the centre of the
enhanced velocity region. Point B is at 9:53 UT, after the
enhancement has ®nished, when the plasma tube has
passed further into the polar cap. These points relate
purely to the modelling work and are not intended to
represent a speci®c region or UT covered by the
EISCAT radar data shown in Fig. 1.

4 Results and discussion

4.1 Concentrations and ¯uxes

Model runs are performed for 29 March, 1992,
F10:7 � 165, Ap � 15. Modelled O�;H� and molecular

Table 2. Values of the ion frictional heating partition coe�cients
for the atmospheric composition shown (following Winkler et al.,
1992)

Ion composition 100% O+ 100% O+

Neutral composition 100% O 100% N2

Bk 0.300 0.840
B? 1.335 1.065
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ion concentrations are shown in Figs. 3 and 4
respectively. Values are calculated as the plasma tube
follows the path shown in Fig. 2. The plots show
concentrations at points A and B (Fig. 2) as the tube
passes through the cusp and polar cap regions. The
modelled FTE commences at 9:18 UT; results for
point A, shown by the short dashed lines, are at 9:23
UT in the middle of the FTE. Results for point B,

shown by the long dashed lines, are for 9:53 UT,
30 min later.

Initially, when the enhanced velocity is applied, a
decrease in NmF 2, an increase in hmF 2 and a depletion in
the O� and H� concentrations below approximately
500 km are seen (Fig. 3). The concentrations of the
molecular ions are found to increase during this period
due to the increased conversion rate of O� ions into

Fig. 1a, b. EISCAT data for 29
March, 1992. a Ion velocity
vectors; b electron concentration
data
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molecular ions (Fig. 4). At point B, 30 min after the
velocity enhancement, the H� concentration is above
the level expected with no enhancement. The O�

concentration pro®le has altered by this point also, with
more plasma being stored at lower �<300 km� and
higher �>1000 km� altitudes than when there is no
enhancement (Fig. 3).

The initial reduction in O� concentration is partly
caused by an increased reaction rate of O� with the
neutrals N2 and O2, as shown by the increase in
molecular content seen in Fig. 4, and partly by an
increase in the ¯ux up the plasma tube away from the F

region. Modelled O� ¯ux values are presented in Fig. 5
during the velocity enhancement (dashed lines) and also
for no additional velocity for comparison (full lines). At
the start of the event the upward ¯ux is enhanced
between 300 to 1000 km altitude. The ¯ows of O� ions
away from the plasma pressure bulge are a result of the
higher ion temperatures. These ¯uxes are of comparable
signi®cance to the chemical loss. A small increase in O�

concentration is visible at higher altitudes, between
approximately 500 to 1000 km, as a result of this
increased upward ¯ux (Fig. 3). Further into the event
the plasma undergoes a redistribution. After 30 min a
large storage of plasma has occurred in the topside
�>1000 km�. This then starts to fall down the tube,
shown by the large increase in downward ¯ux, see Fig. 5.
As a result the F peak is lowered and O� concentration
below hmF 2 is increased. This causes the concentrations
of the molecular ions to decrease to below the unper-
turbed level (Fig. 4). The plasma continues to move
back down to F-region heights over approximately 3 h
as the ¯ux tube passes through the polar cap and into
the nightside.

The response of the F-region to imposed short-lived
velocity features of the type modelled here has been
discussed in previous work. Schunk et al. (1975, 1976)
®rst modelled the e�ects of increasing electric ®elds on
ion and molecular concentrations at high latitudes. They
report an increasing dominance of molecular ions in the
E and F regions as the electric ®eld strength increases.
Our results also show a clear switch to increased
molecular content in the ionosphere as a result of the
enhanced velocity. Simulations of passes through the
cusp, including the e�ects of particle precipitation and
intense localized electric ®elds, have been made by
Whitteker (1977), Schunk and Sojka (1989) and Loranc
and St-Maurice (1994). These studies report similar
¯uxes and plasma redistributions and agree well with the

Fig. 2. The path through the cusp and polar cap followed by the
model plasma tube. The velocity enhancement (shaded area) occurs
within the cusp region of precipitation (boxed area). The plot shows
MLT and the position in geomagnetic coordinates, (h;/). Points A
and B illustrate the position of the ¯ux tube in the following result
plots

Fig. 3. Model O� and H� ion concentrations during the enhanced
velocity event at 9:23 UT (- - -), point A on path, and at 9:53 UT (± ±),
point B on the path. Concentrations with no enhanced velocity are
shown for comparison (Ð)

Fig. 4. Model NO�, O�2 and N�2 ion concentrations during the
enhanced velocity event at 9:23 UT (- - -), pointA on path, and at 9:53
UT (± ±), point B on the path. Concentrations with no enhanced
velocity are shown for comparison (Ð)
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results presented here. Caton et al. (1996) model the
undisturbed ionosphere over EISCAT and report ¯uxes
of the order of 1013 mÿ2 sÿ1, which they attribute to the
e�ects of precipitation and the magnetospheric electron
heat ¯ux. These ¯uxes compare well with the values
presented in Fig. 5. Valladares et al. (1996) investigate
the formation of polar patches in relation to large
plasma ¯ows. Using Sondrestrom incoherent scatter
radar data, in conjunction with an ionospheric model,
they also found enhanced recombination of O� contrib-
utes to the creation of low concentration regions.

4.2 Temperatures

Figure 6 illustrates modelled temperatures for the O�

ions and electrons. The O� anisotropic temperature is

split into the parallel and perpendicular components.
The solid lines are for no velocity enhancement and the
dashed lines are with the enhancement. Values of
temperatures are only plotted for point A on the path
as the e�ects in the temperatures are short-lived. The
values of parallel and perpendicular temperature in the
absence of an FTE are approximately the same as shown
in Fig. 6. A very large increase in ion temperature below
approximately 2000 km is observed when the enhanced
velocity is applied. The increase in the electron temper-
ature is much smaller. The increase in ion temperature is
due to ion-neutral frictional heating which is balanced
by ion-neutral heat exchange. The electron temperature
is raised somewhat by ion-electron heat transfer, but is
still dominated by the heat input from the magneto-
sphere in the form of the magnetospheric electron heat
¯ux (see Table 1).

When the velocity enhancement is added both the
parallel and perpendicular temperatures are greatly
increased. The energy is not partitioned evenly, how-
ever, with the perpendicular component being up to
three times as large as the parallel. The maximum
temperature increase for both components occurs below
1000 km. Above this altitude, the heat interchange
between the parallel and perpendicular components acts
to bring the two temperatures together. The e�ect of the
velocity enhancement is largely observed below approx-
imately 1000 km. At F-region altitudes, the large
increase is caused by frictional heating. The temperature
increase dissipates to higher altitudes by advection and
conduction, with a cut o� at approximately 1000 km;
this is clearly seen in Fig. 6. When there is no additional
velocity the parallel and perpendicular temperatures are
very similar. The ion temperature decreases immediately
�<1min� the FTE ®nishes, while the electron temper-
ature still increases slightly.

Anisotropic ion temperatures have been modelled by
Davies et al. (1995) and Jenkins et al. (1997). Both
studies compare EISCAT data with model results and
consistently ®nd increasing temperature anisotropy
during ion frictional heating events. The F-region
ionosphere is found to become increasingly more
molecular during these events. Lockwood et al. (1993)
present a study of O� anisotropic temperatures mea-
sured by EISCAT. They provide tables of the ion
temperature partition coe�cient, bk, which have been
derived from theory and experiment. These compare
well with the values from this study.

5 Summary

An FTE-type feature has been modelled by applying a
large velocity enhancement to the plasma as it convects
through the cusp precipitation region. This causes a
rapid increase in the ion temperature as a result of
frictional heating, which leads to an increase in the rate
of O� recombination with the molecular ions and an
increased upward ¯ux of O� into the topside iono-
sphere. Both of these processes lead to a decrease in O�

ions in the F-region and an increase in the molecular ion

Fig. 6. Model electron and O� anisotropic parallel (Tk) and
perpendicular (T?) temperatures for no enhancement (Ð) and during
the enhanced velocity event (- - -), at 9:23 UT, point A on the path

Fig. 5. Model O� ¯ux values during the enhanced velocity event at
9:23 UT (- - -), point A on path, and at 9:53 UT (± ±), point B on the
path. Fluxes at these points with no enhanced velocity are shown for
comparison (Ð), Positive ¯ux is upwards, negative values represent
downward ¯uxes
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concentration in the lower F-region. The electron
temperature is less a�ected and lags behind the ion
temperature enhancement. A detailed study of the
thermal balance of the ionosphere during an event of
this type has been made possible by the inclusion of
anisotropic O� ion temperatures in the model calcula-
tions. The results show that this makes a signi®cant
di�erence, with the perpendicular temperature being
enhanced to a much greater extent than the parallel
component. This a�ects the large ¯uxes that are
produced as a result of this heating. Upward ¯ux is
found to increase at higher altitudes and plasma
concentration in the topside is enhanced.

As the velocity enhancement continues, the decrease
in O� and H� concentration at F-region altitudes
becomes larger as does the decrease in NmF 2, although
the increase in O� concentration at higher altitudes is
enhanced. Plasma ¯ux up the tube is reduced while the
downward ¯ux is increased. The plasma undergoes a
redistribution 30 min after the FTE has ®nished when
large downwards ¯uxes are observed. During this period
O� and H� concentration increase slightly as plasma
di�uses back down the tube. This continues over a
period of approximately 3 h as the ¯ux tube convects
over the polar cap.

The modelled FTE provides a mechanism for causing
localized depletions of plasma accompanied by enhance-
ments in the ion and electron temperatures. This
compares well with the observations made by EISCAT
during a FTE type feature and is thought to provide one
method for the production of polar patches (Rodger
et al., 1994b). The new features of this model have been
used to illustrate that chemistry and transport are both
important in this process. Further work is intended to
elucidate the e�ects of plasma path trajectories through
the FTE region and to determine the role of ion and
electron cusp precipitation in determining high-latitude
ionospheric structure.
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