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Abstract. We derive the current-voltage relationship in
the auroral region taking into account magnetospheric
electrons for the bi-Maxwellian and kappa source
plasma distribution functions. The current-voltage for-
mulas have in principle been well known for a long time,
but the kappa energy ¯ux formulas have not appeared in
the literature before. We give a uni®ed treatment of the
bi-Maxwellian and kappa distributions, correcting some
errors in previous work. We give both exact results and
two kinds of approximate formulas for the current
density and the energy ¯ux. The ®rst approximation is
almost generally valid and is practical to compute. The
®rst approximation formulas are therefore suitable for
use in simulations. In the second approximation we
assume in addition that the thermal energy is small
compared to the potential drop. This yields even simpler
linear formulas which are suitable for many types of
event studies and which have a more transparent
physical interpretation than the ®rst approximation
formulas. We also show how it is possible to derive
the ®rst approximation formulas even for those distri-
butions for which the exact results can not be computed
analytically. The kappa ®eld-aligned conductance value
turns out always to be smaller than the corresponding
Maxwellian conductance. We also verify that the
obtained kappa current density and energy ¯ux formu-
las go to Maxwellian results when j!1.
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1 Introduction

The purpose of this paper is to revisit the question of the
current-voltage relationship and the energy ¯ux formulas

in the auroral region from the single-particle viewpoint.
Possible applications of the formulas include global
magnetohydrodynamic (MHD) simulations (Janhunen,
1996) which have ionospheric coupling included, as well
as all studies where rocket, low-orbiting satellite or
ground-based radar data are used to infer magneto-
spheric parameters (density, temperature) or ionosphere-
magnetosphere coupling parameters (the potential drop,
the ®eld-aligned current and the ®eld-aligned conduc-
tance) (e.g., Lyons et al., 1979; Lu et al., 1991; Olsson et
al., 1996, 1997; Olsson and Janhunen, 1997).

Our initial development mainly follows Fridman and
Lemaire (1980) (henceforth referred to as FL80), who
used adiabatic single-particle theory to calculate the
current-voltage relationship as well as the relationship
between the voltage and the energy ¯ux. We limit
ourselves to discussing hot magnetospheric electrons
only, which is a good approximation unless one is
interested in potential drops much below 100 eV. In fact,
for very small potential drops the ionospheric electron
and ion populations should also be taken into account
(Lemaire and Scherer, 1973, 1983; Pierrard, 1996). We
give our results in terms of the magnetospheric source
plasma density, not the density found at lower altitudes
as was done by Pierrard (1996). We also neglect
gravitation, which is a good approximation for elec-
trons. Otherwise our assumptions are the same as those
listed in FL80.

Our main interest is the case when the ®eld-aligned
current (FAC) is upward. For downward FAC regions
our results will not hold, strictly speaking, but then the
current-voltage relationship is simply V � 0 if we ignore
anomalous resistivity. In ionosphere-magnetosphere
coupling simulations we typically need to compute the
``inverse'' current-voltage relationship, i.e. the voltage as
a function of the current. Thus no numerical problems
arise in the downward current region even though we
are dealing with in®nite ®eld-aligned conductance. In
the upward FAC regions, however, using formulas such
as the full Knight formula (Knight, 1973; Lemaire and
Scherer, 1973) would be di�cult because it would
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require numerical root ®nding at every point at every
time-step; thus approximations are needed.

We show that the exact nonlinear current density
formula, which was ®rst derived for the case of
Maxwellian distribution by Knight (1973), can be
approximated in almost all practical situations by
linearization with respect to the small quantity Bm=Bi,
where Bm and Bi are the magnetospheric and ionospheric
magnetic ®elds, respectively. We refer to this as the ®rst
approximation. Only for extremely large potential drops
(more than 100 kV) does the ®rst approximation become
invalid, but it is very probable that these situations never
arise in practice. In the case of a bi-Maxwellian
distribution, this linearization has been done by pre-
vious authors (Lundin and Sandahl, 1978; FL80).
However, these authors also made the further assump-
tion that the potential drop is much larger than the
thermal energy, which yields the well-known linear
current-voltage relationship. In this paper we call this
the second approximation.

The ®rst and second approximation schemes can be
de®ned not only for the current density but for the
energy ¯ux as well. In the case of a Maxwellian
distribution, the energy ¯ux formulas in the ®rst and
second approximation have appeared in the literature
(Menietti and Burch, 1981) but the kappa distribution
formulas have not. The kappa distribution (Vasyliunas,
1968) can model a high-energy tail in the precipitating
electron ¯ux.

As far as simulation work is concerned, the second
approximation is not appropriate because it is only valid
within auroral activity. However, in observational
studies of substorm-related events the second approxi-
mation is usually valid, and has been used extensively.

We also present a simpli®ed method by which the
®rst and second approximation formulas can be derived
for distributions more complicated than the bi-Max-
wellian without having to get the exact results for the
current density and the energy ¯ux ®rst. We apply this
method to the kappa distribution and give the ®rst and
second approximation formulas for the kappa energy
¯ux, which is a new result. An exact formula for the
kappa energy ¯ux is probably not possible to give in
terms of known special functions, or at least the result
would be extremely complicated. Finally, we correct
some errors in previous studies.

2 Theory

In this study we consider the bi-Maxwellian distribution,
given by

fBM �Wk;W?� �Ne
m
2p

� �3=2 1

T?
�����
Tk

p exp ÿWk
Tk
ÿ W?

T?

� �
: �1�

We also consider the kappa distribution given by

fj�Wk;W?� � 1

2p
NeAj

m
2jT

� �3=2
1� Wk � W?

jT

� �ÿ�j�1�
:�2�

(Vasyliunas, 1968) where the normalization constant Aj
is given by Aj � C�j� 1�=�C�jÿ 1=2�C�3=2��. In these

formulas, C is the Euler gamma function, Ne is the
source plasma density (in the magnetosphere), Wk and
W? are the parallel and perpendicular particle kinetic
energies, m is the particle mass (the electron mass in this
paper), and Tk and T? are the source plasma parallel and
perpendicular temperature (in energy units). In the case
of the kappa distribution we have only a single
temperature parameter Tj j is the parameter character-
izing the kappa distribution (the power-law spectral
index). Actually, if the true temperature T true

j of the
kappa distribution plasma is de®ned in terms of the total
energy density, it becomes T true

j � jT=�jÿ 3=2� (Col-
lier, 1995, Olsson and Janhunen, 1997), where T is the
parameter appearing in Eq. (2). We choose to write our
formulas in terms of T rather than T true

j .
Distributions given in Eqs. (1) and (2) are given in

energy variables and are normalized to the particle
number density Ne as

2p
Z1
0

Z1
0

f �Wk;W?�
�����������
2

m3Wk

s
dWk dW? � Ne ; �3�

where f stands for either fBM or fj. The current density
at the ionospheric plane is computed from

j �2pe
1

2
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Bi
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� �Z1
0

ZW max
?

0

f �Wk;W?�
�����������
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(FL80), where vk �

��������������
2Wk=m

p
and W max

? is given by

W max
? � T?

Tk
x�Wk � eV � �5�

where

x � Tk
T?

1

Bi=Bm ÿ 1
�6�

and V is the ionosphere-magnetosphere potential di�er-
ence (according to our convention, V is positive when
the ionosphere is at a higher potential than the
magnetosphere, i.e. when electrons precipitate). Bi and
Bm are the magnetic ®eld strengths at the ionosphere and
the magnetospheric source plasma region, respectively.

Equation (4) is the same as the normalization integral
[Eq. (3)], except that the factor evk has been added, the
domain of integration has been reduced (the parameter
W max
? ) as explained in FL80, the factor �Bi=Bm) has been

added to get the current density at the ionospheric
plane, and the factor �1=2� has been added to take into
account the FAC into one hemisphere only.

The energy ¯ux at the ionospheric plane is

e � 2p
1

2

� �
Bi

Bm

� �Z1
0

ZW max
?

0

f �Wk;W?�
�����������
2

m3Wk

s
� vk�Wk � W? � eV �dW?dWk : �7�
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This is similar to the current density formula of Eq.
(4), except that now we drop the e and include
Wk � W? � eV . Notice that the accelerating potential
term eV must be added here to get the energy ¯ux at the
ionospheric level.

2.1 Bi-Maxwellian distribution

For the bi-Maxwellian distribution [Eq. (1)] the general
current density formula given by Eq. (4) yields

jBM � e
Bi

Bm

� �
Ne

�����������
Tk

2pme

s
1ÿ exp�ÿxeV =Tk�

1� x

� �
: �8�

This is the same formula as Eq. (5) in FL80, except
that we are calculating the current density, not the
particle ¯ux.

The energy ¯ux formula, Eq. (7), for the bi-Max-
wellian distribution gives the result

eBM � Bi

Bm

� �
Ne

���������
Tk
2pm

r (
Tk � T? � eV

ÿeÿxeV =Tk T? � eV 1� x
T?
Tk

� ��
� Tk � xT?
�1� x�2

#)
�9�

which is the same as Eq. (6) of FL80.
These expressions can be much simpli®ed by invok-

ing the approximation x� 1, where x is de®ned by Eq.
(6). Usually this is a very good approximation, since the
ionospheric magnetic ®eld Bi is much larger than the
magnetospheric magnetic ®eld Bm. A straightforward
series expansion of Eq. (8) in x yields

jBM
Appr: �

Tk
T?

� �
eNe�������������
2pmTk

p Tk � eV
ÿ �� O x2

ÿ �
: �10�

This is the bi-Maxwellian current density formula in
the ®rst approximation. This is the formula currently in
use in our ionosphere-magnetosphere coupling simula-
tion (Janhunen, 1996). For large accelerating potentials
(eV � Tk), Eq. (10) can be further approximated as

j � Tk
T?

� �
e2Ne�������������
2pmTk

p V : �11�

which is the well-known linear current-voltage relation-
ship (Lundin and Sandahl, 1978; FL80), which we call
the second approximation.

The ®rst approximation for the energy ¯ux yields

eBM
Approx: �

Tk
T?

Ne�������������
2pmTk

p 2T 2
k � 2eVTk � �eV �2

h i
� O x2

ÿ �
:

�12�
Again, for accelerating potentials much larger than

the thermal energies we obtain

e � Tk
T?

� �
e2Ne�������������
2pmTk

p V 2 ; �13�

which is the second approximation bi-Maxwellian
energy ¯ux formula.

Usually in the preceding formulas one does not know
the parallel and perpendicular temperatures separately,
so they are assumed equal, but we have given the more
general expressions for reference purposes. Our expres-
sions are in agreement with those given by FL80 [their
Eqs. (9) and (10)]. Notice that in deriving Eqs. (10) and
(12) our only assumptions were x� 1 and x� Tk=�eV �,
which are usually valid in all practical upward current
cases, except possibly those having an extremely large
potential drop. In particular, these formulas are valid
for small potential drops also, as far as hot magneto-
spheric electrons as concerned. For very small potential
drops (less than 100 eV) the ionospheric plasma source
should also be taken into account, as was taken into
account in the pioneering work of Pierrard (1996).

In Fig. 1 we compare the ®rst and second approx-
imated current densities, Eqs. (10) and (11), with the
exact formula, Eq. (8). The parameters employed are
listed in Table 1. The ®rst approximation (dashed line) is
indistinguishable from the exact result (solid line) for
potential drops less than about 100 kV. The second
approximation (dotted line) is notably di�erent for small
potential drops. Both ®rst and second approximation
are the same for large potential drops.

A similar comparison for the energy ¯ux is shown in
Fig. 2. In this case the ®rst approximation and the exact
result curves completely overlap.

2.2 Kappa distribution

For the kappa distribution, Eq. (2), the general current
density formula, Eq. (4), yields
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Fig. 1. The exact nonlinear current density (solid), the ®rst
approximation (dash) and the second approximation (dot) line for
an isotropic Maxwellian distribution for parameters shown in Table 1.
The exact and ®rst approximation curves di�er only for potential
drops larger than about 100 kV. The ®rst and second approximations,
on the other hand, overlap for potential drops larger than about 30
kV, resulting in a dash-dot line.
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jj � e
Bi

Bm

� �
Ne

���������
T
2pm
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1ÿ 1

1� eVx
jT

ÿ �jÿ1�1� x�

" #

� C�j� 1�
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In Fig. 3 we plot Eq. (14) for di�erent kappa values. For
large kappa values these curves tend to the Maxwellian
result. For potential drops smaller than a few kV,
smaller kappa values give larger current densities, as was
also found by Pierrard (1996).

It can be shown that limj!1 jj � jBM, as Pierrard
(1996) did for her formulas.

Expanding Eq. (14) to ®rst order in x gives

jj
Approx: �

eNe������������
2pmT
p T � jÿ 1

j
eV

� �
� C�j� 1�

C�jÿ 1=2�j1=2�jÿ 1� ; �15�

which is the ®rst approximation current density for
kappa distribution. Further, if we assume that the
potential drop is larger than the thermal energy
(eV � T ) we obtain the second approximation

j � e2Ne������������
2pmT
p C�j� 1�

C�jÿ 1=2�j3=2 V : �16�

In Fig. 4 we compare the ®rst and second approx-
imations, Eqs. (15) and (16), with the exact kappa
current density formula, Eq. (14). The result is qualita-

tively similar to Fig. 1, where we made the same kind of
comparison for the Maxwellian distribution.

If we write the second approximation, Eq. (16), as
j � KV , and compare with the corresponding Maxwell-
ian result Eq. (11) putting T � Tk � T? we can identify:

Kj � C�j� 1�
C�jÿ 1=2�j3=2 KBM ; �17�

which di�ers from Eq. (14) of Pierrard (1996), who has
j1=2�jÿ 1� instead of j3=2 in the denominator. Our Kj is
always smaller than the corresponding KBM (Fig. 5),
whereas Pierrard's KKappa is larger than the Maxwellian
K. For large j values our results (and those of
Pierrard's) approach the Maxwellian results, as they
should.

Contrary to the Maxwellian case, the energy ¯ux
formula given by Eq. (7) applied to the kappa distribu-
tion yields to integrals which we cannot do analytically.
However, we have already pointed out that in almost all
practical cases it su�ces to compute to ®rst order in x. In
the case of bi-Maxwellian distribution we ®rst computed
the exact current density and energy ¯ux formulas, Eqs.
(8) and (9), and then made the series expansion. It is,

Table 1. Parameters used in the plots

parameter value

Bi 50000 nT
Bm 50 nT
Ne 0.1 cm)3

T=T?=Tk 1 keV
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Fig. 2. Same as Fig. 1 but for the energy ¯ux. In this case the ®rst
approximation (dash) is indistinguishable from the exact result (solid).
The second approximation (dot) is still notably di�erent for small
energies
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Fig. 3. Comparison of di�erent j values for the exact kappa current
density formula; j � 2 (dot), j � 3 (long-short-short dash), j � 5:5
(dash-dot), j � 1, i.e. Maxwellian (solid)

102

103 104 105 106102

10-1

10-2

1

10

101
Potential drop (V)

C
ur

re
nt

 d
en

si
ty

 (
m

ic
ro

A
/m

)2

Fig. 4. Same as Fig. 1 but for the kappa distribution (j � 4). The
overlapping of the curves is similar to Fig. 1
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however, also possible to utilize the approximation
x� 1 ®rst, as follows. In Eq. (7) the inner integration
limit W max

? is proportional to x by Eq. (5). To ®rst order
in x, the value of the inner (W?) integral is thus given by
W max
? times the value of the integrand at W? � 0:

e � 2p
1

2

� �
Bi

Bm

� �Z1
0

W max
? f �Wk; 0�

�����������
2

m3Wk

s

� vk�Wk � eV �dWk � O�x�2 : �18�
Physically, this approximation means that we ap-

proximate the distribution function inside the entire loss
cone by the value of the distribution function at zero
pitch angle. Since the loss cone is very narrow in the
magnetospheric source region, this is a good approxi-
mation. We have rederived the bi-Maxwellian results,
Eqs. (10) and (12), using this approximation to verify
that it indeed yields the same results as the more direct
method used in the preceding.

The energy ¯ux formula of Eq. (18) applied to the
kappa distribution gives the result (after utilizing the
approximation x� 1 also elsewhere in the formula)

ej
Approx: �

Ne���������������
2pjmT
p

C�jÿ 1=2�
� 2j2T 2C�jÿ 2� � 2ejTV C�jÿ 1� � e2V 2C�j�� �

;

�19�
which is the kappa energy ¯ux formula in the ®rst
approximation. This is a new result. Again, one can
show that limj!1 ej

Approx: � eBMApprox:. Approximating this
further by assuming a large potential drop relative to
thermal energy, we obtain the second approximation
formula

e � e2Ne������������
2pmT
p C�j� 1�

C�jÿ 1=2�j3=2 V 2 : �20�

Writing this in the form e � KjV 2, we can see that the
same Kj can be identi®ed both from the current density
[Eq. (16) above] and the energy ¯ux formula, Eq. (20).

In Fig. 6 we compare the ®rst and second approx-
imation energy ¯uxes in case of kappa distribution. The
second approximation becomes invalid for small ener-
gies, as usual. The exact result is unfortunately not
available, but since all other comparisons (Figs. 1±3)
showed that the ®rst approximation is almost indistin-
guishable from the exact result, there is every reason to
believe that this is also the case for the kappa energy
¯ux.

As a ®nal note, the source plasma density Ne
appearing in all the preceding formulas is not necessarily
the true magnetospheric plasma density, because the
electron loss cone ®lling during one bounce period is not
necessarily complete. In other words, the starting point
for our derivation was isotropic source plasma distri-
bution function, which is the same as to assume
complete loss cone ®lling by pitch angle scattering. It
is very common, however, that the pitch angle scattering
is incomplete for the electrons. This is seen, e.g., in the
Freja study by Olsson et al. (1997), where the estimated
e�ective source plasma densities were much lower than
the true plasma density can possibly be.

3 Summary of results

We computed the current density and the energy ¯ux for
bi-Maxwellian and kappa distributions both exactly and
in two approximations. The ®rst approximation is
almost generally valid and uses only Bm � Bi. In the
second approximation we assume in addition that the
thermal energy is much smaller than the acceleration
potential V .

For the use with large-scale simulations at least, it is
su�cient to consider magnetospheric electrons only as
FAC carriers. Therefore we ignore ionospheric particles
as well as magnetospheric protons, and we neglect
gravity.

The results are valid for upward FAC regions. In
downward FAC regions the classical theory predicts
that the potential drop is approximately zero. Slight
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Fig. 5. Dependence of Kj=KBM on j. Unity corresponds to the
Maxwellian value. For large j we recover the Maxwellian results as
we should
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The exact formula for the kappa energy ¯ux is not known, so there is
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modi®cations of this rule will in fact occur for very small
potential drops which are possible to take into account
by including the e�ect of ionospheric particles and
magnetospheric protons (Lemaire and Scherer, 1983;
Pierrard, 1996), but these are insigni®cant, at least as far
as global ionosphere-magnetosphere coupling simula-
tion work is concerned.

We summarize our new ®ndings brie¯y.

1. In all example ®gures the ®rst approximation curve
was almost indistinguishable from the exact result. As
the ®rst approximation formulas are also practical to
compute, they are useful for simulation work where an
accurate current-voltage relationship is needed in both
active and background regions. The second approxima-
tion is valid if the thermal energy is much smaller than
the potential drop; it has thus been used for many
observational studies of auroral activity (e.g., Lyons
et al., 1979; Lu et al., 1991; Weimer et al., 1987; Sakanoi
et al., 1995).

2. With the preceding assumptions, the current
density formulas for kappa distribution were derived
both exactly and in the two approximations.

3. We derived the kappa energy ¯ux formulas in both
®rst and second approximation.

4. We showed how the ®rst approximation formulas
can be derived even in cases where the exact result is not
possible to compute analytically. This method must be
used to derive the kappa energy ¯ux formulas.

5. For the case of kappa distribution, the e�ective
®eld-aligned conductance K is always smaller than for
the bi-Maxwellian case. However, the di�erence is not
very large and tends to unity when j!1.

6. For j!1 we recover the Maxwellian results for
both current density and energy ¯ux, as we should.
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