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Abstract. We have determined the MLT distribution
and KP dependence of the ion up¯ow and down¯ow of
the thermal bulk oxygen ion population based on a data
analysis using the EISCAT VHF radar CP-7 data
obtained at Tromsù during the period between 1990
and 1996: (1) both ion up¯ow and down¯ow events can
be observed at any local time (MLT), irrespective of
dayside and nightside, and under any magnetic distur-
bance level, irrespective of quiet and disturbed levels; (2)
these up¯ow and down¯ow events are more frequently
observed in the nightside than in the dayside; (3) the
up¯ow events are more frequently observed than the
down¯ow events at any local time except midnight and
at any KP level and the di�erence of the occurrence
frequencies between the up¯ow and down¯ow events is
smaller around midnight; and (4) the occurrence fre-
quencies of both the ion up¯ow and down¯ow events
appear to increase with increasing KP level, while the
occurrence frequency of the down¯ow appears to stop
increasing at some KP level.

Key words: Ionosphere (particle acceleration; plasma
waves and instabilities) ± Space plasma physics
(transport processes)

1 Introduction

The polar wind is a ®eld-aligned ion ¯ow from the polar
ionosphere to the magnetosphere (Axford, 1968). Des-
sler and Michel (1996), Bauer (1966), and Nishida (1966)
suggested that a ``continuous'' escape of thermal light
ions such as H+ and He+ should occur due to

ambipolar di�usion along the geomagnetic open ®eld
line.

A number of models of the polar wind have been
proposed; hydrodynamic models (Banks and Holzer,
1968, 1969a, b; Marubashi, 1970; Raitt et al., 1975,
1977; Schunk et al., 1978), kinetic models (Lemaire and
Scherer, 1970, 1973), models solving the generalized
transport equations (Schunk and Watkins, 1981, 1982;
Demars and Schunk, 1987; Ganguli et al., 1987) and
time-dependent models (Gombosi and Nagy, 1989;
Schunk and Sojka, 1989). Polar wind observations are
dated from the early years of the 1970s with the
Explorer 31, OGO 2, and ISIS 2 satellites (Ho�man,
1970; Taylor and Walsh, 1972; Ho�man et al., 1974)
and in the 1980s case studies of the polar wind were
carried out based on data obtained from the Dynamic
Explorer (DE) 1 satellite (Shelley et al., 1982; Nagai
et al., 1984; Chandler et al., 1991).

Recent observations with satellites such as Akebono
(EXOS-D) and GEOTAIL have shown that thermal
ions, including not only light ions H+ and He+ but also
heavy ions O+ and NO+ ¯ow out of the polar
ionosphere and they are found in the lower magneto-
sphere (Watanabe et al., 1992; Abe et al., 1993a, b; Yau
et al., 1991, 1993, 1995) and in the lobe magnetosphere
(Mukai et al., 1994; Hirahara et al., 1996; Seki et al.,
1996, 1998). A very comprehensive review of the
terrestrial plasma source obtained from the DE mission
was given by Chappell (1988).

The ``classical'' polar wind theory can only be
applicable, however, to the upward ¯ow of thermal
light ions such as H+ and He+ in the polar cap region.
The heavy ions escaping from the ionosphere to the
magnetosphere require additional energy source. In
other words, some other physical processes rather than
ambipolar di�usion must be involved in accelerating
heavy ions from the polar ionosphere since the heavy
ions driven only by ambipolar di�usion are not able to
overcome the Earth's gravity and furthermore they are
likely to be lost by a charge exchange reaction
O+ + H ¡ H+ + O in the topside ionosphere andCorrespondence to: R. Fujii
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O + O+ ® O+ + O in the F region (Moore, 1984).
Simulations have concentrated on the e�ects of ion
frictional heating in the presence of large electric ®elds
(Loranc and St.-Maurice, 1994; Wilson, 1994). Out¯ow
could be reproduced during conditions of very strong
heating. Satellite observations and theory of ion out¯ow
were recently reviewed by Yau and AndreÂ (1997), AndreÂ
and Yau (1997), and Horwitz and Moore (1997).

Although extensive satellite observations at altitudes
of more than 1000 km have been made, what seems to
be lacking is observations below 1000 km where the
light and heavy ions are likely to be heated and/or
accelerated and start to ¯ow. Generally, it is di�cult to
observe altitude pro®les of several parameters in the F
region by means of satellites. On the other hand, radar
observations in the polar region, such as EISCAT radar,
are ideal for ion up¯ow studies in the F region.

A number of authors studied ion up¯ow events based
on data obtained from the EISCAT radar in Scandina-
via (Blelly et al., 1992a, b; Wu et al., 1992; Wahlund
et al., 1992). They found that ion up¯ow can occur
above Tromsù located at 66 invariant latitude, which is
presumed to be on and inside the polar cap boundary
only occasionally. This may suggest that the ion up¯ow
can occur in the closed ®eld line region. Wahlund et al.
(1992) also disclosed that the ion up¯ow event is often
associated with the enhancement of the electron and/
or ion temperatures. The previous studies concentrated
on case studies, while there have been few studies
on statistical characteristics of the ion up¯ow with
EISCAT.

The present study aims at determining the statistical
characteristics of ion up¯ow and down¯ow based on an
analysis using Common Program 7 (CP 7) data obtained
from the EISCAT VHF radar. As we show in later
sections, the ion up¯ow and down¯ow events we have
considered do not have continuous features but have
intermittent features with only a few minutes to a few
tens of minutes from appearance to disappearance,
which may consist of bursts with shorter time duration
(Wahlund et al., 1993). We therefore think that the
up¯ow ions we consider are upgoing ions heated up and
accelerated in the topside ionosphere rather than clas-
sical polar wind ions. We will focus particularly on the
magnetic local time (MLT) distribution of the occur-
rence frequency of these ion up¯ow and down¯ow
events, and their dependence on magnetic disturbances,
for which we will use the KP index.

2 Observations

The EISCAT VHF radar (224 MHz), located at Ram-
fjord near Tromsù (69.6N, 19.2E), Norway, is a
monostatic system using a 120 ´ 40 m parabolic cylin-
der antenna, divided into four sectors. These sectors can
be individually steered in the meridian plane from 30°
south to 60° north of the zenith (EISCAT Scienti®c
Association, 1991). The Common Programme 7 (CP 7)
is one of the seven EISCAT CPs and one of the three
CPs using VHF radars. A 900 ls pulse is used to sample

21 signal gates at about 65 km increments in range, with
the ®rst gate at 285 km range and the last gate at
1654 km range. Vertical antenna pointing is used.

We have used 22 sets of the EISCAT CP7 data that
cover all CP 7 data during the period between 1990 and
1996, for about 820 h altogether. The data used in this
study are listed in Table 1. The data integration is
5 min, but for some datasets (markeda) it is 2.5 min and
for some others (markedb) it is 2 min.

The standard EISCAT program was used for the
analysis of the raw data. This assumes 100% O+

throughout the upper F region, no H+ or He+. So far
substantial fractions of light ions have rarely been
observed with the VHF radar even at altitudes up to
about 1600 km. Furthermore, in this study only the
®tted velocities are used, which should not su�er from
signi®cant errors, even if the assumed ion composition is
biased. It has been reported that associated with ion
up¯ow frequently naturally enhanced ion-acoustic lines
occur (Rietveld et al., 1991; Wahlund et al., 1992, 1993).
These are not normal IS spectra, but show asymmetrical
features. In the present study we have excluded only the
strongest of these abnormal spectra that lead to a digital
over¯ow in the EISCAT correlator. The typical dura-
tion of an event with naturally enhanced ion-acoustic
lines is about 1 min (Rietveld et al., 1991). Since our
integration time is mostly 5 min, the e�ect of the weaker
abnormal spectra on the ®tted velocity should be
relatively small. Recently Forme and Fontaine (1999)
studied the Doppler velocity during naturally enhanced
ion lines with a new technique. They found that in all the
events studied the ion ¯ow speed was upward before the
enhancement, and the spectra became even more
Doppler shifted during the event. The velocities used
in this study might therefore be occasionally somewhat

Table 1. Data used in this study

Number Start date Time (UT) End date Time (UT)

1 900925 1000 900927 1200
2 910512 1000 910515 0700
3 911028 1000 911029 1600
4 920211 1000 920212 1600
5 920505 1000 920506 1600
6 921215 1500 921217 1900
7a 930216 1100 930217 2200
8a 930317 1900 930318 2200
9a 930518 1200 930519 2200
10a 931109 1200 931110 2300
11a 940207 2200 940209 2300
12 940412 1600 940413 2200
13 940503 1200 940504 2200
14 940906 1900 940907 2200
15a 941004 1400 941005 2400
16 950201 0900 950204 0900
17 950328 1500 950329 2000
18b 950927 0900 950928 1600
19b 961015 1000 961015 1400
20 961111 1000 961115 1600
21 961116 0500 961116 0900
22 961121 1600 961121 2400

a 2.5 min data integration; b 2 min data integration
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overestimated, because weak abnormal spectra were not
excluded. As will be discussed in the next section, the
velocity will mainly be used to de®ne up¯ow events or
occurrence. In a future study, we will also address ¯uxes
and temperatures. Then the data will have to be
carefully screened from abnormal spectra.

There can be at least three major errors/uncertainties
in CP-7 data. First, the data su�er from the thermal
noise of the receiving system. Furthermore, the uncer-
tainty of the parameters increases with the increasing
altitudes due to the corresponding decrease of the
strength of the receiving signals. Second, the data
processing to determine several qualities such as the
line-of-sight velocity should include some errors due to
insu�cient ®tting of an observed spectrum with a
theoretical IS spectrum. Third, temporal variations of
the parameters within the integrated time period also
provide an uncertainty of the data.

Figure 1a shows a typical example of the ion up¯ow
event observed between 1745 and 1830 UT on May 13,
1991, where we show 9 time sequential height pro®les of
the vertical ion velocity. The abscissa shows the vertical
ion velocity where a positive (negative) value means ions
moving upward (downward). The ordinate is the height
from 200 km to 1700 km. Each circle denotes the ion
velocity at a corresponding altitude with a horizontal
bar showing one-sigma error. The quality of the data
vary (see ®gure caption).

Between 1745 and 1800 UT there are no signi®cant
enhancements of the ion velocity at any height. At 1800±
1805 UT the ion velocity becomes positive, implying
that ions start to move upward, above say 900 km with
the largest velocity of about 500 m/s around 1300 km.
During the next ®ve minutes between 1805 and
1810 UT, lower altitude ions also start to move, with
the lowest altitude of the ion up¯ow of 600 km and the
largest velocity of 800 m/s around 1200 km. Five
minutes later, the maximum velocity becomes larger,
1300 m/s with the altitude of the maximum velocity
becoming higher, up to around 1500 km. The ion
up¯ow then fades away and returns to the previous
(quiet) level at 1745±1750 UT. Generally, as shown
here, the ion up¯ow appears to be a transient phenom-
ena on a time scale of minutes.

Figure 1b shows an example of the ion down¯ow
event observed between 1940 and 2025 UT on Septem-
ber 26, 1990, where we show again 9 sequential height
pro®les of the ion velocity. The format is same as for
Fig. 1a. Ion down¯ow is seen between 1945 and
2010 UT, although the data quality is not good above
1300 km. The ion down¯ow appears to be also a
transient phenomenon, as for the ion up¯ow in Fig. 1a.

Figure 2 shows a height pro®le of the ion velocity,
where we have over-plotted all the data points for 69 h
from 1000 UT of May 12 to 0645 UT of May 15, 1990.
The ion velocity for the majority of the data is
concentrated in a certain velocity range around zero;
this range changes depending on the altitude, that is,
�100 m/s at 300 km, �200 m/s at 800 km, and
�400 m/s at 1400 km. The ion velocity for other data
deviates from this concentration. Positive deviations

corresponding to the ion up¯ow are more pronounced
than negative ones corresponding to the down¯ow. This
pro®le again shows that the ion up¯ow starts to appear
at some altitude, often above 600 km. The average
velocities denoted by a thin line are positive, implicitly
suggesting that the velocity of the ion up¯ow is stronger
than that of the down¯ow.

3 Statistical analysis

We have used the following quantitative de®nition for
selecting the ion up¯ow and down¯ow events from the
CP 7 database. We have set two conditions which the
ion up¯ow and down¯ow must satisfy. The ®rst
condition is that the altitudinal gradient r1 of the ion
velocity is more than a certain value A1 for N
consecutive heights. N is 3 for an example obtained at
0740±0745 UT on May 14, 1991, shown in Fig. 3. The
second condition is that the maximum velocity Vmax is
more than A2. Furthermore, the lowest altitude of the
ion up¯ow and down¯ow is de®ned to be an altitude
where, for the ®rst time, the absolute value of the
altitudinal gradient r3 of the ion velocity exceeds a
certain value A3. We have set three threshold criteria for
these conditions from less severe to severe, as tabulated
in Table 2, in order to check whether the choice of the
threshold criteria of the conditions a�ects the statistical
characteristics of the ion up¯ow and down¯ow.

Figure 4 shows the magnetic local time (MLT)
distributions of the occurrence frequency of the ion
up¯ow (on the left-hand side) and the down¯ow (on the
right-hand side) for case 1 through case 3. For both ion
up¯ow and down¯ow, only data under KP < 4 are
selected. We have used, throughout the present work,
the occurrence frequency of the ion up¯ow and down-
¯ow, which is de®ned as B/A, where B is the number of
the ion up¯ow (or down¯ow) and A is the total number
of samples during a certain period. For Fig. 4 the
abscissa is MLT (from 0000 to 2400 MLT) with each
bin of 5 min. The horizontal line is the occurrence
frequency averaged over the 24 MLT hours.

With increasing the threshold criterion, the occur-
rence frequency decreases, because the occurrence of
the ion up¯ow (or down¯ow) decreases while the total
number of samples does not change. (This is also
evident from the average occurrence frequencies.) It
should be noted, however, that the MLT dependence,
that is, relative increase/decrease of the occurrence
frequency for both ion up¯ow and down¯ow by MLT,
is retained regardless of the threshold criterion. For the
ion up¯ow, for example, several maxima around 05,
10, 17, 20±01 MLT and minima around 08 and
19 MLT are commonly recognised for all threshold
criteria. For the down¯ow, maxima around 01, 06, 11,
23 MLT and some minima are also commonly seen for
all threshold criteria. Since the choice of the threshold
criteria does not change the characteristics of the MLT
dependence and KP dependence (not shown here),
hereinafter we will show results only for the threshold
criterion 2.
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Figure 5 shows the distributions of the up¯ow and
down¯ow for four magnetic local time regions:
21 £ MLT < 3, 3 £ MLT < 9, 9 £ MLT < 15, and
15 £ MLT < 21, under two geomagnetic disturbance
levels: KP < 4 for quiet conditions and KP ³ 4 for
disturbed conditions. More quantitative KP dependence

will be shown later. The occurrence frequencies of the
up¯ow and down¯ow are denoted by thick and thin
vertical bars and those averaged over 24 MLT hours are
shown by solid and dotted horizontal lines, respectively.

The top panels show the occurrence frequency. For
both KP levels, the occurrence frequencies of ion up¯ow

Fig. 1. a Typical examples of the ion up¯ow observed at 1745±1830
UT onMay 13, 1991 and b ion down¯ow observed between 1940 and
2025 UT on September 26, 1990. Each ®gure contains 9 time
sequential height pro®les of the vertical ion velocity. The abscissa
shows the vertical ion velocity where a positive (negative) value means

ions moving upward (downward). The circles represent good quality
data and the dots represent not very good quality data judging from
the degree to which well-observed EISCAT spectrum is ®tted to a
theoretical spectrum
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and down¯ow are smaller in the midday and becomes
larger in the nightside region. The occurrence frequency
of the up¯ow is generally larger than that of the
down¯ow except for midnight and midday periods
under the lower KP level where these two occurrence
frequencies are nearly the same or the occurrence
frequency of the down¯ow slightly dominates over that
of the up¯ow. When the KP level becomes higher, the
occurrence frequency of the up¯ow generally becomes
greater, while that of the down¯ow does not change so

much for 21 £ MLT < 3 and 9 £ MLT < 15. This
tendency is also clearly seen in the large increase of the
average occurrence frequency of the up¯ow but a
smaller increase of the down¯ow, with increasing KP

level.
The middle and bottom panels show the duration

and the maximum velocity of the up¯ow and down¯ow.
The ion up¯ow and down¯ow have a duration of the
order of and possibly shorter than the integration period
used. The MLT distribution of the maximum velocities

Fig. 1. (Contd.)
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shows small di�erences between the two KP levels and
furthermore the di�erence of the occurrence frequency
between the up¯ow and down¯ow becomes larger with
the higher KP level except the midday region.

The KP dependence of the ion up¯ow and down¯ow
for all MLTs is shown in Fig. 6. The abscissa is the KP

level from 0 to 8. The ordinate is the occurrence
frequency for the lines with circles and the number of
samples for each KP bin. A KP bin `N ' includes actually
three KP levels; N), N, and N+. The numbers of
sampling for bins from 0 to 6 are respectively more than

500 with relative uncertainties of less than 5%, but those
for bins of 0 and of 7 and 8 are respectively less than 250
where the occurrence frequency may contain larger
uncertainties of more than 10%. The occurrence fre-
quency of the ion up¯ow increases rather monotonically
with the increasing KP values: about 0.15 at KP = 1, 0.2
at KP = 2, 0.27 at KP = 3 and 0.35 at KP = 5. The
occurrence frequency of the down¯ow also increases
with the increasing KP values unless the KP value is
more than 3: about 0.1 at KP = 1, 0.2 at KP = 2 and
0.23 at KP = 3. The di�erence between the up¯ow and

Fig. 2. An over-plotted height pro®le of the ion velocity for 69 h
from 1000 UT on May 12 to 0645 UT on May 15, 1990. The ion
velocity for the majority of the data is concentrated in a certain

velocity range around zero. The ion velocity for other data shows that
the ion up¯ow starts to appear at altitude, often above 600 km
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down¯ow at each KP level is smaller than 0.5, implying
that there is no signi®cant net ¯ow in terms of the
occurrence frequency. When the KP values become
larger than 3, the occurrence frequency of the down¯ow
appears not to increase but to remain at a particular
value. The KP dependence mentioned here again sug-
gests that the net ¯ow in terms of the occurrence
frequency be small at the lower KP range but become
signi®cant at the higher KP range.

Figure 7 shows the KP dependence of the ion up¯ow
and down¯ow in the four MLT regions, as those in
Fig. 5; dawn, midday, dusk and midnight regions. The
abscissa is again the KP levels and the ordinate is the
occurrence frequency and the number of samples for
each KP bin. Due to too small numbers of samples, we
will see the occurrence frequency at KP = 0 � 5.

In the midnight region (21 £ MLT < 3), with the
increasing KP values, the occurrence frequencies of
both up¯ow and down¯ow increase at lower KP values

(1 and 2) but appear to stop increasing at higher KP

values (more than 2). The di�erence between the two
occurrence frequencies is markedly small throughout all
the KP values less than 6, which is consistent with the
occurrence frequencies at 21 � 03 MLT in Fig. 4.

In the dawn (3 £ MLT < 9) and dusk (15 £ MLT<
21), the occurrence frequencies of both the ion up¯ow
and down¯ow increase monotonically with the increas-
ing KP values. The occurrence frequency of the up¯ow is
signi®cantly greater than that of the down¯ow for all KP

values.
In the midday (9 £ MLT < 15), with the increasing

KP, the occurrence frequencies of both the up¯ow and
down¯ow increases at lower KP values (1 � 3) without a
signi®cant di�erence between them. At higher KP values
(more than 3), with the increasing KP, the occurrence
frequency of the up¯ow appears to increase slightly or
remains at a particular value, while that of the down¯ow
decreases.

4 Discussion and conclusions

The ion up¯ow has been considered to be a phenom-
enon that ionospheric ions ¯ow out along the magnetic
®eld line of forces. The CP 7 mode experiment, data
from which we have used in this study, provides physical
parameters, however, not in the magnetic ®eld-aligned
direction but in the vertical direction from 285 to
1654 km high. This o�set of the beam direction from the
®eld-aligned direction by 12.5° obviously implies that a
measured vertical ion motion is a combination of ion
motions parallel to and perpendicular to the local
magnetic ®eld, as shown in Fig. 8. Only the geomagnetic
northward component of the ion motion perpendicular
to the magnetic ®eld produces the vertical component of
the ion motion while the eastward component does not.

Let us estimate the contamination of the perpendic-
ular plasma motion in the north-south directions to the
vertical motion. The vertical velocity V is a sum of the
projections from the velocities perpendicular and paral-
lel to the magnetic ®eld to the vertical line.

V � �Vk cos 12:5� � V? sin 12:5� � �0:98Vk � 0:22V?

The contribution of the perpendicular plasma velocity to
the vertical component is 22% of its velocity, that is,
V = 220 m/s for V? = 1000 m/s (equivalently about
50 mV/m electric ®eld at 285 km).

We will next estimate the change of the plasma
velocity with altitudes. We assume the electric equipo-
tentiality along a magnetic ®eld line, a uniform plasma
motion (equivalently a uniform electric ®eld) in the
region we consider, and a dipole magnetic ®eld. Since
the magnitude of the magnetic ®eld is proportional to
(r/r0)

)3, where r0 and r are in each case the distance from
the Earth's centre to 285 km altitude and to an altitude
where the distance between two speci®c magnetic ®eld
lines aligned in the north-south direction is proportional
to (r/r0)2. Hence, the southward and eastward compo-
nents of the ion velocity perpendicular to the magnetic
®eld, which is supposed to be E ´ B drift velocity, are

Fig. 3. The quantitative de®nition used in this study for selecting the
ion up¯ow and down¯ow events from the CP 7 database. See text for
the details

Table 2. The threshold criteria of the de®nition of ion up¯ow and
down¯ow

Threshold
criteria

Velocity
grad. Al
(m/s/km)

Consecutive
number N

Maximum
velocity A2
(m/s)

Velocity
grad. A3
(m/s/km)

�1 �0.2 3 �150 �0.3
�2 �0.3 4 �200 �0.4
�3 �0.4 5 �300 �0.5

+ for ion up¯ow; ) for ion down¯ow
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Fig. 4. The magnetic local time (MLT) distribution of the occurrence frequency of the ion up¯ow (left) and the down¯ow (right) for the threshold
criterion 1 (case 1) through the threshold criterion 3 (case 3). For both ion up¯ow and down¯ow, data only under KP < 4 are selected

Fig. 5. The distributions of the up¯ow and down¯ow for four magnetic local time regions: 21 £ MLT < 3, 3 £ MLT < 9, 9 £ MLT < 15, and
15 £ MLT < 21, under two geomagnetic disturbance levels: KP < 4 for quite conditions and KP ³ 4 for disturbed conditions
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proportional to (r/r0)
2 and (r/r0), respectively. The

northward and eastward velocities V? perpendicular to
the magnetic ®eld at 1654 km are about 1.45 and 1.21
times larger than those at 285 km, respectively.

Although the plasma velocity perpendicular to the
magnetic ®eld thus produces a certain amount of vertical
velocity, the ion up¯ow and down¯ow events, e.g.
shown in Fig. 1a, b, may not so much su�er such a
contamination from the perpendicular component.
There are two reasons for this. First, this vertical
velocity may rarely exceed 200 m/s, since the perpen-
dicular plasma velocity seldom becomes larger than the
corresponding velocity 1000 m/s (see e.g., Fig. 3a of
Fujii et al., 1999). Hence the threshold criterion 2 for the
maximum velocity 200 m/s is reasonable. Second, as is
obvious from the discussion, the contamination must be
a relatively constant value along the vertical line, only
slowly varying in magnitude. The height distribution of
the ion up¯ow/down¯ow shown in Fig. 1a, b does not
match this feature.

The ion up¯ow is characterised not only by the
enhancement of the ®eld-aligned ion velocity but also by
the increases of the ion and/or electron temperatures
(Wahlund et al., 1992). It is thus considered to be driven
either by frictional heating or by ion heating through
plasma instabilities that are excited by free energy from
particle precipitation. Hence, the ion up¯ow is mainly
located in the regions where an intense electric ®eld and/

Fig. 6. The KP dependence of the ion up¯ow and down¯ow for all
MLTs

Fig. 7. The KP dependence of the ion up¯ow and down¯ow in the
four MLT regions as in Fig. 5; dawn, midday, dusk and midnight
regions

Fig. 8. Schematic diagram to show how the ion velocity components
perpendicular to and parallel to the magnetic ®eld line contribute to
the vertical componen
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or precipitation is observed. Those regions are the polar
cusp, the polar cap boundary, and the auroral zone. An
ion out¯ow study with DE 1 satellite observations
(Kondo et al., 1990) has indeed shown the enhance-
ments of the ion out¯ow in these regions, in particular,
around the polar cusp region.

Tromsù is located at 66° invariant latitude (INV),
and is thus most frequently in the sub-auroral zone in
the midday time, in the auroral zone in the dawn and
dusk, and in the auroral zone and sometimes in the
polar cap through the polar cap boundary in the
midnight region (Feldstein and Strakov, 1967). A reason
why we see a smaller occurrence frequency of the ion
up¯ow in the midday region than in other regions may
be that the 66° INV ionosphere overhead Tromsù at
midday is relatively distant from the region where ion
heating e�ectively takes place.

The driving force for the down¯ow ions appears to be
the Earth's gravity by which the ions fall down after
they are lifted up by the mechanisms mentioned. Unless
up¯owing ions have enough energy of motion to escape
the Earth's gravity, they will come back to the
ionosphere. Naturally this motion energy can become
larger with increasing geomagnetic disturbances, since
both particle precipitation and the electric ®eld are
enhanced accordingly. This is why the occurrence
frequency of the ion up¯ow is rather monotonically
increased with the increased of the KP index in all MLT
regions.

The occurrence frequency of the ion up¯ow is nearly
the same as that of the down¯ow for lower KP values,
since enough energy is not given to ions to escape from
the Earth's gravity. On the other hand, the occurrence
frequency of the up¯ow becomes greater than that of the
down¯ow with increasing KP index, since the ions tend
to gain enough energy to escape from the Earth's
gravity.

The di�erence of the occurrence frequencies between
the ion up¯ow and down¯ow has also an MLT
dependence. The di�erence is small in the midnight
region, suggesting little net ion ¯ow there, but larger
di�erences between the two occurrence frequencies both
in the dawn and dusk regions. Although we do not fully
understand what causes this MLT dependence, one
possible explanation is as follows. Statistically, the
electric ®eld strength, the electromagnetic energy input
from the magnetosphere to the ionosphere and the Joule
heating rate become largest in the dawn and dusk
regions (Fujii et al., 1999), rather than in the midnight
region. This MLT dependence may suggest that ions in
the dawn and dusk regions more frequently obtain
greater energy than those in the midnight region. On the
other hand, in the midnight region we expect intense
particle precipitation in terms of energy and ¯ux
particularly associated with substorms and storms.
These precipitating plasmas with rather high energies
ionise most e�ciently neutral atmosphere in the lower E
region but probably not so e�ciently at higher altitudes
where ions are heated up.

We have not discussed the ¯uxes of the ion up¯ow
and down¯ow, which are highly dependent on the

threshold criteria. These will be covered in future works
together with the evaluation of these ¯uxes, their
seasonal variations, spatial con®nement and movement
of the up¯ow/down¯ow.

5 Summary

We have determined the MLT distribution and KP

dependence of ion up¯ow and down¯ow events based
on a data analysis using the EISCAT VHF radar CP-7
data obtained at Tromsù.

1. Both ion up¯ow and down¯ow events can be
observed at any local time (MLT), irrespective of
dayside and nightside, and under any magnetic
disturbance level, irrespective of quiet and disturbed
levels.

2. These up¯ow and down¯ow events are more fre-
quently observed in the nightside than in the dayside
regions.

3. The up¯ow events are more frequently observed than
the down¯ow events at any local time except mid-
night and at any KP level and the di�erence of the
occurrence frequencies between the up¯ow and
down¯ow events is smaller around midnight.

4. The occurrence frequencies of both the ion up¯ow
and down¯ow events appear to increase with increas-
ing KP level, while the occurrence frequency of the
down¯ow appears to stop increasing at some KP level.
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