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Abstract. We have analyzed the response of azimuthal
component of the ionospheric electric ®eld to auroral
arc activity. We have chosen for analysis three intervals
of coordinated EISCAT and TV observations on 18
February, 1993. These intervals include three kinds of
arc activity: the appearance of a new auroral arc, the
gradual brightening of the existing arc and variations of
the arc luminosity. The arcs were mostly east-west
aligned. In all cases, the enhancement of arc luminosity
is accompanied by a decrease in the westward compo-
nent of the ionospheric electric ®eld. In contrast, an
increase of that component seems to be connected with
arc fading. The observed response is assumed to have
the same nature as the ``short circuit'' of an external
electric ®eld by the conductor. The possible consequence
of this phenomenon is discussed.

Key words. Ionosphere (electric ®elds and currents;
ionospheric irregularities) á Magnetospheric physics
(auroral phenomena)

1 Introduction

The horizontal electric ®elds near and within auroral
arcs have been extensively studied for more than two
decades using radars, rockets, and satellites. Two arc
classi®cation schemes have been proposed, based on
observations of electric ®elds by de la Beaujardiere et al.
(1981) and Marklund (1984). The large-scale pattern of
electric ®elds near arcs, identi®ed only as a region of
enhanced electron density, was presented by Opgen-
oorth et al. (1990) and con®rmed later by Williams et al.
(1992); Aikio et al. (1993); Lewis et al. (1994) and
others. Large electric ®elds are mostly found on the

equatorward side of an arc in the pre-midnight sector
and on the poleward side after local midnight, are seen
as enhancements of the background convection electric
®eld and are directed toward the arc.

The studies mentioned focused on the variation of the
normal (meridional) component of the ®eld through the
arc. However, the investigation of the tangential (azi-
muthal) electric ®eld is also important for understanding
the arc electrodynamics because of the possible role of
this component in the arc generation (see Borovsky, 1993
for references). Nevertheless, relatively little attention is
still paid to this study. One case was mentioned by
Kirkwood et al. (1988), and a number of papers
concentrated on this component in connection with
substorm investigation (Kozelova et al., 1982; Kirkwood
et al., 1988; Lewis et al., 1997). Haerendel et al. (1993)
and Gazey et al. (1996) discussed azimuthal electric ®elds
in connection with studies of the motion of auroral arcs
relative to plasma convection in the ionosphere.

Another problem is to investigate the temporal
variations of the electric ®eld. Aikio et al. (1993)
reported the simultaneous intensi®cation of the arc-
associated normal electric ®eld with the optical bright-
ening of the arc. A similar case had been mentioned
before by Timofeev et al. (1987). In contrast, Lewis
et al. (1994) concluded that enhanced arc-associated
electric ®elds are connected spatially to the arcs and
move with them.

The use of high-resolution TV-data is one of the ways
to resolve the problem. It is interesting to note a result
by Lanchester et al. (1996). They compared high time
resolution optical measurements (TV camera and ®lter
photometer) with horizontal electric ®eld measurements
and found the electric ®eld to point towards the bright
optical features which were moving along the arc.

In this study we compare the variations of the
azimuthal component of ionospheric electric ®eld with
variations of auroral arc luminosity. The arcs were
observed by TV-camera, the incoherent EISCAT radar
provided the measurements of the ionospheric electric
®elds.Correspondence to: V. Safargaleev
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2 Description of measurements

The measurements were made during an observing
campaign near Tromsù, Norway on 18 February, 1993.
The plasma convection velocities and the corresponding
electric ®elds were measured with the tristatic UHF
EISCAT radar. For a detailed description of the
EISCAT radar see Folkestadt et al. (1983). The trans-
mitter station is located at Ramfjordmoen (69.59°N and
19.23°E) near Tromsù. The other two passive stations at
Kiruna (67.86°N and 20.44°E) and Sodankyla (67.37°N
and 26.65°E) make measurements at the single intersec-
tion point of the three antenna beams at the altitude of
348 km. Eastward component of horizontal electric ®eld
(30-s integration) was used for analysis.

The TV camera was situated at the Tromsù trans-
mitter station. It was pointed towards the geographic
zenith, and the ®sh-eye lens gave a circular ®eld of view
of 180°. In Fig. 1a the location of the TV camera and
the EISCAT transmitter is shown by a black circle, the
projection of the single intersection point (68.93°N and
19.20°E) is shown by a black square, and the TV camera
®eld of view is bordered by the large circle for a height of
100 km.

The TV data for the period of interest were digitised
at 1 s intervals with spatial resolution of about
0.6 ´ 0.6 km at an altitude of 110 km near the TV
camera zenith. The examples of the digitised TV frames
are presented in Fig. 1b. They show the location of the
auroras relative to the EISCAT zenith for the events
under consideration. Also shown are (Z)enith, (E)ast-
ward and (W)estward splits which are used to construct
the keograms and calculate the mean value of the arc
luminosity as well as the luminosity of the sky near the
EISCAT zenith. The width of the Z-split is about 30 km
at an altitude of 110 km near the zenith.

The ground magnetic ®eld was measured in Soroya
(SOR) (70.54°N and 22.22°E), Kilpisjarvi (KIL)
(69.02°N and 20.79°E), Muonio (MUO) (68.02°N and
23.53°E) and Sodankyla (SOD) geomagnetic observato-
ries at 10, 10, 10 and 15-s resolution, respectively. The
SOR, KIL and MUO observatories are the part of the
IMAGE network.

3 Results of observation

3.1 Overview

The data were taken during a magnetically active period
which lasted for many days. The day of February 18th
was characterized by a mean value of Kp � 4. Magnetic
data show at least four onset-type events during the
interval between 1800±2400 UT. The IMF's Z-compo-
nent was directed southward for several hours before
and during these events, the auroral activity was also
very high (Gazey et al., 1996).

The X and Z component magnetic records from the
auroral region in Scandinavia are illustrated in Fig. 2a, b
respectively. The aurora enhancement times are marked
with vertical lines. Two events of interest (2029 UT and

2047 UT) occur a few minutes before substorm onset
started near 2048 UT as a negative bay in the X
component in KIL, MUO and SOD (Fig. 2a) and
accompanied by Pi2 pulsations in SOD (not shown).
During this time Scandinavia was situated in the pre-
midnight sector (local magnetic midnight is at 2130 UT).
The Z component magnetic ®elds (Fig. 2b) reveal that a
substorm-associated westward electrojet lay south of the
Tromsù site, somewhere between KIL and MUO. The
event at 2309 UT was also accompanied by rather weak
enhancement in this electrojet. The Z component
determinations of the latitude of the centre of the
electrojet are con®rmed by the location of the maxima in
the disturbance in the X components.

3.2 Appearance of a single auroral arc
at 2309 UT (event 1)

We start from the interval which is the simplest to
analyze. The auroral activity for this interval is present-
ed in Figs. 1b, 3a and 4a (top panel). It is characterized
by the appearance of a new auroral arc and fading of
pre-existing arc at the southern edge of Tromsù

Fig. 1. a Map showing the location of the EISCAT transmitter and
TV-camera (black circle), as well as magnetic stations (open circles);
the large circle indicates the ®eld of view of the TV-camera, the black
square shows the EISCAT zenith at an auroral height of 100 km.
b TV-images showing the co-location of the auroral arcs and the
EISCAT zenith marked with white squares
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TV-camera ®eld of view. Also shown are the variations
of the eastward component of the ionospheric electric
®eld (black step-like traces in Figs. 3 and 4) measured by
EISCAT radar approximately 12° south of the zenith.

The dynamics of aurora equatorward the EISCAT
beam is presented on the keogram in Fig. 3a, (in this the
trace of the EISCAT zenith at the auroral altitude
coincides with the upper border). This keogram (as well
as another two keograms below) is obtained along the
Z-pro®le (see Fig. 1b). Near 2309 UT, a new arc appears
in the ionosphere approximately 200 km equatorward
the EISCAT beam. Its appearance is accompanied by a
distinct decrease in westward component of the iono-
spheric electric ®eld from 15 mV/m to 2 mV/m near the
EISCAT zenith. The variations of the arc luminosity are
shown in Fig. 4a (top) where the appearance of a new
arc is seen both on Z-pro®le and W- and E-pro®les
almost simultaneously. For comparison we present also
the variations of sky luminosity near the EISCAT zenith
(Fig. 4a, bottom). There are no signi®cant changes
during the period.

As seen in Figs. 1b, 3a, the appearance of new arc is
accompanied by a fading of pre-existing one. The similar
variations of the luminosity in the system of two parallel
arcs were reported early by Safargaleev et al. (1997).

3.3 Increase of the luminosity of a single auroral arc
at 2029 UT (event 2)

In this section we examine the response of the azimuthal
electric ®eld to the gradual increase in the luminosity of
single auroral arc drifting slowly toward the Tromsù local

zenith. The dynamics of the arc during the interval is
shownon the keogram inFig. 3b, the luminosity of the arc
versus time is presented in Fig. 4b (top panel), (in
Fig. 3b, c the trace of the EISCAT zenith at the auroral
altitude coincides with the lower borders). The gradual
increase in the luminosity started at 2028:30 UT and was
seen both on Z-pro®le andW- andE-pro®les. The arc was
at a distance of about 100 km from the EISCAT beam
when the arc luminosity reached the maximum. At this
time (near 2029 UT) the decrease in the westward
component of ionospheric electric ®eld from 17 mV/m
to 2 mV/m is detected by EISCAT. After that the arc
begins to fadewhich accompanied by small increase in the
electric ®eld.

As for the previous case, we have examined also the
luminosity of the sky (shown by curves in Fig. 4b,
bottom panel) as well as variations of the mean value of
the electron concentration in the ionospheric E-region
(dashed step-like traces in the same panel) near the
EISCAT beam. No signi®cant changes both in lumi-
nosity and density were seen again through the interval.

3.4 Luminosity variations in a single auroral arc
around 2047 UT (event 3)

The period includes the substorm expansion phase
which starts as a negative excursion in the X-component
at 2048:15 UT (see Fig. 2a). The auroral breakup begins
as a brightening of the arc near southward edge of
TV-camera ®eld of view. Approximately ten minutes
later, the westward travelling surge appears east of
Tromsù. The onset was preceded by a period of

Fig. 2a, b. High-latitude magnetograms from the Scandinavia during the intervals studied: a X components, b Z components. The times of the
aurora arc enhancement are marked with vertical solid lines
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Fig. 3a±c. The grey-coded keograms showing dynamics of the
auroras along Z-pro®le and variations of 30 s averaged values of
the azimuthal component of ionospheric electric ®eld (black step-like
traces). Z is the zenith angle, Ee is azimuthal component of the
ionospheric electric ®eld (positive east)

Fig. 4a±c. Three plots of simultaneous optical and EISCAT obser-
vation. In each plot the upper panel shows the variations of the mean
value of the arc luminosity and the lower panel shows the variations of
the mean value of the sky luminosity (curves) and electron
concentration in the ionospheric E-region (dashed step-like traces) in
vicinity of the EISCAT zenith. As in Fig. 3, black step-like traces
indicate the variations of the azimuthal electric ®eld. J means the
intensity of the luminosity (arbitrary units)

c

68 V. Safargaleev et al.: The response of the azimuthal component of the ionospheric electric ®eld



relatively low magnetic activity. During this period the
TV-camera showed two auroral arcs, a very weak arc
near the local zenith and rather intense arc poleward of
them. At 2046 UT the weakest arc disappears almost
completely.

An interval under consideration starts at 2046 UT
when the arc near EISCAT beam has faded and includes
the quasi-periodical variation of the activity in single arc
located approximately 100 km north of zenith. The
dynamics of the arc is shown on the keogram in Fig. 3c,
the luminosity of the arc versus time is presented in
Fig. 4c (top panel). The black step-like trace shows the
variations of the azimuthal component of ionospheric
electric ®eld.

Three steps of auroral development can be seen in
Figs. 3c and 4c. At ®rst the arc fades. At 2047 UT the arc
luminosity starts to increase and reaches a maximum
near 2047:40 UT. After that the arc fades again and
disappears. During the period the arc drifts equator-
wards. The character of the arc dynamics seems to be
typical for pseudobreakup events (Koskinen et al., 1993).

The increase of the arc activity after 2047 UT is
accompanied by a decrease in the westward component
of background electric ®eld from 18 mV/m to 8 mV/m.
In contrast, disappearance of the arc near 2048:30 UT
and fading near 2046:30 UT are accompanied by
increases in this component from 10 mV/m to 25 mV/m
and from 7 mV/m to 15 mV/m, respectively. As for the
previous cases, neither sky luminosity nor electron
concentration varies signi®cant near radar beam during
the period (see bottom panel in Fig. 4c).

4 Discussion

4.1 Polarization electric ®elds generated
by an elliptic ionospheric inhomogeneity

In the present study we have analyzed the variations of
the azimuthal component of ionospheric electric ®eld
and of aurora luminosity. The observed correlation of
these variations allows us to conclude that a decrease in
the westward component of the ®eld is caused by
increase of auroral arc luminosity, whereas the increase
in this component seems to be connected with the arc
fading. The optical observations near the measurement
point also support our assumption as they do not show
any signi®cant variations of the sky luminosity here.

We think that the local enhancement of ionospheric
conductivity may be the most probable reason of the
phenomenon observed. If the magnetospheric generator
region acts as a current generator, the ionospheric
electric ®eld has to modify itself in a way that the current
continuity in the ionosphere is preserved. From this
point of view Aikio et al. (1993) discussed the increase
of the meridional electric ®eld in the adjacent arc region
of low ionospheric conductivity. In our study, the
ambient electric ®eld has a signi®cant azimuthal com-
ponent, and the appearance of the azimuthally con®ned
region of enhanced conductivity causes this component
to decrease. Qualitatively this e�ect is similar to the

``short circuit'' of an external electric ®eld by a conduc-
tor. Quantitatively it may be described in terms of a
polarization electric ®eld that arises inside and around
the stretched ionospheric inhomogeneity and results in a
decrease the ambient ®eld.

The disturbed electric ®elds generated by a circular
region of enhanced conductivity had been calculated by
Maltsev et al. (1974). For an elliptic inhomogeneity, the
expressions for the electric disturbances may be inferred
from Eqs. (13, 15) taken from Maltsev et al. (1974) by
the conformal transformation z = V+(a+b)/4V of an
ellipse on the complex plane z into a circle ring on the
complex plane V. (Here a and b are the major and minor
semi-axes of the ellipse). For the model in Fig. 5 (top
panel) they have the following form (see also Lyatsky
and Maltsev, 1983):

Fig. 5a, b. Elliptic inhomogeneity in the ionosphere; E0 and S0 are
undisturbed background electric ®eld and conductivity, respectively,
and S1 refers to the region of enhanced conductivity (top panel). The
distribution of polarization electric ®elds generated by the ionospheric
inhomogeneity orientated along (central panel, a) and across (central
panel, b) the ionospheric electric ®eld. The images showing the
orientation of the arcs under consideration relatively the ionospheric
electric ®eld (bottom panel)
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Equation (1) gives the value of the disturbed electric
®eld, E1, inside the ellipse, and Eq. (2) describes the
disturbance of electric ®eld outside the inhomogeneity.
For convenience all vectors were replaced by complex
numbers of the kind E=Ex + iEy. z = x+iy is the
complex independent variable (distance). S=SP ) iSH is
the complex conductivity and SP and SH are the height-
integrated Pedersen and Hall conductivities of the
ionosphere (indexes 0 and 1 correspond to the back-
ground and disturbed values, respectively); Sw is the
e�ective conductivity of the magnetospheric plasma for
propagating AlfveÂ n wave, Sw =(l0VA)

)1, where l0 is the
vacuum magnetic permeability, VA is the Alfven veloc-
ity. The symbol `*' means the complex conjugate. The
Eqs. (1±2) are obtained by assuming that charges and
®eld aligned currents are located on the ellipse periph-
ery, and the undisturbed electric ®eld E0 is uniform.

The distribution of the polarization electric ®eld
around the inhomogeneity is presented in Fig. 5 (central
panel) for two cases of orientation of the inhomogeneity
in the background electric ®eld. For the idealized model
of global convection (see, i.e. Kan and Sun, 1996) case a
corresponds to the arc which appears in the auroral
ionosphere near local midnight at the preliminary phase
of a substorm when the magnetospheric convection is
forced and ionospheric electric ®eld is mostly E-W
oriented. Case b corresponds to the arc placed in the
morning or evening sector of auroral zone where the
convection electric ®elds are meridional electric ®elds. In
reality, the distribution of the ionospheric electric ®eld
near local midnight is rather complex. For the events
under consideration the angle between the arc and
electric ®eld was about 45° (see Fig. 5, bottom).

For the inhomogeneity stretched along the ®eld
(Fig. 5a), there is a large area where the disturbed
electric ®eld is directed against the ambient ®eld. So, the
tangential component of the total electric ®eld will
decrease here. In the case of perpendicular orientation
(Fig. 5b), the response of the tangential component to
the appearance of the inhomogeneity will strongly
depend on the location of the measurement point.

We present the solution of Eqs. (1±2) for the polar-
ization electric ®elds generated by an elliptic inhomoge-
neity stretched along the ambient electric ®eld. To
estimate the disturbance of ionospheric conductivity
inside the inhomogeneity, we have calculated the high-
integrated Pedersen and Hall conductivity using the real
pro®les of electron density measured by EISCAT and
the values of neutral density and undisturbed electron

temperature taken from the CIRA (1972) model. The
results of calculations are presented in Fig. 6. Note, that
during the intervals of interest (marked with black
arrows in Fig. 6) the ionospheric conductivity near
EISCAT beam almost did not change, whereas inside
the active region crossing the EISCAT beam near 2050
UT the conductivity increases signi®cantly.

The solution of Eqs. (1±2) for the tangential compo-
nent of disturbed electric ®eld outside the inhomogene-
ity, E2, is presented in Fig. 7 for di�erent values of
parameters. In particular, assuming SH/SP = 4, SH0/
SP0 = 2, for the inhomogeneity of 20 ´ 1000 km and
SP/SP0 � 10 we have E2 @ )0.5E0 at a distance of
100 km from the inhomogeneity. For the 45° orienta-
tion, the disturbed ®eld at 100 km has approximately
the same value near the y-axis (at x � 0), but is three
times smaller near the inhomogeneity edges (at large jxj).
For the events under consideration we get the distur-
bance from )0.4E0 to )0.8E0.

It is necessary to note that our model does not take
into account the possible in¯uence of the magnetosphere
where the polarization electric ®elds can, for example,
partially close via ®eld-aligned currents. Most of the
self-consistent models proposed assume the arc to be a
narrow strip, in®nitive or homogeneous in the east-west
direction (Borovsky, 1993; Kozlovsky and Lyatsky,
1994). The task becomes rather complex if the iono-
spheric irregularity is also azimuthally con®ned. We
regard this question as beyond the scope of this study
and emphasis.

Fig. 6. Temporal variations of the high-integrated Hall and Pedersen
conductivity (top panel) and the ratio of Hall to Pedersen conductivity
(bottom panel) measured by EISCAT; black arrows indicate the
moments under consideration
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4.2 Out-of-phase variation of the luminosity
in the system of two parallel arcs

Recently Safargaleev et al. (1997) have reported the
``out-of-phase'' variations of the arc intensity when the
appearance of a new arc was accompanied by fading or
disappearance of a pre-existing one. They proposed the
decrease of the azimuthal component of ionospheric
electric ®eld as one of the possible reason ``switching
o�'' the pre-existing arc. For instance, Borowsky (1993)
discussed a model in which the width of the arc is

proportional to the magnitude of tangential component
of the background electric ®eld.

As was mentioned in Sect. 3.1, we observed the ``out-
of-phase'' event during event 1 (see Figs. 1b, 3a). In
Fig. 8 we present the variations of the mean value of
luminosity in the equatorward (pre-existing) and pole-
ward (appearing) arcs. It is clear that the appearance of
a new arc is accompanied by a decrease in the westward
component of ionospheric electric ®eld and by the
fading of pre-existing arc. Thus, the hypothesis by
Safargaleev et al. (1977) is in an agreement with our
observation.

4.3 Behaviour of the meridional component
of the electric ®eld

Variations of the meridional (normal) component of
ionospheric electric ®eld during the intervals under
consideration are presented in Fig. 9. The black arrows
indicate the moment of the azimuthal component
reduction connected with appearance of new arc
(Fig. 9a), maximum intensity in the brightening
arc (Fig. 9b) and enhancement of the pre-breakup arc
(Fig. 9c). In contrast to azimuthal component, no
noticeable response to aurora enhancement is seen in
the meridional component. This is not consistent with
the results by Aikio et al. (1993). We think that although

Fig. 7a±c. The distribution of the azimuthal component of polariza-
tion electric ®eld, E2, generated by the ionospheric inhomogeneity
stretched along the ambient electric ®eld. a is the electric ®eld outside
the inhomogeneity versus the conductivity disturbance and b the
distance from inhomogeneity, and c the distribution of the electric
®eld along the inhomogeneity. Sp0 is the height-integrated Pedersen
conductivity, Sp is the disturbance of Pedersen conductivity inside the
inhomogeneity

Fig. 8. Variations of the mean value of the luminosity in the system
of two parallel auroral arcs (top panel) and variation of the azimuthal
component of electric ®eld in the ionosphere (bottom panel). J means
the intensity of the luminosity (arbitrary units)
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the arc-associated polarization electric ®eld changes this
component of the background convection ®eld, the
small electric ®eld generated in response to the ®eld-
aligned current system may compensate for these
changes.

Nevertheless, it is interesting to note for events 2 and
3 that the meridional component increases while the arc
verges toward the EISCAT beam. This is in agreement
with the assumption by Lewis et al. (1994) about the

region of enhanced electric ®eld equatorward the arc
moving with the arc.

5 Summary

In the present study we have analyzed the response of
the ionospheric electric ®eld (azimuthal component) to
auroral arc brightening. We have examined three types
of auroral arc activity: appearance of a new arc, the
gradual brightening of the existing arc and variations of
the arc luminosity. It is found that the enhancement of
arc luminosity is accompanied by a decrease in the
westward component of the ionospheric electric ®eld. In
contrast, the increase in this component is connected
with the arc fading. The observed response is described
in terms of polarization electric ®elds, which are
generated by an elliptic inhomogeneity in the ionosphere
and reduce the tangential component of background
convection electric ®eld. We think that the decrease of
the electric ®eld may be a reason for out-of-phase
variations of the auroral activity observed by Safarga-
leev et al. (1997) in the system of auroral arcs.
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