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Abstract. The kinetic theory of precipitating electrons
with Maxwellian source plasma yields the well-known
current-voltage relationship (CV-relationship; Knight
formula), which can in most cases be accurately
approximated by a reduced linear formula. Our question
is whether it is possible to obtain this CV-relationship
from ¯uid theory, and if so, to what extent it is
physically equivalent with the more accurate kinetic
counterpart. An answer to this question is necessary
before trying to understand how one could combine
time-dependent and transient phenomena such as Alf-
veÂ nic waves with a slowly evolving background de-
scribed by the CV-relationship. We ®rst compute the
¯uid quantity pro®les (density, pressure etc.) along a
¯ux tube based on kinetic theory solution. A parallel
potential drop accumulates plasma (and pressure) below
it, which explains why the current is linearly propor-
tional to the potential drop in the kinetic theory even
though the velocity of the accelerated particles is only
proportional to the square root of the accelerating
voltage. Electron ¯uid theory reveals that the kinetic
theory results can be reproduced, except for di�erent
numerical constants, if and only if the polytropic index c
is equal to three, corresponding to one-dimensional
motion. The convective derivative term v � rv provides
the equivalent of the ``mirror force'' and is therefore
important to include in a ¯uid theory trying to describe
a CV-relationship. In one-¯uid equations the parallel
electric ®eld, at least in its functional form, emerges self-
consistently. We ®nd that the electron density enhance-
ment below the potential drop disappears because the
magnetospheric ions would be unable to neutralize it,
and a square root CV-relationship results, in disagree-
ment with kinetic theory and observations. Also, the
potential drop concentrates just above the ionosphere,
which is at odds with observations as well. To resolve
this puzzle, we show that considering out¯owing iono-
spheric ions restores the possibility of having the
acceleration region well above the ionosphere, and thus
the electron kinetic (and ¯uid, if c � 3) theory results are
reproduced in a self-consistent manner. Thus the inclu-

sion of ionospheric ions is crucial for a feasible CV-
relationship in ¯uid theory. Constructing a quantitative
¯uid model (possibly one-¯uid) which reproduces this
property would be an interesting task for a future study.

Key words. Ionosphere (ionosphere-magnetosphere
interactions; particle precipitation) � Magnetospheric
physics (magnetosphere-ionosphere interactions)

1 Introduction

By studying the adiabatic motion of electrons (ions can
be similarly treated but their contribution is small) along
auroral ¯ux tubes, it can be shown that the current
density carried by the precipitating electrons at the
ionospheric level is, to a good approximation, given by

j�i� � K
Te

e
� V

� �
�1�

where

K � ne2���������������
2pmeTe
p �2�

is the ®eld-aligned conductance, Te is the electron
temperature in energy units, and V is the ®eld-aligned
potential drop (corresponding to upward pointing
electric ®eld) (Knight, 1973; Lundin and Sandahl,
1978; Fridman and Lemaire, 1980; Janhunen and
Olsson, 1998).

Equation (1) is derived by assuming an isotropic
Maxwellian source plasma distribution at the equatorial
plane and assuming that all electrons which mirror
below the ionospheric altitude are captured by the
ionosphere, and therefore carry a net negative current
into the ionosphere (i.e., net upward current). For this
reason, Eq. (1) gives a nonzero current even if the
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potential drop V is zero. We must also assume that some
process in the magnetosphere constantly re®lls the loss
cone during every bounce period, so that the distribu-
tion function remains isotropic. If the loss cone ®lling is
incomplete, Eq. (1) must be multiplied by the loss cone
®lling rate (a dimensionless number between 0 and 1,
with unity corresponding to complete loss cone ®lling)
(Janhunen, 1996; Olsson, 1997).

Our subject is to study to what extent the physics
behind Eqs. (1) and (2) can be captured in some type of
¯uid theory. In other words, is it possible to derive these
equations from some ¯uid theory, perhaps in some
approximate sense. Just by looking at the symbols
appearing in Eq. (2), two things are clear:

1. The equation contains me, thus electron inertia must
be included in any ¯uid theory that tries to reproduce
Eqs. (1) and (2).

2. The equation contains p. There is no ``easy'' way this
natural constant can emerge from a ¯uid theory, thus
it is likely that we can, at best, produce only some
approximation to Eq. (2), perhaps an equation that
has the same dependence on the physical quantities
but a di�erent numerical constant in front of it.

These considerations mean that it is necessary, but
maybe not su�cient, to include electron inertia. Like-
wise, it is not clear how well the numerical factors can be
reproduced. Thus an explicit computation is necessary
to answer the questions. In order to compare the kinetic
and ¯uid theories in detail, it is necessary to compute the
¯uid quantity pro®les (i.e., pro®les along the ¯ux tube)
from the exact kinetic theory solution, using the
de®nitions of the ¯uid quantities as moments of the
distribution function. This computation is somewhat
tedious and has not been done before. This is the main
reason why formulas appearing in the following section
are sometimes lengthy.

2 Kinetic theory

Consider a general gyrotropic source plasma distribu-
tion function f in the equatorial plane, which is
symmetric in the ®eld-aligned direction. We use the
following normalization:

Ne �
Z

d3vf
1

2
mv2k;

1

2
mv2?

� �

�
Z2p
0

duv

Z1
ÿ1

dvk

Z1
0

dv?v?f
1

2
mv2k;

1

2
mv2?

� �

�2p
Z1
0

Z1
0

f �Wk;W?�
�����������
2

m3Wk

s
dW?dWk �3�

(we made the obvious changes of variables Wk � 1
2 mv2k,

W? � 1
2 mv2?, and used symmetry for negative vk). Here

Ne is the source plasma density. Our f is a function of
the parallel and perpendicular kinetic energies Wk and
W?.

The particles will be electrons in practice, but this is
not essential for the formulas of this section. In this
section we will compute the current density as j � env,
i.e., assuming that the particles have positive charges.
Thus, a precipitating current will become a positive
quantity, which is convenient. When we apply the
formulas in later sections we will change the sign for
electrons.

For simplicity, we limit ourselves to the Maxwellian
source plasma distribution function, which is given by

fM�Wk;W?� � Ne
m
2pT

� �3=2
exp ÿWk � W?

T

� �
�4�

and obeys normalization Eq. (3). Here T is the source
plasma temperature in energy units. Other distribution
functions have been considered before (Pierrard, 1996;
Janhunen and Olsson, 1998).

Consider particle motion in one of the hemispheres
and let it be the Northern hemisphere. We denote
positive parallel velocities as being towards the iono-
sphere. Half of the particles belonging to the source
plasma have a positive velocity. Some of these particles
(those with small enough pitch angle) will reach the
ionosphere, while others will mirror above the iono-
sphere. We assume that the ionosphere is a plane at a
de®nite altitude which absorbs all entering particles, and
that it emits no particles. We also assume that there
exists a potential drop along the magnetic ®eld. The
particle kinetic energy is therefore incremented by eV
with V � 0 if it moves from the equatorial plane to the
ionosphere. We denote u � eV =T (u is thus the dimen-
sionless potential drop). We choose the normalization of
the potential so that V (and u) vanishes at the equatorial
plane. The model is essentially similar of that employed
in earlier works (Fridman and Lemaire, 1980; Janhunen
and Olsson, 1998) and is shown schematically in Fig. (1).

If Bm denotes the equatorial plane magnetic ®eld and
Bi the ionospheric magnetic ®eld, then b � B=Bm is the
magnetic ®eld ratio at a general point between the
ionosphere and the equatorial plane, and b0 � Bi=Bm is
the corresponding quantity at the ionosphere. Clearly

Maxwellian source
plasma

Mirroring

Electron
precipitation
current into
ionosphere

Adiabatic motion with:

- = const.

-E + eV = const.

µ

kin

Parallel pot. drop V

Fig. 1. Schematic description of the kinetic electron model. A
Maxwellian source plasma is assumed to be maintained at a high
magnetospheric region. Downward of that the ®rst adiabatic
invariant l � W?=B and particle energy are conserved. Particles that
hit the ionosphere are assumed to be lost and they form the
precipitation current
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we must have 1 � b � b0, in analogy with the de®nition
u0 � eV0=T , where V0 is the ionospheric potential.

The downgoing particle ¯ux depends only on source
plasma properties, not on the presence of the ionosphere
in any way. The upgoing mirrored ¯ux is similar to the
downgoing ¯ux, except for a di�erent sign of the parallel
velocity (the sign change is equivalent to a time reversal)
and the presence of the loss cone. We can compute both
upgoing and downgoing ¯uxes at once by ®rst comput-
ing a downgoing ¯ux U while assuming a loss cone in the
source plasma (the width of the loss cone is para-
meterized by b0). The upgoing mirrored ¯ux is obtained
from U by a sign change, because the loss cone was
already implemented in the source plasma. The down-
going primary ¯ux is obtained from U by taking the
limit b0 !1, that is, by removing the loss cone.
Equations (19) and (20) later are derived using this
methodology.

To provide a hint on how to compute the energy-
dependent particle ¯ux U we ®rst recall how to compute
the current density (Janhunen and Olsson, 1998;
Fridman and Lemaire, 1980):

j � 2p
Z1
0

ZW max
?

0

f �Wk;W?�
�����������
2

m3Wk

s
1

2
bevk

� �
dW?dWk ;

�5�
where the ®niteness of

W max
? � Wk � eV

bÿ 1
�6�

removes mirrored particles from the population. This
expression for W max

? is valid only if the condition

V �s0�
V �s� �

b�s0� ÿ 1

b�s� ÿ 1
whenever s0 � s �b�s0� � b�s��

�7�
(s is the ®eld-aligned coordinate, being zero at the source
plasma and growing towards the ionosphere) is valid
along the ®eld line. We call this condition the Fridman-
Lemaire condition (FL-condition) (Fridman and
Lemaire, 1980). For example, if V is a linear function of
the magnetic ®eld, V �b� � A�bÿ 1�where A is a constant,
the FL-condition is satis®ed (in fact, marginally satis®ed).
If the FL-condition is not satis®ed, some particles which
would precipitate according to Eqs. (5) and (6) will
actuallymirror. For example, if the parallel electric ®eld is
zero in the vicinity of the equatorial plane, particles with
very small parallel energy and perpendicular energy
smaller than the potential drop would reach the iono-
spheric altitude according to Eqs. (5) and (6), but will in
reality mirror close to the source region.

If the potential drop is concentrated in the acceler-
ation region at about 1RE altitude, the FL-condition is
not necessarily in force above the acceleration region
and exact calculations would then become complicated
and dependent on the details of the potential distribu-
tion, i.e., on exactly how and where FL-condition is
violated (Whipple, 1978). To estimate how much our

results could change if the FL-condition is violated,
assume that the potential drop is totally con®ned below
a certain altitude, 2RE, say, but that below that altitude,
the potential drop distribution is such that the FL-
condition (7) is in force there. Then the particle motion
above the potential drop is una�ected by the potential
drop and we could as well assume that the region above
that altitude is, in fact, source plasma. That is, we can
use our formulas derived later, just changing (decreas-
ing) the values of b and b0. For source plasma at 2RE
altitude, b0 becomes about 30, which is still so large that
our 1=b0 expansions will still be valid. That is, our
results will be practically una�ected by such a violation
of the FL-condition. It is physically evident that the case
where the FL-condition is violated in such a way that
the potential drop is totally con®ned below a certain
altitude is the worst case, thus we have shown that our
results are not, in practice, a�ected by possible viola-
tions of the FL-condition.

Equation (5) is the same as the normalization integral
(Eq. 3) except that the factor �evk�1=2�b� has been
inserted and the integration domain has been reduced to
include only those particles that have small enough pitch
angles to penetrate the ionosphere (parameter W max

? ).
The parallel velocity vk is given by vk �

��������������
2Wk=m

p
. The

explanations of di�erent factors in �evk�1=2�b� are as
follows: evk gives us the current density, �1=2� excludes
those particles that approach the other hemisphere, and
b � B=Bm takes into account the scaling of the ¯ux tube
so that particles are conserved. Notice that the integral
is performed in the equatorial plane. Therefore it is the
equatorial plane parallel velocity vk which appears in the
formula, not the ionospheric parallel velocity. The ¯ux
(current) is still the same as that hitting the ionosphere
because we have determined the loss cone in the
equatorial plane analytically and limited the domain of
integration accordingly.

2.1 General particle ¯ux

We are now ready to write an expression for the energy-
dependent particle ¯ux U with general source plasma
distribution. We just generalize Eq. (5) by inserting two
Dirac d-functions:

U�Ek;E?� �
Z1
0

dWk

ZW max
?

0

dW?f �Wk;W?� C������
Wk

p
� 1

2
b

��������
2Wk
m

r !
d�W 0

k ÿ Ek�d�W 0
? ÿ E?� �8�

where C � 2p
���
2
p

mÿ3=2 and W 0
k and W 0

? are the parallel
and perpendicular kinetic energies of a particle acceler-
ated through the potential drop V and penetrating into
the convergent magnetic ®eld b. Wjj and W? are the
source plasma particle energies and Ek and E? are the
energies observed by a detector at magnetic ®eld
strength b. Assuming conservation of energy and the
®rst adiabatic invariant l � W?=B we obtain
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W 0
? � bW?

W 0
k �Wk � uT ÿ �bÿ 1�W? : �9�

Doing the W? integration by using one of the d-
functions we obtain

U�Ek;E?� � 1

2
C

����
2

m

r Z1
0

dWkf Wk;
1

b
E?

� �

� d Wk � �1ÿ b� 1
b

E? � uT ÿ Ek

� �
� h W max

? ÿ 1

b
E?

� �
�10�

where h�x� is the Heaviside theta function (unit step
function, de®ned by h�x� � 1 for x > 0 and h�x� � 0 for
x < 0).

The h-function requires Wk � �1ÿ 1=b�E? ÿ uT . The
remaining d-function, on the other hand, dictates
Wk � �1ÿ 1=b�E? ÿ uT � Ek. Thus we see that, since
Ek � 0, the h-function is always unity and thus can be
dropped. However, we get a new h-function from the
requirement that the singularity of the d-function is in
the Wk integration domain, i.e., that Wk � 0. Finally we
obtain

U�Ek;E?� � 2p
m2

f 1ÿ 1

b

� �
E? ÿ uT � Ek;

1

b
E?

� �
� h 1ÿ 1

b

� �
E? ÿ uT � Ek

� �
: �11�

2.2 Particle ¯ux for a Maxwellian with a loss cone

We now compute the ¯ux (11) with f being a
Maxwellian with a loss cone. The loss cone is introduced
in the equatorial plane particle distribution function f
by inserting the factor h��b0 ÿ 1�W? ÿ Wk ÿ eV0�. Thus

f �Wk;W?� � fM�Wk;W?�h��b0 ÿ 1�W? ÿ Wk ÿ eV0�: �12�

Substituting Eq. (12) into Eq. (11) we obtain

U�Ek;E?� � 2p
m2

fM Ek � 1ÿ 1

b

� �
E? ÿ eV ;

1

b
E?

� �
� h �b0=bÿ 1�E? ÿ Ek ÿ e�V0 ÿ V �ÿ �
� h �1ÿ 1=b�E? ÿ eV � Ek
ÿ �

: �13�
We can now compute various ¯uid quantities by
multiplying U�Ek;E?� by suitable expressions and
integrating over the energies. Let us introduce the
general notation for any function g:

gh i �
Z1
0

Z1
0

dEkdE?gU�Ek;E?� : �14�

For example, to compute the current density associated
with the particle ¯ux we just use e:

j � eh i � e
Z1
0

Z1
0

dEkdE?U�Ek;E?�: �15�

Inspection of the h-functions in Eq. (13) gives us the
following rule for the computation of a quantity gh i.

gh i �
ZeV
1ÿ1=b

b
b0ÿ1eV0

dE?
Zb0

bÿ1
ÿ �

E?ÿe�V0ÿV �

eVÿ 1ÿ1
b� �E?

dEk

0BB@

�
Z1
eV
1ÿ1b

dE?
Zb0

bÿ1
ÿ �

E?ÿe�V0ÿV �

0

dEk

1CCCA
� fM Ek � 1ÿ 1

b

� �
E? ÿ eV ;

1

b
E?

� �
g : �16�

The integration domain is visualized in Fig. 2. A similar
energy-space ®gure was previously used by Whipple
(1978) while other authors have used velocity space
®gures (e.g., Chiu and Schulz, 1978).

2.3 Fluid quantity pro®les

In this section we apply Eq. (16) to compute the current
density, parallel velocity and density.

The current density is

Fig. 2. The integration domain in Eq. (16). The vertical hatching
corresponds to the ®rst term and the horizontal hatching the second
term. The domain is limited by two lines, the equations of which are
shown, together with the E? axis. As long as the FL-condition (7)
remains valid, the topology of the domain does not change
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j � eh i � eNe

���������
T

2pm

r "
ÿ �bÿ 1�eÿ u

bÿ1� �

� b 1ÿ 1

b0

� �
e
ÿ� u0

b0ÿ1�
#

�17�

For the particle density we obtain

n � 1

vk

� �
�

��������
m
2Ek

r* +

� 1

2
Ne

( �����������
1ÿ b

b0

q
e

b0uÿbu0
b0ÿb erfc

��������������������������������������������
�b0 ÿ 1�uÿ �bÿ 1�u0
�1ÿ 1=b0��b0 ÿ b�

s !

�
�����������
bÿ 1
p

eÿ
u

bÿ1� �erfi
������������������������������

u
bÿ 1

ÿ u0

b0 ÿ 1

r� �)
: �18�

Here erf is the error function (Abramowitz and Stegun,
1972), erf�z� � �2= ���

p
p � R z

0 dte
ÿt2 , erfc is the complemen-

tary error function, erfc�z� � 1ÿ erf�z�, and erfi is the
error function at imaginary argument, erfi�z� �
ÿierf�iz�. The arguments of the square roots will remain
non-negative because of the FL-condition (7). Notice
that erfc�0� � 1 and erfi�0� � 0.

The currents and densities associated with down- and
upgoing populations are obtained from (see discussion
before Eq. 5)

j down � lim
b0!1

j; ndown � lim
b0!1

n �19�

jup � ÿj; nup � n : �20�
Finally, the total quantities are computed as

jtot � jdown � jup; ntot � ndown � nup : �21�
The upgoing quantities jup, nup are identical to Eqs. (17)
and (18) except for the sign change. For the downgoing
quantities we obtain, after taking the limits,

j down � eNe

���������
T

2pm

r
bÿ �bÿ 1�eÿ u

bÿ1� �
h i

�22�

ndown � Ne

2
euerfc

���
u
pÿ �� �����������

bÿ 1
p

eÿ
u

bÿ1� �erfi
�����������

u
bÿ 1

r� �� �
:

�23�
The total particle density is thus the sum of Eqs. (18)
and (23), and the total current density is the di�erence
of Eqs. (22) and (17). For the total current density we
get

jtot � eNe

���������
T

2pm

r
b
b0

� �
b0 ÿ �b0 ÿ 1�eÿ�

u0
b0ÿ1�

h i
; �24�

from which we see that jtot depends on b linearly, as it
should because of current continuity.

To obtain the total pressure P tot (both upgoing and
downgoing contributions included) we proceed as
follows. The scalar pressure P is equal to �1=3�trP,
where P is the pressure tensor:

P �m
3

Z
dv�vÿ u�2f

� 2

3

Z
dv�Wk � W?�f ÿ 1

3
mnu2 �25�

where u is the average velocity (u � �1=n� R dvvf ,
n � R dvf ). The integral can be expressed asZ

dv�Wk � W?�f

� p
Z1
0

Z1
0

dWkdW ?
�����������
2

m3Wk

s
�f down � f up��Wk � W?�

�
����
m
2

r Z1
0

Z1
0

dEkdE?
Ek � E?�����

Ek
p ÿ

U�Ek;E?�up:

�U�Ek;E?�down
�
; �26�

where we changed the name of the integration variable
from W to E and used the fact that f � �m2=�2p��U (see
e.g., Eq 11; this is the connection between the distribu-
tion function f and the particle ¯ux U observed by a
detector at the same place). Denoting F �
 �����

Ek
p � Ek=

������
E?
p �

we have

P tot � 1

3

������
2m
p

�F � lim
b0!1

F � ÿ 1

3
m

jtot� �2
e2ntot

: �27�

because the mean velocity u � jtot=ntot.
For F we obtain

F � NeT

2
������
2m
p

(
ÿ 2beÿ

u
bÿ1� �

��������������������
�2bÿ 1�u
p�bÿ 1�

s

� 2b���
p
p e

ÿ� u0
b0ÿ1�

�
���������������������
u� bu0

b0 ÿ 1

s
ÿ

���������������������������
uÿ �bÿ 1�u0

b0 ÿ 1

s !

� b3=2eu=b erf

��������������������
�2bÿ 1�u
�bÿ 1�b

s !"

ÿerf
��������������������������������
�b0 ÿ 1�u� bu0

b�b0 ÿ 1�

s !#

� e
b0uÿbu0

b0ÿb 3b0 � b�2�u0 ÿ u� ÿ 3�� ����������������������
b0�b0 ÿ b�p

� erf

��������������������������������������������
�b0 ÿ 1�uÿ �bÿ 1�u0
�1ÿ 1=b0��b0 ÿ b�

s !

� eÿ
u

bÿ1� � 1� b2 � 2b�uÿ 1�� ������������
bÿ 1
p

� erfi

������������������������������
u

bÿ 1
ÿ u0

b0 ÿ 1

r� �)
: �28�

For the b0 !1 limit we obtain
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lim
b0!1

F � NeT

2
������
2m
p

(
ÿ 2beÿ

u
bÿ1� �

��������������������
�2bÿ 1�u
p�bÿ 1�

s
� 3euerfc� ���up � � b3=2eu=b

� erf

��������������������
�2bÿ 1�u
�bÿ 1�b

s !
ÿ erf

���
u
b

r� �" #

� eÿ
u

bÿ1� � 1� b2 � 2b�uÿ 1�� ������������
bÿ 1
p

� erfi

�����������
u

bÿ 1

r� �)
�29�

In Fig 3, 4 and 5 we show the density, pressure and
temperature pro®les plotted for a speci®c potential drop
model. A potential drop model is ®xed by giving its
dependence on b. Our model is given by

u�b� � C ÿ0:5� tanh
�b0=b�1=3 ÿ 1:5

0:5

" #
� 0:5

( )
; �30�

with the constant C chosen such that u�b0� � u0, where
u0 is the desired potential drop that appears in the ®gure

captions. This model sets the acceleration region at
roughly 10 000 km altitude from the ionospheric plane,
with thickness about 6000 km. The motivation for the
power 1=3 is the altitude dependence of the dipole ®eld.
In addition, u�b� was not allowed to be smaller than
u0b=�b0 ÿ 1�. This ensures that the FL-condition (7) is in
force. The enforcement of this condition has an e�ect
for b=b0 smaller than about 70 in our case. The u�b�
pro®le remains continuous but has a kink; consequently
some kinks are also seen in the ¯uid quantity pro®les at
this abscissa value. Equation (30) for varying C is shown
in Fig. 6.

We do not claim that our potential drop model Eq.
(30) is necessarily of any physical relevance. It was just
used for illustrative purposes to generate Figs. 3±6.

2.4 The case without a potential drop

The case without a parallel potential drop provides us
with some physical idea of the ¯uid quantity pro®les.
Substituting u � u0 � 0 in ntot gives

ntot � Ne

2
1�

�������������
1ÿ b

b0

s !
�u � u0 � 0� ; �31�
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Fig. 3. The pro®les of density n for potential drops 0, 2, 3, 4
corresponding to solid, dotted, dashed, and dot-dashed curves,
respectively. The dimensionless potential drops u are normalized to
the source plasma thermal energy. The curves were obtained by using
Eq. (21)
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Fig. 4. Same as Fig. 3 but for the pressure (Eq. 27)
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Fig. 5. Same as Fig. 3 but for the temperature
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Fig. 6. Same as Fig. 3, but now displaying the potential drop model
itself (Eq. 30)
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which gives Ne at the source region (b � 0) and Ne=2 at
the ionosphere (b � b0). In between the pro®le is
monotonic. The ionosphere captures the downgoing
population and thus the particle density has only half its
original value. Similarly, for the current density we ®nd

jtot � b
b0

eNe

���������
T

2pm

r
�u � u0 � 0� : �32�

Thus, at the ionosphere we have the thermal current
density eNe

������������������
T=�2pm�p

(which is equivalent to the Jeans
escape ¯ux, or the escape ¯ux of kinetic molecular
e�usion, Gombosi, 1994). Above the ionosphere the
current density is de®ned by current continuity, hence
the factor b=b0.

For the pressure we obtain

P tot � NeT
1

2
� 1

2

�������������
1ÿ b

b0

s"

ÿ 1

3p
b
b0

1ÿ
�������������
1ÿ b

b0

s !#
�u � u0 � 0� :

�33�

For b � 0 (source region) we have P tot � NeT as we
should. For the ionosphere (b � b0) we have
P tot � NeT �1=2ÿ 1=�3p�� � 0:394NeT . In between the
pro®le is monotonic, as for the density.

The local temperature pro®le Tloc � P=n is given by

Tloc � T 1ÿ 2

3p
b
b0

� �
1ÿ ������������������

1ÿ b=b0

p
1� ������������������

1ÿ b=b0

p" #
�u � u0 � 0�

�34�
For the source region Tloc � T as it must be, and for the
ionosphere we obtain Tloc � �1ÿ 2=�3p��T � 0:788T .
Also the temperature pro®le is monotonic.

2.5 Ionospheric variables

Variables at the ionospheric plane can be obtained by
taking the limits u! u0, b! b0 of the total expressions,
or by substituting u! u0, b! b0 in the downgoing
population quantities only, because the upgoing quan-
tities at ionospheric plane are automatically zero. (For
the pressure the latter method cannot be used because
we do not have a meaningful up/down decomposition.)
We obtain

niono � Ne

2
eu0erfc

�����
u0
p� � �

�������������
b0 ÿ 1

p
e
ÿ� u0

b0ÿ1�
h

�erfi
�������������

u0

b0 ÿ 1

r� �� �35�

jiono � eNe

���������
T

2pm

r
b0 ÿ b0 ÿ 1� �eÿ�

u0
b0ÿ1�

h i
�36�

Let us expand these expressions for large b0. Usually b0
is more than 100, so this is a good approximation
(Janhunen and Olsson, 1998; Fridman and Lemaire,
1980):

niono � Ne

2
eu0erfc

�����
u0
p� � � 2

�����
u0

p

r
ÿ 4

3

u3=2
0

b0
���
p
p � O

1

b2
0

� �" #
�37�

jiono � eNe

���������
T

2pm

r
1� u0 ÿ u2

0

2b0
� O

1

b2
0

� �� �
: �38�

The ionospheric density niono has been plotted as a
function of the potential drop and b0 !1 in Fig. 7.
The density increases monotonically as u0 increases. For
u0 > 2:20615 it becomes larger than the source plasma
density.

The pressure expression is more complicated and
therefore we choose to compute it only to zeroth order
in 1=b0:

P iono �NeT
3

(
2�1� 2

���
2
p �u3=2

0 ÿ 3
�����
u0
p

3
���
p
p � 3

2
eu0erfc

�����
u0
p� �

ÿ �1� u0�2

p eu0erfc
�����
u0
pÿ �� 2

����������
u0=p

ph i� O
1

b0

� �)
: �39�

The plot of P iono also appears in Fig. 7. Unlike the
density, the pressure is not monotonically increasing but
has a minimum of 0:114882 at u0 � 0:424345. For
u0 > 1:37227 it becomes larger than the value at u0 � 0
(which is 1=2ÿ 1=�3p� � 0:393897). For u0 > 2:32749 it
becomes larger than the source plasma pressure and
then increases more steeply than the density.

2.6 Conclusion

We have solved the ¯uid quantity pro®les in the single
particle (electron) kinetic theory. This is essentially the
same model as was used in previous works (Fridman
and Lemaire, 1980; Janhunen and Olsson, 1998), but
here we have computed the ¯uid quantities everywhere
along the ®eld line, not just the current that leaks into
the ionosphere.
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u0

0.5

1.0

1.5

2.0

2.5

P

n

Fig. 7. Ionospheric n=Ne and P=�NeT � as a function of the potential
drop u0 � eV0=T for b0!1 (Eqs. 37 and 39)
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3 Electron ¯uid theory

Wewould like to knowwhat is the ¯uid theory equivalent
of Eq. (1), i.e., how to obtain the same e�ect from either
single or two-¯uid equations. Because the current is
carried essentially only by electrons, it is obvious that it is
easiest to start by looking at the electron ¯uid equations
in the two-¯uid formalism. We shall drop the subscript e
denoting `electron' in this section.

The adiabatic electron ¯uid equations, in given
electromagnetic ®eld, can be written as

r �P � 0 �40�
nmv � rv � ÿen E� v� B� � ÿ rP �41�

v � r P
nc

� �
� 0: �42�

Here P � nv denotes the mass ¯ux vector. We have
written the equations in the stationary state. Let us
assume that the quantities depend only on the ®eld-
aligned coordinate s and that the vectors v and j have
only parallel components, denoted by vk and jk,
respectively. All the time we are considering a low-beta
plasma, i.e., a region where the magnetic energy density
is much larger than the thermal pressure. For a low-beta
plasma all current is ®eld-aligned current (Janhunen and
Koskinen, 1997). We shall also assume that there are no
perpendicular ¯ows. This assumption is not necessary
for the ¯uid theory itself, but we shall make it here in
order to get a model which can be easily compared with
the kinetic theory results. Once the ¯uid/kinetic ``cali-
bration'' is understood, we should try to build more
comprehensive ¯uid models where the perpendicular
dynamics (possibly 3D) is also included. In this section
the parallel electric ®eld is assumed to be known.

We can solve Eqs. (40) and (42) easily. The results are

P � P0
b
b0

� �
�43�

P � Cnc �44�
where C is a constant given by C � P0=nc

0 � T0=ncÿ1
0 .

Here P0, T0 and n0 are the source plasma pressure,
temperature and density, respectively, whereas P0 and
b0 are respectively the ionospheric mass ¯ux and
normalized magnetic ®eld. Please notice and forgive
this small illogicality in our notation.

Let us now establish a simple lemma: If U and V are
divergenceless vector ®elds parallel to B such that
U � gB, V � fB then, because r �U � r � V � 0, f
and g are constant along the ®eld line and

�U � rV�k � UkVk
1

B
dB
ds
� UkVk

1

b
db
ds

: �45�

With the help of lemma (45) we obtain

�v � rv�k �
P
n

� �2
1

b
db
ds
ÿ 1

n
dn
ds

� �
� P

n

� �2
1

b
ÿ 1

n
dn
db

� �
db
ds

�46�

Substituting Eqs. (46), (43) and (44) in (42) and taking
the parallel component (which is the only nonzero one
due to our assumptions) we obtain

Ccncÿ2 ÿ mP2
0

1

n3

b
b0

� �2
" #

dn
db

� mP2
0

b
b0

� �2
1

n2
1

b
ÿ e

dV
db
� 0 �47�

where the parallel electric ®eld Ek � ÿdV �b�=db. Equa-
tion (47) is an exact di�erential equation (Spiegel, 1968)
and it can be integrated directly. Putting in the
boundary condition n�b � 1� � n0 (the source plasma
density) we obtain

C
c

cÿ 1
ncÿ1 ÿ ncÿ1

0

� �
� mP2

0

2b2
0

b2

n2
ÿ 1

n2
0

� �
� eV �b�: �48�

Equation (48) determines the solution n�b� once the
mass ¯ux through the bottom of the ¯ux tube P0 is
known. Since we do not know P0, but are trying to
determine it, we must use some additional constraint to
®x P0. One way to ®x it is to require that the ionospheric
density n�b0� has a certain value, let us call it an0, where
a is a dimensionless parameter. Doing this, we obtain

P0 � n0

�����
T0

m

r ����������������������������������������
2c

cÿ1 1ÿ acÿ1� � � 2u0

1
a2 ÿ 1

b2
0

vuut �49�

where we have denoted u0 � eV0=T0 as before. For
u0 � 0 (no potential drop) the latter square root
expression should be equal to 1=

������
2p
p

in order to get
agreement with the kinetic theory result Eq. (31). For
b0 !1 (usually a good approximation) and c � 5=3
this happens when a � 0:22471 or a � 0:947264. (The
smaller one of the roots may not be physically
meaningful.)

Thus it is possible to ``force-®t'' the ¯uid theory to
conform with kinetic theory, at least if we do not have a
potential drop. However, being a nonlocal operation
(we need to know the source plasma density) this kind of
approach is not easy to implement generically as a
simulation boundary conditions, for instance.

3.1 Two-step analytic solution

It would be good if we had some idea within ¯uid theory
as to what value of a we should use. To facilitate this, let
us ®rst notice that if the potential drop resides at a high
altitude a similar constraint to the FL-condition (Eq. 7
in kinetic theory), the plasma ¯ow within the region of
the potential drop may be neglected because the ¯ux-
tube cross-sectional area is much larger than the same
quantity at the ionospheric plane, and thus we can drop
the term proportional to P0 (or, equivalently, we can
take the limit b0 !1) in Eq. (48). In this region the
explicit solution is then

n�b� � n0 1� cÿ 1

c

� �
u�b�

� �1=�cÿ1�
�50�
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and at the bottom of the potential drop u�b� �
u�b0� � u0. Under these circumstances Eq. (48) describes
a force equilibrium between the pressure gradient and
the electrostatic force. In the lower region the plasma
¯ow must not be neglected, but there the potential drop
is zero. Thus the solution of the problem can be found
by solving the problem with V �b� � 0, using Eq. (50) as
source plasma density and `renormalizing' b and b0 to
the altitude below the potential drop. Even the renor-
malized b0 will still be fairly large and can still be
approximated by b0 !1 at the end. This approxima-
tion is also a reasonable one to make here because it
makes the results independent of the distribution of the
potential drop, which was the case in kinetic theory
anyway. To summarize, our approach now is to solve
the problem in two steps: ®rst considering the stationary
compression of plasma by the electric ®eld, then
consider the out¯ow of the compressed plasma into
the ionosphere through the bottom of the ¯ux tube
without electric ®eld (Fig. 8).

Physically the problem without a potential drop
corresponds to ¯ow out of a container through a
convergent nozzle (Landau and Lifshitz, 1987; Ander-
son, 1990), with zero external pressure (because there are
no hot electrons in the ionosphere). Then the ¯ow at the
``nozzle exit'' (the ionosphere) will be ``choked'', with
mass ¯ux per unit area given by Eq. (90.2) of Landau
and Lifshitz (1987),

P0 � n̂0

�����
T̂0

m

s ���
c
p 2

c� 1

� � c�1
2�cÿ1�

: �51�

The hatted quantities represent the state given by Eq.
(50) at u�b� � u0. Explicitly,

n̂0 �n0 1� cÿ 1

c

� �
u0

� �1=�cÿ1�
�52�

T̂0 �T0 1� cÿ 1

c

� �
u0

� �
: �53�

since T � P=n � Cncÿ1.
Combining Eqs. (51), (52) and (53) we obtain for the

ionospheric mass ¯ow

P0 � n0

�����
T0

m

r ���
c
p 2

c� 1

� � c�1
2�cÿ1�

1� cÿ 1

c

� �
u0

� � 1
cÿ1 � 1

2

�54�

For c � 5=3 we have

P0 � n0

�����
T0

m

r
3
�����
15
p

16
1� 2

5
u0

� �2

� 0:73n0

�����
T0

m

r
1� 2

5
u0

� �2

: �55�

For c � 3 we have

P0 � n0

�����
T0

m

r ���
3
p

2
1� 2

3
u0

� �
: �56�

We thus notice that c should be equal to 3 in order to
obtain a linear current-voltage relationship. Although
not directly visible from the plots shown in this paper,
we note that if the curves in Fig. 3 are raised to third
power, curves rather similar to those in Fig. 4 are
obtained, which also suggests that c � 3 is the closest
approximation to the kinetic theory presented here. Of
course, we cannot expect the ¯uid and kinetic theory
pro®les to be exactly equal.

For c � 5=3 we saw that the relationship became
quadratic in u0. The various formulas, normalized by
n0

�����������
T0=m

p
, are plotted in Fig. 9 and compared with

kinetic theory (Eq. 38). Even for c � 3 the numerical
coe�cients are di�erent in kinetic and ¯uid theories. The
thermal current is

����������
3p=2

p � 2:17 times larger in ¯uid
theory. Asymptotically for u0 � 1, the ¯uid theory
current is

����������
2p=3

p � 1:45 times larger.
We thus reach the important conclusion that the

electron ¯uid theory that most resembles the electron
kinetic theory, at least as far as the current-voltage
relationship is concerned, has c � 3, corresponding to
only one degree of freedom [in general, c � �2� f �=f ,
where f is the number of degrees of freedom]. Appar-
ently the conservation of the ®rst adiabatic invariant
e�ectively removes the two perpendicular degrees of

V

Fig. 8. If the potential drop resides at high enough altitude, it
compresses the electron plasma beneath it in such a way that the
plasma states above and below the drop are independent of exact
geometry of the ¯ux tube. If the ionospheric bottom of the ¯ux tube is
narrow enough, the fact that plasma starts escaping into the
ionosphere does not appreciably alter the compression by the
potential drop V
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j

Fig. 9. Comparison of current-voltage relationships in kinetic theory
(solid; Eq. 38), ¯uid theory with c � 3 (dotted; Eq. 56) and ¯uid theory
with c � 5=3 (dashed; Eq. 55)
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freedom from the electrons, leaving only one degree of
freedom. If one tries to use ``ordinary'' ¯uid equations
with c � 5=3 (3 degrees of freedom), a quadratic
current-voltage relationship results, which is in disagree-
ment with both observations (Lundin, 1977; Lyons
et al., 1979; Weimer et al., 1987; Lu et al., 1991;
Haerendel et al., 1994; Sakanoi et al., 1995; Olsson
et al., 1996; Olsson et al., 1998) and kinetic theory.

The exact implications of this ®nding are not yet
quite clear to us. At least in the force-free near-Earth
low-beta plasma region (which is the subject of this
study), the electrons should have c � 3 rather than
c � 5=3. But how far into the magnetosphere should this
result be generalized is not yet so clear. It is also an open
question whether or not the ions should also have c � 3.

An essential feature of both the kinetic theory and
the electron-¯uid equation is that there is a density and
pressure buildup just below the potential drop. In the
¯uid formalism the maximum density was explicitly
given by n̂0. If there were no density enhancement by the
potential drop, we would not get a linear CV-relation-
ship, but rather a square root CV-relationship, as can be
easily seen from our formulas. A simple physical
explanation is that if the density were constant, the
current would be given by envf where vf is the ®nal
velocity of the electrons accelerated by the potential
drop V . Since vf /

����
V
p

(assuming a nonrelativistic case),
the current density would also be proportional to

����
V
p

.
However, we have thus far completely neglected the ions
in both kinetic and ¯uid theory. Thus, if there is an
electron density enhancement below the potential drop,
there must also be an ion density enhancement, in order
to maintain quasineutrality. To study this question
further we need a theory which includes the ions and
where the parallel electric ®eld pro®le is determined self-
consistently. One possibility is to use the one-¯uid
formalism, where the electron and ion momentum
equations are ``summed and subtracted'' to give the
center of mass momentum equations and generalized
Ohm's law. This will be the subject of the next
section.

A problem of gas escape through a hole in the
container wall has been treated in both ¯uid and kinetic
theories (Gombosi, 1994), with the remark that kinetic
theory applies to this problem when the hole diameter is
much smaller than the mean free path whereas ¯uid
theory applies in the reverse limit. The formulas
obtained are the same as ours and those given by
(Landau and Lifshitz (1987), despite the fact that the
geometry is di�erent. Applying this line of thought, in
our case kinetic theory should be a better approximation
than ¯uid theory because the mean free path is very
large compared to the system size.

3.2 Conclusion

The electron ¯uid model reproduces, apart from a
numerical factor, the kinetic theory CV-relationship if
and only if c � 3, corresponding to motion with only
one degree of freedom. For this to happen it is essential

that the density below the potential drop is enhanced,
otherwise a square root CV-relationship would result for
any value of c.

4 One-¯uid theory

4.1 Derivation of basic equations

The one-¯uid equations are given by (Seyler, 1990)

@n
@t
�r � nv� � � 0 �57�

min
dv

dt
� j� BÿrPCM �58�

@B

@t
� ÿr� E �59�

r � B � l0j �60�
E� v� B

� me

ne2
@j

@t
�r � �vj� jv�

� �
� 1

en
j� Bÿ 1

en
rPCM

e

�61�

d

dt
PCMnÿc
ÿ � � 0 : �62�

The symbol PCM
e denotes the electron pressure comput-

ed with respect to the center of mass velocity
v � �meve � mivi�=�me � mi�. Likewise, PCM is the total
(electon plus ion) center-of-mass pressure. The connec-
tion between center-of-mass and ordinary pressure
gradients are (Krall and Trivelpiece, 1973)

rPCM
e � rPe � me

e2
j � r j

n

� �
�63�

rPCM
i � rPi � m2

e

mie2
j � r j

n

� �
: �64�

Now we assume a stationary state (@=@t � 0), a strong
external magnetic ®eld (low-beta plasma), quantities
depending only on the ®eld-aligned coordinate denoted
by s, and vectors v and j having only ®eld-aligned
components denoted by vk, jk (positive downward). Let
us again denote P � nv. Under these assumptions we
obtain

PCM � Cnc �65�

P � P0
b
b0

� �
�66�

jk � j0
b
b0

� �
�67�

min�v � rv�k � ÿ
dPCM

ds
�68�

Ek � me

ne2
r � �vj� jv� ÿ j � r j

en

� �� �
k
ÿ 1

en
dPe

ds
: �69�
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where P0, j0 and b0 are the ionospheric mass ¯ux,
current density and normalized magnetic ®eld, respec-
tively (the other quantities with zero subscript such as
n0, P0, T0 are magnetospheric variables).

With the help of lemma (45) we compute (identifying
U � V � nv)

�v � rv�k �
1

n
�nv� � r 1

n
nv

� �� �
k

� 1

n2
�nv� � r�nv� ÿ 1

n
vv � rn

� �
k

� v2k
1

b
db
ds
ÿ 1

n
dn
ds

� �
�70�

Let us now compute �r � �vj� jv��k:
�r � �vj� jv��k � �r � v�j� v � rj� j � rv� �k �71�

��r � v�j�k � ÿ
1

n
jkvk

dn
ds

�72�

�v � rj�k �
1

n
�nv � rj�k � vkjk

1

b
db
ds

�73�

�j � rv�k � j � r 1

n
nv

� �� �
k

� jkvk
1

b
db
ds
ÿ 1

n
dn
ds

� �
; �74�

thus

�r � �vj� jv��k � 2jkvk
1

b
db
ds
ÿ 1

n
dn
ds

� �
: �75�

We also need to compute j � r�j=n�:

j � r j

n

� �� �
k
�

j2k
n

1

b
db
ds
ÿ 1

n
dn
ds

� �
: �76�

Switching to variable b, the momentum equation [Eq.
(68)] and Ohm's law (69) now assume the form

mi
P2

0

n
b
b0

� �2
1

b
ÿ 1

n
dn
db

� �
� ÿ dPCM

db
�77�

Ek �
"

me

n2e2
j0

b2

b20

� �
1

b
ÿ 1

n
dn
db

� �

� 2P0 ÿ j0
e

� �
ÿ 1

en
dPe

db

#
db
ds

: �78�

This pair of fundamental equations determines the
pro®les of n and Ek. The plasma ¯ux and the current
¯owing through the ¯ux tube are parametrized by P0

and j0, respectively. The situation is di�erent than in the
previous section where we considered only the electron
¯uid. In that case Ek was not self-consistently deter-
mined, but in one-¯uid theory it is.

4.2 Solution

Let us ®rst consider the momentum equation [Eq. (77)].
After substituting PCM � Cnc it can be written in the form

Ccncÿ2 ÿ miP
2
0

b
b0

� �2 1

n3

" #
dn
db
� mi

P0

b0

� �2 b
n2
� 0 : �79�

This di�erential equation is exact (Spiegel, 1968) and
thus it can be integrated easily. Unfortunately the
solution can not be analytically expressed as n � n�b�
but only in the inverse form, b � b�n�. After using the
source plasma boundary condition n�b � 1� � n0 we
obtain

b�n� � nb0

P0

P0

n0b0

� �2

� 2C
mi

c
cÿ 1

� �
ncÿ1
0 ÿ ncÿ1

� �" #1=2
;

�80�
where C � T0=ncÿ1

0 .
The behavior of b�n� is shown in Fig. 10. For large

enough P0, b�n� has a maximum as a function of n in the
domain 1 � b � b0. The maximum occurs where
db=dn � 0 and at the maximum

n � nmax

� n0
2

c� 1
� cÿ 1

c�c� 1�
1

b20

mi

T0

P0

b0n0

� �2
" # 1

cÿ1

:
�81�

If we require that the maximum as a function of n occurs
exactly at b � b0 (that is, db=dn � 0 at b � b0), we
obtain a condition for the mass ¯ux P0:

P0 � n0

�������
cT0

mi

r
2

c� 1
� cÿ 1

c�c� 1�
1

b20

mi

T0

P0

b0n0

� �2
" #1

2� 1
cÿ1

:

�82�

For large b0, which is usually a good approximation, the
last term can be dropped and we obtain

P0 � n0

�������
cT0

mi

r
2

c� 1

� � c�1
2�cÿ1�

: �83�

This is exactly the same relation as Eq. (51). That is, the
requirement that b�n� is marginally single-valued leads
to the same condition as marginally choked ¯ow at the
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Fig. 10. Behavior of Eq. (80)
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``nozzle exit'' (the ionosphere). Notice that in the one-
¯uid equations the electric ®eld does not appear in the
momentum equation at all because of quasineutrality
and thus the momentum equation could be solved ®rst,
independently of Ohm's law.

Using Eqs. (78) and (80), the computation of the
potential V � ÿ R s

0 dsEk can be done analytically. Omit-
ting the details of the calculation, the result is

V �n� �me

mi

j0
eP0

� �2T0

e
c

cÿ 1

� �
1ÿ 2P0e

j0

� �
� 1ÿ n

n0

� �cÿ1" #
ÿ T0e

e
ce

ce ÿ 1
1ÿ n

n0

� �ceÿ1
" #

:

�84�
This gives the potential drop as a function of the density.
To produce the potential drop as a function of b, the
relationship (80) must be numerically inverted and
substituted in Eq. (84). Doing this, we ®nd that for
su�ciently negative (i.e., upward) j0, the potential V
becomes positive (ionosphere at higher potential than
magnetosphere). In Fig. 11 we plot a typical V �b�
behavior.

From Fig. 11 we see that the potential drop is
concentrated at a low altitude, which is at odds with
observations and also badly violates the FL-condition
(7) of the kinetic theory. To study this discrepancy
further, we note that it is also possible to see the rough
meaning of Eq. (84) analytically, without doing the
numerical inversion. First we note that usually the ion
¯ux is much smaller than the electron ¯ux, P0 � j0=e.
Likewise, reasonable solutions of Eq. (80) are such that
the ionospheric density n�b0� is some fraction of the
source density n0, and at the same time, P0 is propor-
tional to n0

������������
T0=mi

p
. Putting these together we see that

Eq. (84) yields approximately

V �n�b0�� � DV � A1
mej20
e3n20

ÿ A2
T0e

e
�85�

where A1, A2 are numerical factors of order unity.
Solving for j0 thus yields a square root CV-relationship,
as for the electron ¯uid theory with constant density.

The square root dependency is such that for V / Te=e,
numerically almost equivalent results are obtained as for
the kinetic theory. (``Almost'' means up to a numerical
factor of order unity.)

4.3 Conclusion

Inclusion of magnetospheric ion dynamics by the one-
¯uid model suppresses the electron density enhancement
below the potential drop and thus produces a square
root CV-relationship. At the same time, the potential
drop is concentrated at a low altitude, which is
physically unreasonable. This means that the one-¯uid
theory composed of magnetospheric electrons and
protons is unable to produce realistic results. It cannot
answer the question of what could maintain a realistic
potential drop in a self-consistent way. The physical
reason for the failure of the one-¯uid theory is very
simple: the ions are pushed upward, not downward, by
an upward electric ®eld, and thus the magnetospheric
ions are unable to provide quasineutrality for any
electron density enhancement below the potential drop.

5 Four-¯uid theory

In this section we consider the ionosphere as a plasma
source, not only as an absorber of magnetospheric
particles. The idea is to study whether the ionospheric
ions can neutralize the charge cloud of the electron
density enhancement below the potential drop and thus
resolve the puzzle that we ended up with in the previous
section.

We shall treat the magnetospheric and ionospheric
electrons and ions as four separate ¯uids moving in an
electrostatic potential. The potential should be deter-
mined from the quasineutrality requirement.

Using a derivation similar to what was performed in
the start of section ``Electron ¯uid theory'' we derive, for
each ¯uid, equations similar to Eq. (48). Let us denote
the charge of the ¯uid by q, ionospheric variables
(b � b0) by subscript i and magnetospheric variables
(b � 1) by subscript m. For ¯uids which have an
ionospheric boundary condition n�b0� � ni we obtain

C
c

cÿ 1
ncÿ1 ÿ ncÿ1

i

� �
� 1

2
mP2

0

b2

b2
0n

2
ÿ 1

n2
i

� �
� q V �b0� ÿ V �b�� �

�86�

where C � Ti=ncÿ1
i . For ¯uids of magnetospheric origin

we obtain (n�1� � nm)

C
c

cÿ 1
ncÿ1 ÿ ncÿ1

m

ÿ �� 1

2
mP2

0

b2

b20n2
ÿ 1

b2
0n

2
m

� �
� q V �1� ÿ V �b�� �

�87�

where C � Tm=ncÿ1
m . P0 is the mass ¯ux at the iono-

spheric plane in each case and m is the particle mass. We
will normalize the potential V so that V �1� � 0, that is,
the potential is zero deep in the magnetosphere. Positive
direction is towards the ionosphere.
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Fig. 11. When n � n�b� is inverted form Eq. (80) and the result is
substituted into Eq. (84), the result is this V � V �b� for su�ciently
negative j0
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We can write both Eqs. (86) and (87) in the form

ncÿ1 � a
n2
� b �88�

where

a � 1

2
mP2

0

b
b0

� �2 cÿ 1

c

� �
1

C
�89�

for both ionospheric and magnetospheric ¯uids and

b � ncÿ1
i � b0

b

� �2 a

n2i
� cÿ 1

c

� �
1

C
q V �b0� ÿ V �b�� � �90�

for the ionospheric case, and

b � ncÿ1
m � 1

b

� �2 a
n2m
� cÿ 1

c

� �
1

C
q ÿV �b�� � �91�

for the magnetospheric case.
In Fig. 12 we show the behavior of Eq. (88). This

nonlinear equation has in general two roots. The
minimum of the curve n�cÿ1� � a=n2 is reached at the
zero of the derivative, which is given by

nmin � 2a
cÿ 1

� �1=�c�1�
: �92�

If b < ncÿ1
min � a=n2min, there are no roots. Otherwise there

are two roots (or one root in case of exact equality) for
positive n, one of which is smaller than nmin and the
other one larger than nmin.

5.1 Ionospheric electrons and ions

Magnetospheric electrons and protons will follow
equations similar to those presented in section ``Electron
¯uid theory'', but the ionospheric particles need rather
di�erent treatment. Let us ®rst consider ionospheric
electrons. We require that, at the ionosphere, the two
roots of Eq. (88) coincide and are equal to some
prescribed ionospheric source density. This provides the
largest possible escape of ionospheric particles that is
possible within the framework of ¯uid theory. From
Eqs. (89) and (90) we can see that this happens if
ni � nmin at b � b0. Using Eq. (92) this implies

P0 � ni

������
cTi

m

r
: �93�

Actually, the square root expression in Eq. (93) is equal
to the local sound speed, thus the requirement that the
two roots coincide at the ionosphere leads to a
prediction of transonic escape ¯ux. The lower of the
two roots (i.e., the one corresponding to smaller density)
corresponds to a supersonic escape. In this solution, the
density decreases upward, at least if V � 0. In the other
branch the density would increase upward, and this
would correspond to subsonic ¯ow. The subsonic
branch is nonphysical.

In Fig. 13 we have plotted the supersonic solution for
ionospheric electrons varying the potential drop. We
used negative potential drops of the order of a few volts.
When the potential drop is made more negative, the
density drops at a ®xed height, which is a re¯ection of
the fact that the electron upward velocity increases as
the electric ®eld accelerates the electrons upward.
Notice, however, that in our model the escape ¯ux does
not depend on the potential drop, because the iono-
sphere is considered an in®nite half-space reservoir
where the electron density is assumed to be ®xed by
some (unspeci®ed) ionospheric processes. In reality, a
negative potential drop of the order of a few volts or
more would most probably increase the escape ¯ux and
try to empty the ionosphere of electrons, resulting in a
neutralization of the potential drop (Fridman and
Lemaire, 1980).

If the potential drop is positive (corresponding to
electron precipitation), the two roots start to coincide
also in the magnetosphere for ®nite b, quickly producing
a situation where we have no solution in most or all of
the domain. This happens already for quite small
potentials, a fraction of a volt. The physical reason is
clear: we are trying to emit electrons from the iono-
sphere by Eq. (93), which is impossible if the electric
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Fig. 12. The curve ncÿ1 � a=n2 as a function of n has, in general, two
roots
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Fig. 13. Ionospheric electron escape solutions (smaller of the two roots
chosen) for (88) for zero, ÿ2 V and ÿ5 V potential drops from top to
bottom, respectively. Negative potential drop means that the
ionosphere is in a lower potential than the magnetosphere, thus the
parallel electric ®eld tries to pull electrons from the ionosphere. The
electron density at a ®xed height (b � 200; say) decreases when the
potential drop becomes more negative because electrons move faster
and the ¯ux must stay constant
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®eld is upward. The right thing to do is to shut o� the
ionospheric electron emission in this case. The details of
how this actually happens are outside the scope of our
equations, but in this study we are interested in potential
drops very much larger than the ionospheric electron
temperature and for these potential drops simply
removing ionospheric electrons altogether from the
model is perfectly adequate.

For ionospheric ions the situation is completely
similar as for ionospheric electrons, only the sign of
the potential drop must be reversed to get an equivalent
situation. That is, the emission of ionospheric ions must
be shut o� if the potential drop is negative (a noninter-
esting situation in this work). For positive potential
drops, curves similar to Fig. 13 are obtained. For any
substantial positive potential drops (more than 100 V,
say) the approximation qV � Ti is perfectly valid and
the term ncÿ1 in Eq. (88) can be neglected everywhere
but in the immediate vicinity of the ionosphere. Under
this approximation the solution for n is given by

n � ��������
a=b

p
. This can be written also as

n�b� � b
b0

� �
ni

������������������������������������
cTi

2q�V �b0� ÿ V �b��

s
; �94�

from which we see that n=b is inversely proportional to
the square root of the potential. This is understandable
since the potential di�erence increases the kinetic energy
of the particles linearly. (We have n=b rather than n
because of the ¯ux tube scaling.)

We are interested in an upward electric ®eld case
(positive potential drop), which is signi®cantly larger
than the ionospheric temperatures. Thus we can neglect
ionospheric electrons, and use Eq. (94) above the
ionosphere for ionospheric ions. Thus we do not have
to solve any nonlinear equation to get the response of
the ionospheric particles to an applied positive potential
drop. We would like to investigate whether or not Eq.
(94) can neutralize the charge cloud of the electron
density bump of magnetospheric electrons. Looking at
Eq. (94), it is clear that for this to succeed, the density
bump must occur in a region where the potential is
nearly the same as the ionospheric potential, that is,
V �b0� ÿ V �b� must be small (of the same order as Ti=q).
Otherwise the ionospheric ions will move fast upward
and their density will be low because of the continuity
equation.

5.2 A self-consistent solution sketched

The quasi-neutrality constraint means that ne � ni � np,
where e, i, p refer to electrons, ionospheric ions, and
protons, respectively. Electrons and protons are of
magnetospheric origin. We know how to compute each
of these densities once the potential V �b� is speci®ed.
Finding a self-consistent V �b� which satis®es quasi-
neutrality is thus a matter of solving a nonlinear
equation for each b, Eq. (88). Doing this analytically
seems to be impossible, and doing it numerically is
di�cult because it requires solving a strongly nonlinear

equation, which has potentially many solutions. Fur-
thermore, to compute each of the densities (for example,
np) itself requires numerical root ®nding, so we would
end up with two nested nonlinear equations, except
perhaps for ni, for which the approximate Eq. (94) could
be used. To get some insight into the problem, we want
to develop a simpli®ed analytically tractable model.

Consider a situation where the potential drop
(corresponding to upward electric ®eld) is relatively
well localized in the acceleration region, which resides
at high enough altitude such that b� b0 at the
potential drop, (see again Fig. 8). Then we can neglect
the ¯ow of magnetospheric populations within the
acceleration region, and thus relate the ¯uid states
below and above the potential drop by equations
similar to Eq. (52). Below the potential drop we
compute the density pro®les by assuming that the
escape into ionosphere is ``choked'', which is described
by Eq. (51). We do this for magnetospheric electrons
and protons independently.

Above the acceleration region the magnetospheric
particles maintain quasineutrality by themselves (the
densities are uniform and equal to the source plasma
density). Below the acceleration region the electron
density ne is higher than the proton density np, and their
di�erence pro®le depends on the strength of the potential
drop. The di�erence must be made equal to the density of
ionospheric ions, ni � ne ÿ np. Thus we must construct a
model for ionospheric ion out¯ow such that ni is a given
function of height below the acceleration region. Since
ni�b� follows formula (94) to a good approximation, we
see that this is in fact easy to accomplish just by solving
V �b� from Eq. (94). The V �b� variations obtained will be
of the order of ionospheric energies and thus much
smaller than the acceleration region potential drop. Thus
these variations do not a�ect the motion of the hot
magnetospheric populations and thus their motion
below the acceleration region can be solved by assuming
zero electric ®eld, i.e., the normal ¯uid-dynamical
choked ¯ow. The electric ®eld will point upward every-
where and thus quench ionospheric electron out¯ow.
Thus ionospheric electrons can be forgotten; all electrons
are hot and of magnetospheric origin. Thus our four-
¯uid model is actually a three-¯uid model.

Nevertheless, some ionospheric electrons could, in
reality, reach the acceleration region by their thermal
velocity. However, they cannot move above it, thus the
net upward ¯ow of ionospheric electrons must be zero in
any case. If ionospheric electrons do exist below the
acceleration region, then the solution for V �b� below the
acceleration region is slightly modi®ed, but this does not
a�ect the magnetospheric precipitating populations.
What we have shown in this subsection is that it is
possible to get one solution without ionospheric elec-
trons, and we think that this is the most reasonable
solution because the electric ®eld points upward anyway.

Above the acceleration region the density ni should
be small in order not to break the already existing
quasineutrality (ne � np). This is automatically satis®ed.
As the potential drop is much larger than ionospheric
energies, the density ni above the acceleration region will

24 P. Janhunen: On the current-voltage relationship in ¯uid theory



be orders of magnitude smaller than below (and the
upward ion velocity will be correspondingly larger).

The CV-relationship from this model will exactly
match the results obtained in section ``Electron ¯uid
theory'' (see especially Eq. 56). The electron ¯uid will
behave exactly similarly to that was described in that
previous section. What we have added here is an
explanation how self-consistency can be preserved by
the addition of ionospheric ion out¯ow. Thus a linear
CV-relationship is obtained if c � 3 for magnetospheric
electrons.

In this simple model we take no stand on the internal
structure of the acceleration region. Nor do we try to
explain why the acceleration region resides at a certain
altitude. Probably the acceleration region altitude
somehow depends on the ionospheric ion ¯ux. These
questions, as well as ®nding a quantitative realization of
the model sketched here, are left for a future study. It
would also be of importance to study whether these
ideas could be translated into the language of one-¯uid
theory. The plasma emitted by the ionosphere in this
case consists only of ions and thus is not quasineutral;
thus one probably has to do more than just add a
suitable ionospheric boundary condition to the one-¯uid
equations written here. Quasineutrality is achieved only
when ionospheric and magnetospheric plasmas overlap
the same region.

5.3 Conclusion

A linear CV-relationship can emerge again if we take
into account out¯owing ionospheric ions. All the
conclusions of section ``Electron ¯uid theory'' remain
valid.

6 Summary

Our principal long-term aim is to develop simulations of
smaller scale auroral phenomena such as individual arcs.
Even though the scale sizes may be small in the
perpendicular direction, usually the whole ®eld line
length from the ionosphere to the equatorial plane
should be included in the simulation box in order to
achieve realism. This requirement, by and large, pro-
hibits us from using self-consistent electrostatic particle
simulations, because the simulation box would contain
too many Debye spheres. Thus ¯uid simulations are the
only computationally feasible alternative. On the other
hand, the current-voltage (CV) relationship is an
essential observational fact. It can be derived from
kinetic theory. Here we explored possibilities to make
these two requirements meet: how to build a ¯uid
simulation which reproduces the correct CV-relation-
ship. We summarize our ®ndings:

1. We have computed the density and pressure pro®les
analytically from electron kinetic theory. These
formulas reveal that the pressure and density are
enhanced below the potential drop, and decrease
again near the ionosphere.

2. Obtaining a linear CV-relationship requires that the
electron density is enhanced below the potential
drop. If the density stays constant, a square root CV-
relationship results. This is so because the ®nal
velocity of accelerated electrons is proportional to the
square root of the accelerating voltage (neglecting
electron temperature).

3. The linear CV-relationship is reproduced in electron
¯uid theory only if c � 3. The numerical constants
di�er somewhat from kinetic theory even for c � 3,
however.

4. One-¯uid theory, while aiming at self-consistency,
cannot reproduce a linear CV-relationship. Instead, it
predicts a square root CV-relationship. The parallel
potential drop is concentrated on a low altitude, just
above the ionosphere, which is unrealistic.

5. The relevant terms in generalized Ohm's law are the
electron pressure term and electron inertial terms.

6. It is very important in this application to distinguish
between the center-of-mass electron pressure PCM

e
and the `normal' electron pressure Pe. If this distinc-
tion is not properly made, completely wrong results
are obtained.

7. Inclusion of upwelling ionospheric ions is able to
restore the electron ¯uid theory results in a self-
consistent manner. The basic idea is that below
acceleration region a charge imbalance between
magnetospheric electrons and protons will develop,
which is balanced by ionospheric ions. Above accel-
eration region the ionospheric ions move upward so
fast that their density is very small, thus they do not
a�ect the charge balance there.
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