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Abstract. The source-surface method offers an alter-
native to full MHD simulation of the heliosphere. It
entails specification of a surface from which the solar
wind flows normally outward along straight lines.
Compatibility with MHD results requires this (source)
surface to be non-spherical in general and prolate
(aligned with the solar dipole axis) in prototypical
axisymmetric cases. Mid-latitude features on the source
surface thus map to significantly lower latitudes in the
heliosphere. The model is usually implemented by
deriving the B field (in the region surrounded by the
source surface) from a scalar potential formally ex-
panded in spherical harmonics, with coefficients chosen
so as to minimize the mean-square tangential compo-
nent of B over this surface. In the simplified (scalar)
version the quantity minimized is instead the variance of
the scalar potential over the source surface. The scalar
formulation greatly reduces the time required to
compute required matrix elements, while imposing
essentially the same physical boundary condition as
the vector formulation (viz., that the coronal magnetic
field be, as nearly as possible, normal to the source
surface for continuity with the heliosphere). The source
surface proposed for actual application is a surface of
constant ~F � rÿk

~B, where r is the heliocentric distance
and ~B is the scalar magnitude of the B field produced by
currents inside the Sun. Comparison with MHD
simulations suggests that k � 1:4 is a good choice for
the adjustable exponent. This value has been shown to
map the neutral line on the source surface during
Carrington Rotation 1869 (May–June 1993) to a
range of latitudes that would have just grazed the
position of Ulysses during that month in which sector
structure disappeared from Ulysses’ magnetometer
observations.

1 Background

The magnetic field in the solar corona is traditionally
modeled (Schatten et al., 1969; Altschuler and Newkirk,
1969; Hoeksema and Scherrer, 1986; Hoeksema, 1991)
as being current-free (and thus derivable from a scalar
potential) within a spherically annular volume of inner
radius 1 r

�
and outer radius r0 � 1:6 ÿ 2:5r

�
sur-

rounding the Sun. The inner sphere �r � r
�
� corre-

sponds to the photosphere, at which the line-of-sight
component of the Sun’s magnetic field B is remotely
observed by means of Earth-based Zeeman spectros-
copy. The outer sphere �r � r0� is regarded as a
magnetic equipotential surface, to which B is therefore
perpendicular and from which the solar wind implicitly
flows radially outward into the heliosphere. Schatten
et al. (1969) chose r0 � 1:6r

�
for the radius of their

source surface. Altschuler and Newkirk (1969) chose
r0 � 2:5r

�
in order to achieve better agreement with

dimensions of large coronal helmet structures seen in
eclipse photographs.

Subsequent magnetohydrodynamic (MHD) simula-
tions by Pneuman and Kopp (1971a, b) showed (as
many eclipse photographs had already indicated) that
the outflow of solar wind must be significantly non-
radial in the inner heliosphere. The dashed curves in
Fig. 1a represent field lines obtained from the MHD
simulation. The solid curves in Fig. 1a represent field
lines obtained from a dipole centered within a spherical
source surface of radius r � 2:5r

�
. The disagreement at

rJ2r
�

is quite substantial. These considerations have
prompted various alternative formulations of the
source-surface model. In the best-known of these
alternatives, Schatten (1971) distinguished between a
source surface at r � 1:6r

�
and a zero-potential surface

at r � 2:5r
�

. He actually used the solution from
r0 � 2:5r

�
only at r � 1:6r

�
and solved a second

(exterior) potential problem to obtain B at r � 1:6r
�

from the absolute value of Br at r � 1:6r
�

. Zhao and
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Hoeksema (1995) currently use a modified version of
Schatten’s approach, treating these two radii as adjus-
table parameters of their model (see also Wang and
Sheeley, 1995).

In a lesser known alternative formulation, Schulz
et al. (1978) gave the source surface of Altschuler and
Newkirk (1969) a non-spherical shape (still enclosing a
volume � 125pr3

�
=6) but preserved its role as a

magnetic equipotential surface from which the solar
wind flows normally outward along straight lines. The
particular shape of source surface chosen by Schulz et al.
(1978) to illustrate the new model was an isogauss of the
Sun’s dipole field. The equation of this source surface (of
equatorial radius r0 � 2:3r

�
) was r � �1 � 3 cos2 h�1=6r0,

where h denotes the magnetic colatitude. The essential
feature of this surface was its prolateness along the
dipole axis.

Schulz et al. (1978) found that rectilinear trajectories
extending normally outward from such a source surface
adequately simulated the field-line directions obtained
by Pneuman and Kopp (1971a, b) from their MHD
solution (see Fig. 1b) and adequately spread magnetic
field lines throughout the heliosphere, so that the
meridional (� radial) component of B was virtually
independent of magnetic latitude at any specified rJ1
AU. Ulysses observations by Smith and Balogh (1995)
have confirmed this (the latitude-independence of r2Br)
as a desirable result.

Levine et al. (1982) applied the concept of Schulz
et al. (1978) to a more realistic (not purely dipolar)
heliomagnetic field. The magnetic field B �

~B �
�B in the

region r
�
� r � rs�h; u) between the photosphere and

the non-spherical source surface was again separated
into contributions due to currents at r < r

�
and at

r � rs�h;u), respectively, so that

~B � ÿr
�
r

XN

n�1

Xn

m�0

�r
�
=r�n�1

�gm
n cos mu� hm

n sin mu�Pm
n �h�

�1a�

�B � ÿ�r3
�
=r2

0�r
X�N

n�1

Xn

m�0

�r=r0�
n
��gm

n cos mu

�
�hm

n sin mu�Pm
n �h� �1b�

where r0 is a nominal (e.g., equatorial) radius character-
izing the source surface and thus normalizing the
expansion coefficients �gm

n ;
�hm

n

� 	
in Eq. (1b).

The expansion coefficients �gm
n ;

�hm
n

� 	
in the work of

Levine et al. (1982) were obtained by minimizing (with
respect to the �gm

n ;
�hm

n

� 	
) a bilinear variational quantity

equal to the mean-square tangential component of B
over the source surface. (The goal of this procedure was
to make B as nearly as possible normal to the source
surface from the inside.) The value of r � rs�h; u� on the
source surface was implicitly specified by adopting a
compromise between a source surface of constant ~B2 (as
in Schulz et al., 1978) and a source surface of constant r
(as in Altschuler and Newkirk, 1969). The present work
offers a simplified prescription of the source surface and
a streamlined determination of the coefficients �gm

n ;
�hm

n

� 	
,

in the hope that these steps will make the model easier to
use in practice.

2 Source surface

The source surface in the present work is regarded
(Schulz, 1995) as a surface of constant ~F � rÿk

~B, where
~B��j ~B j) is the absolute value of the magnetic field ~B
produced by currents inside the Sun and k�� 0� is an

Fig. 1a,b. Representative field lines emanating from selected photo-
spheric latitudes in various coronal magnetic-field models, applied to
the case in which the Sun’s field is dipolar. Dashed curves correspond
to MHD model of Pneuman and Kopp (1971a,b) in both panels.
Solid curves correspond to source-surface models: a with spherical
source surface (dotted curve) of radius r � 2:5r

�
(Altschuler and

Newkirk, 1969), corresponding to k � 1 in present notation; and b
with ‘‘dipole-isogauss’’ source surface (dotted curve) of variable radius
r � 2:3�1 � 3 cos2

�

1=6r
�

(Schulz et al., 1978), corresponding to k � 0
in present notation (h � magnetic colatitude).
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adjustable parameter. The limit k !1 leads back to the
usual spherical source surface (Schatten et al., 1969;
Altschuler and Newkirk, 1969), which was intended
primarily for modeling the corona (not the entire
heliosphere). The choice k � 0 leads back to a source
surface of constant ~B (Schulz et al., 1978). For the
special (test) case of a dipolar ~B field (but for general k)
the equation of a source surface with equatorial radius
r0 would be

r � �1 � 3 cos2 h�1=�2k�6�r0; �2�

where h is the magnetic colatitude. The unit vector n̂
normal to the source surface would be given in spherical
coordinates by

n̂ � ÿ j r
~F j

ÿ1
r

~F

�

3^h cos h sin h� �k � 3�r̂�1 � 3 cos2 h�

�9 cos2 h sin2 h� �k � 3�2
�1 � 3 cos2 h�2

�

1=2
: �3�

The direction of n̂ is easier to visualize in cylindrical
coordinates (q � r sin h; z � r cos h), since the value of

dz
dq

�

�k � 3�k � 4� cos2 h� cos h
��k � 3� � 3�k � 4� cos2 h� sin h

�4�

along n̂ at the source surface is equal to the tangent of
the heliomagnetic latitude k to which the corresponding
field line would map asymptotically. This dz=dq should
well approximate the value of tan k along the field line at
r � 1:1 ÿ 5:4 AU (the range spanned by Ulysses).
However, the actual equation of a solar-wind stream-
line, from the source surface to the boundary of the
heliosphere in this model, is

z � zs � �dz=dq�s�qÿ qs�; �5�

where the subscript s denotes evaluation at the source
surface (Schulz et al., 1978).

The dotted curve in Fig. 2 corresponds to the source
surface specified by Eq. (2) for k � 1:4, with r0 chosen so
as to preserve the enclosed volume �� 125pr3

�
=6�. In this

case a source surface of equatorial radius r0 � 2:33r
�

would enclose the same volume as a sphere of radius
2:5r

�
. The solid lines in Fig. 2 extend normally outward

from selected latitudes (5� apart) on the source surface,
for comparison with the directions of MHD field lines
(dashed curves) obtained by Pneuman and Kopp
(1971a, b). This comparison confirms that k � 1:4 is a
reasonable choice for the shape parameter k in Eq. (2),
at least for the dipolar test case. Moreover, the choice of
k � 1:4 has been found (Schulz, 1995) to account within
1� for the maximum latitude (� 30�S) reached by the
heliospheric current sheet (HCS) at r � 4:7 AU during
May 1993, when ‘‘sector structure’’ first disappeared
from the Ulysses magnetometer observations (Smith
et al., 1993).

Since the Sun’s B field is predominantly dipolar only
during part of the solar cycle, extending for a few years
on either side of solar minimum, it may be premature to
infer that the same choice for k should apply under
solar-maximum conditions also. For now this is just a
working hypothesis to be tested against future Ulysses

data. However, Levine et al. (1982) found that a
similarly (although parametrically more cumbersome)
intermediate shape between k � 0 and k � 1 could
account quite well not only for the MHD field
configuration obtained by Pneuman and Kopp
(1971a,b) in the dipolar test case, but also for a more
complicated coronal and interplanetary B-field config-
uration encountered not far from solar maximum.

3 Variational principle

The magnetic field B (� ~B � B ) specified by Eq. (1) is
derivable from a scalar potential V �� ~V � V � at r � r0.
The vector B is made everywhere perpendicular to the
spherical source surface (of radius r0) employed in the
model of Schatten et al. (1969) or Altschuler and
Newkirk (1969) by choosing the expansion coefficients

Fig. 2. Dashed curves represent field lines emanating from selected
photospheric latitudes in MHD model of Pneuman and Kopp (1971a,
b) for the case in which the Sun’s field is dipolar. Solid curves represent
field lines that cross the source surface, specified as
r � 2:33�1 � 3 cos2 h�5=44r

�
, at 15� intervals of magnetic latitude in

the present model (k � 7=5). This value of k best reproduces the
latitude-dependence of B-field direction in the inner heliosphere (just
outside the source surface, where field lines are straight lines in the
present model). Portions of additional field lines in the present model
are shown as solid lines extending outward from the source surface at
5� intervals of magnetic latitude. These are truncated at the source
surface in order not to clutter the presentation.
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fgm
n ; h

m
n g in Eq. (1b) so that �gm

n ; h
m
n � � �gm

n ; hm
n �. This

choice of fgm
n ; h

m
n g makes the source surface (r � r0) an

equipotential of V . Indeed, it makes V � 0 (regardless of
h and u) at r � r0.

The magnetic field B � ÿrV specified by Eq. (1) is
made (as nearly as possible) perpendicular to a prolate
source surface in the model of Schulz et al. (1978) and
Levine et al. (1982) by minimizing the variational quantity

r �
I

ss

�n � B�2dA �6�

with respect to the expansion coefficients fgm
n ; h

m
n g in Eq.

(1b). This procedure seems simple enough in concept,
but its implementation in general has led to page-long
equations and correspondingly long computation times
(Levine et al., 1982).

The present work offers a simpler procedure for
making B (as nearly as possible) normal to the source
surface from the inside. The variational quantity
minimized here is

r� �
I

ss

�V ÿ hV i�2dA; �7�

where hV i denotes the mean value of V over the source
surface. (It is easy to show that, if the goal is to minimize
the mean-square deviation of V from a constant over the
source surface, then that constant must be hV i). As long
as B is to be derived from a scalar potential in the region
surrounded by the source surface, a scalar formulation
based on Eq. (7) seems simpler to implement than a
vector formulation based on Eq. (6). The results should
be equivalent, if not identical.

The coefficients fgm
n ; h

m
n g are presumed to have been

determined (e.g., Hoeksema and Scherrer, 1986) from
the line-of-sight component of B, as measured through
Earth-based Zeeman spectroscopy. That deconvolution
typically invokes a spherical source surface of radius
r � 2:5r

�
. Better values for the coefficients fgm

n ; h
m
n g

could possibly be deduced through use of a prolate
source surface, but this potential refinement (which
would seem to require an iterative deconvolution of the
solar magnetic-field data) is not addressed here. Only the
coefficients fgm

n ; h
m
n g are evaluated via Eq. (7) in the

present work.
Since r� is algebraically bilinear in the expansion

coefficients fgm
n ; h

m
n g, the equations dr�=d�gm0

n0 � dr�=d�hm0

n0

� 0 suffice to determine optimal values for the N�N � 2�
coefficients fgm

n ; h
m
n g. There are �N=2��N � 3�linear equa-

tions of the form

or�

ogm0

n0
� 2

I

ss

�V ÿ hV i�
oV
ogm0

n0
ÿ

ohV i
ogm0

n0

� �
dA

� 2
I

ss

�V ÿ hV i��oV =gm0

n0 �dA � 0; �8a�

corresponding to distinct values of (n0;m0), and
�N=2��N � 1� linear equations of the complementary
form

or�

oh
m0

n0

� 2
I

ss

�V ÿ hV i�
oV

oh
m0

n0

ÿ

ohV i

oh
m0

n0

" #

dA

� 2
I

ss

�V ÿ hV i��oV =oh
m0

n0 �dA � 0; �8b�

also corresponding to distinct values of (n0;m0). The
parenthesized factor in Eq. (8) is linear with respect to
the fgm

n ; h
m
n g in each case; the factors in square brackets

can depend on (n0;m0) but not explicitly on fgm0

n0 ; h
m0

n0 g,
since V itself depends linearly on fgm0

n0 ; h
m0

n0 g in that

factor. The terms ohV i=ogm0

n0 and ohV i=oh
m0

n0 can be
removed from the square-bracketed factors in Eqs. (8a)
and (8b), respectively, because they are independent of
spatial coordinates. Thus, they behave as constants in
any integrations over the source surface of whatever
shape, which thus reduce to integrals of �V ÿ hV i� with
respect to dA over the source surface. Such integrals
vanish by definition: hV i is the mean value of V over the
source surface. A further simplification (such that
hV i � 0) occurs if ~B (and thus the source surface itself)
is adequately symmetric between north and south.
Otherwise it is necessary to implement Eqs. (8a) and
(8b) as they stand, accepting that hV i can depend on
fgm0

n ; hm0

n g if hV i 6� 0.

4 Test case

The greatly simplified case of dipolar ~B illustrates how
this described variational procedure might work in
practice. The source surface in this case reduces to that
specified by Eq. (2), and the magnetic field B given by
Eq. (1) becomes derivable from the scalar potential

V �r; h� � g0
1�r

3
�
=r2

� cos h

� �r3
�
=r2

0�
XN

n�1

�r=r0�
n
�g0

n Pn�cos h�; �9�

with only odd values of n �� 1; 3; 5; :::� represented in
the summation. Legendre functions

Pn�x� �
1

n!2n

dn

dxn

�
�x2

ÿ 1�n�
�10a�

satisfy the differential equation

d
dx

�
�1 ÿ x2

�

dPn

dx

�
� n�n � 1�Pn�x� � 0: �10b�

It follows from Eq. (9) that dV =dg0
n0 � �r3

�
=r2

0��

�r=r0�
n0Pn0 �x�, where x � cos h � P1�x�. Thus, it follows

from Eq. (8a) that

X�N

n�1

g0
n

I

ss

�r=r0�
n�n0Pn�x�Pn0 �x�dA

� ÿg0
1

I

ss

�r=r0�
n0ÿ2xPn0 �x�dA �11a�

with r=r0 as given by Eq. (2) and
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dA � 4pr2 1 �
3x2

�1 ÿ x2
�

�k � 3�2
�1 � 3x2

�

2

" #1=2

dx �11b�

for 0 � x � 1. The required integrals have been
evaluated numerically with Mathematica (Wolfram,
1992), which has also been programmed to solve the
resulting simultaneous linear equations specified by Eq.
(11). Results for fg0

n=g0
1g corresponding to selected

values of N�� 3; 5; 7; :::; 15� are listed in Table 1.
Truncation of Eq. (1b) at � 1 would be contrary to
the spirit of the model but is found to yield
g0

n=g0
1 � ÿ0:708580.

The values of g0
n=g0

1 in Table 1 represent normalized
2n-pole moments due to azimuthal currents that flow
outside the source surface. These values specify the
relative weights that should be assigned to the various
P0

n�h� in Eq. (1b) if the Sun’s own magnetic field (~B) were
purely dipolar. The value of g0

n=g0
1 in any row of Table 1

seems to approach a limit as N !1, but the values of
fg0

n=g0
1g in any column of Table 1 are mutually

optimized for the corresponding N . Strictly speaking,
this means that Eq. (1b) is not a uniformly convergent
representation of B unless k � 1 (i.e., unless the source
surface is spherical). One cannot just truncate any
column in Table 1 at some n < N and expect the
resulting representation to be ‘‘good enough.’’ Even so,
there is little visible difference between the N � 13 model
and the N � 11 or the N � 15 model when representa-
tive field lines are plotted for comparison with Pneuman
and Kopp (1971a, b).

Magnetic field lines in heliospheric models are usually
traced numerically (e.g., by using a fourth-order Runge-
Kutta technique) as space curves locally tangential to B.
However, the tracing procedure can be greatly simpli-
fied, at least for an axisymmetric B field derived from a
scalar potential, by formally constructing Euler poten-
tials �a; b� such that b � u and B � ra�rb � ÿrV
(e.g., Stern, 1976, 1994)

1
r sin h

r̂
r
oa
oh
ÿ

^h
oa
or

� �
� r̂

oV
or

�

^h
r
oV
oh

�12�

This means that

oa=oh � ÿr2 sin h �oV =or� �13a�

and that

oa=or � sin h �oV =oh� �13b�

for the case of a current-free axisymmetric B field. (This
is admittedly a very special test case, unlikely to be
encountered in nature.) Thus, it follows from Eq. (13a)
that

a�r; h� � g0
1�r

3
�
=r��1 ÿ x2

�

� �r3
�
=r0�

XN

n�1

�r=r0�
n�1g0

n

�n ÿ 1�!2n

dnÿ1

dxnÿ1 ��x
2
ÿ 1�n

� �14a�

and from Eq. (13b) that

a�r; h� � g0
1�r

3
�
=r��1 ÿ x2

�

ÿ �r3
�
=r0��1 ÿ x2

�

XN

n�1

�r=r0�
n�1g0

n

�n � 1�!2n

dn�1

dxn�1

�
�x2

ÿ 1�n�
: �14b�

That these two expressions for a�r; h� are equivalent can
be seen by integrating Eq. (10b) with respect to x. The
latter form of Eq. (14) is probably the more convenient,
however: This form shows sin2 h�� 1 ÿ x2

� explicitly as a
factor common to all terms in the summation, leaving
the derivative (rather than the integral) of Pn�x� with
respect to x to be generated (as a callable function) by
Mathematica (Wolfram, 1992).

The value of a at any point along a field line must be
equal to 1=2p times the magnetic flux enclosed by
rotating that field line about the symmetry axis. That a
and b remain constant along any field line is well known
and obvious, since ra � �ra�rb� � rb � �ra�rb�
� 0. (The cross product between any two vectors is
always perpendicular to each.) Thus, it follows from Eq.
(14b) that the quantity

1
L
� �1 ÿ x2

��r
�
=r� 1 ÿ

XN

n�1

�r=r0�
n�2

�g0
n=g0

1�

�n � 1�
dPn

dx

" #

�15�

should remain constant on the magnetic surface (shell of
field lines) that it labels. (The ‘‘L’’ terminology is
borrowed from magnetospheric physics. The idea is that
a dipolar field line would satisfy the equation
r � Lr

�
sin2 h and so would intersect the photosphere

at a magnetic latitude K such that cos K � Lÿ1=2.) In a
field geometry stretched by the heliospheric current
sheet, the enclosed magnetic flux remains proportional
to 1=L, but the field line intersects the equator at r > Lr

�

and the photosphere at a magnetic latitude slightly
higher than cosÿ1

�Lÿ1=2
�. Thus, for example, the last

Table 1. Optimized values of g0
n=g0

1 for selected values of N

n N � 3 N � 5 N � 7 N � 9 N � 11 N � 13 N � 15

1 )0.723974 )0.725645 )0.725908 )0.725957 )0.725967 )0.725970 )0.725970
3 +0.0941047 +0.103736 +0.105261 +0.105550 +0.105610 +0.105624 +0.105627
5 0.0 )0.0274149 )0.0324136 )0.0334301 )0.0336532 )0.0337049 )0.0337174
7 0.0 0.0 +0.00944986 +0.0119309 +0.0125432 +0.0126956 +0.0127342
9 0.0 0.0 0.0 )0.00351930 )0.00472703 )0.00507664 )0.00517369

11 0.0 0.0 0.0 0.0 +0.00137132 +0.00195296 +0.00214590
12 0.0 0.0 0.0 0.0 0.0 )0.000550607 )0.000828866
13 0.0 0.0 0.0 0.0 0.0 0.0 +0.000225862
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closed field line (which reaches x � cos h � 0 at
r � r0 � 2:33r

�
) in the present model bears the label

L� � 1:6425 and crosses the photosphere at magnetic
latitude K�

� 39:69�. A purely dipolar field line with
L � 1:6425 would cross the photosphere at K � 38:71�.
For a spherical source surface of radius r � 2:5r

�
, the

last closed field line would have borne the label L� � 5=3
and would have intersected the photosphere at
K�

� 40:32�. These differences are not major. Moreover,
the present source-surface model (with k � 1:4) and the
model with a spherical source surface (k � 1) differ
only slightly with respect to the field-line configuration
at r K 0:8r0: Decisive differences in field-line configura-
tion appear only in the outer part of the region enclosed
by the source surface and (especially) in the mapping of
field lines from the source surface into the heliosphere.

The solid curves in Fig. 2 are selected field lines
constructed via Eq. (15) from the values of g0

n=g0
1 shown

in Table 1 for N � 15. These field lines have been chosen
so as to intersect the source surface at 15� intervals of
magnetic latitude. The superposed dashed curves are
field lines from the MHD simulation of Pneuman and
Kopp (1971a, b), as in Fig. 1. These had been chosen so
as to intersect the photosphere at a convenient set of
latitudes (not evenly spaced). Thus, the dashed and solid
curves in Fig. 2 do not correspond one-to-one. The
noteworthy feature is their ‘‘nested’’ relationship: They
tend to interleave rather than intersect.

5 Heliospheric field intensity

The amount of magnetic flux poleward of the magnetic
shell that bears the label a�� g0

1r2
�
=L� is equal to 2pa,

and so the mean value of jBrj over any heliocentric
sphere of radius r � r0 must be equal to jg0

1r2
�
=r2L�j.

Since L� � 1:6425 (see earlier), this means that
h�r=AU�2

jBrji � 1:317 � 10ÿ5
jg0

1j if r=AU is the helio-
centric distance measured in AU�1AU � 215r

�
�: The

latitudinal distribution of this field intensity is of interest
here for comparison with Ulysses results.

Since the construction of field lines outside the source
surface is essentially geometrical, it is easy to calculate
the corresponding field intensity geometrically (by
invoking magnetic flux conservation). The solid straight
lines in Fig. 2 are normal to the source surface, and each
can be considered to radiate from a center of curvature
in the same meridional plane (Schulz et al., 1978, Fig. 4).
The radius of curvature of a magnetic meridian on the
source surface is given by

which reduces to rc � �k � 3��r0=k� � �22=7�r0 at the
equator �hs � p=2� and to rc � 4��k � 3�=�4k � 15���
21=�k�3�r0 � 1:000141r0 at the poles �hs � 0; p) if
k � 7=5. The value of Br along either polar field line
(beyond the source surface) thus varies as

Br � �0:135693 g0
1�2:330329r

�
=�r ÿ 0:397215r

�
��

2
�17�

since the surrounding field lines would fill an infinitesi-
mal cone with its apex at z � ��3=�4k � 15��21=�k�3�r0
along the axis of symmetry (see Schulz et al., 1978).

The geometry is a bit more complicated for mappings
from other latitudes on the source surface, but the
principle is the same: The meridional component of B
should vary as the ratio between corresponding infini-
tesimal areas (transverse to the solar-wind velocity) on
the source surface and (as mapped to the point of
interest) in the heliosphere. The ratio of such areas can
be expressed (Schulz et al., 1978) as

Bm

Bs
�

rcqs

frc � ��qÿ qs�
2
� �z ÿ zs�

2
�

1=2
gq

�

rcqs

frc � �qÿ qs��1 � �dz=dq�2
s �

1=2
gq

; �18�

where �q; z� are the cylindrical coordinates of the point of
interest in the heliosphere and �qs; zs� are the cylindrical
coordinates of the corresponding point on the source
surface. The linear mapping of a field line from �qs; zs� to
�q; z� is specified by Eq. (5). The meridional component
of B (called Bm in the heliosphere and Bs on the source
surface) is simultaneously equal to �B2

r � B2
h�

1=2 and
�B2

q � B2
z �

1=2. This differs only very slightly from Br,
however, at heliocentric distances r J 1 AU �� rc�.

It seems most convenient to map from a selected
point �qs; zs� on the source surface to a chosen
heliocentric distance r in the heliosphere. The corre-
sponding value of �qÿ qs�, which is needed in Eq. (18),
can be obtained by solving the quadratic equation

r2
� �qÿ qs � qs�

2
� �zÿ zs � zs�

2

� �1 � �dz=dq�2
s ��qÿ qs�

2
� r2

s

� 2�qs � zs�dz=dq�s��qÿ qs�; �19a�

where r2
s � q2

s � z2
s . The solution for q � qs is

�1 � �dz=dq�2
s ��qÿ qs� �

f�qs � zs�dz=dq�s�
2
� �1 � �dz=dq�2

s ��r
2
ÿ r2

s �g
1=2

ÿ �qs � zs�dz=dq�s� �19b�

The colatitude h of the heliospheric point to which �qs; zs�

maps is indicated by Eq. (5). It is not practical to select
the heliospheric point �q; z� first and then map back to
the source surface, since the value of dz=dq� �s needed for

making this mapping is dependent on �qs; zs� and would
thus remain unknown until the mapping was completed.

The limit r!1 yields �qÿ qs�q!�1� �dz=dq�2
s �
ÿ1r2

and ctn h ! �dz=dq�s. The asymptotic value of
�r=r

�
�

2Bm is thus given by

rc �
�1 � 3 cos2 hs�

ÿ�2k�5�=�2k�6�r0��1 � 3 cos2 hs�
2
�k � 3�2

� 9 cos2 hs sin2 hs�
3=2

�k � 3���1 � 3 cos2 hs�
2
�k � 3�2

� 9 cos2 hs sin2 hs � 3�k � 3��5 cos2 hs ÿ 1��
; �16�
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�r=r
�
�

2Bm ! �rcqs=r2
�
��1 � �dz=dq�2

s �
1=2Bs: �20�

This quantity is plotted (solid curve) in Fig. 3, but as a
function of the heliomagnetic latitude k � 90� ÿ h. The
latitude k along a field line specified by Eq. (5)
approaches tanÿ1

�dz=dq�s as r !1. As would be
expected, the asymptotic plot of �r=r

�
�

2Bm against k in
Fig. 3 is almost indistinguishable from a plot of
�r=r

�
�

2Bm against k at r � 1 AU (not shown). The
meridional (asymptotically radial) component of B in
this model varies by about �18% from its mean value
over about 80% of the unit sphere. A source-surface
model with k � 1:4 thus leads (not surprisingly) to a
latitudinal distribution of magnetic flux similar to that
found by Pneuman and Kopp (1971a, b).

The dashed step-function in Fig. 3 corresponds to a
hypothetically uniform latitudinal distribution of the
same amount of magnetic flux, which would be in better
agreement with the Ulysses observations (Smith and
Balogh, 1995). The meridional component of B at r � 1
AU actually is almost latitude-independent (varying by
less than �5% from its mean value over 85% of the unit
sphere) in a source surface model with k � 0 (Schulz
et al., 1978), which corresponds to Fig. 1b here. A
spherical source surface (k � 1, corresponding to
Fig. 1a here) would have led to a sinusoidal variation
of Br with latitude: Br � 3g0

1�r
3
�
=r2r0)sin k, which is

contrary to all observations.

6 Summary and discussion

If the criterion for a successful heliospheric model were
just that �r=r

�
�

2Bm be almost independent of k at rK1
AU, there might be reason to prefer the k � 0 source

surface (Schulz et al., 1978) over the present k � 1:4
version. However, a comparison between Figs. 2 and 1b
confirms that the present version better accounts for the
latitude-dependent direction of B outside the source
surface, and Schulz (1995) found that the k � 1:4 model
accounts better (almost perfectly, in fact) for the
Ulysses-inferred latitudinal extent (Smith et al., 1993)
of the heliospheric current sheet (HCS) during Carring-
ton Rotation 1869 (May–June 1993, when sector
structure first disappeared from Ulysses’ magnetometer
observations).

It seems that only a slightly equatorward redistribu-
tion of the normal component of B over the present
(k � 1:4) source surface could preserve the desired
directionality and mapping properties achieved here,
while also restoring the near-uniformity of �r=r

�
�

2Bm
with magnetic latitude previously achieved with the
k � 0 model. Uniqueness of solutions to Laplace’s
equation for the Dirichlet problem (e.g., Jackson,
1962) posed here [and solved via Eq. (7)] precludes such
a redistribution of n̂ � B within the framework of
potential theory. Thus, further improvements in model-
ing the heliosphere by source-surface methods would
seem to require that currents be permitted to flow inside
the region surrounded by the source surface. This is not
a radical requirement, of course: it seems quite reason-
able that the corona would contain plasma currents that
merge smoothly into the HCS. A source-surface model
that precludes such currents is just too naive in the
present context.

The dual source-surface model of Schatten (1971)
already provides for a current-bearing coronal transition
region (1:6r

�
K r K 2:5r

�
) and thus partially answers

the foregoing objection. Another interesting approach,
however, would be to add currents implicitly through a
B-field expansion not based on spherical harmonics
(e.g., Schulz and Eviatar, 1969; Mead and Fairfield,
1975). This approach would, of course, require that Eq.
(7) be abandoned in favor of Eq. (6), as a means of
enforcing (in the least-squares sense) the usual boundary
condition that calls for the tangential component of B
preferably to vanish everywhere on the source surface.
In other words, the present (scalar) formulation of the
heliospheric source-surface model can apply only if the
magnetic field B is derivable from a scalar potential V in
the region enclosed by the source surface. If the region
surrounded by the source surface were permitted to
contain implicit currents, then the assumed volume of
this region might reasonably be enlarged so as not to
increase the overall amount of open magnetic flux. This
step might help bring the solid curves in Fig. 2 into
better agreement with the MHD field lines (dashed
curves), which do remain significantly curved well
beyond the present source surface (dotted curve). (An
increase of 20–25% in source-surface volume would, for
example, increase the equatorial radius r0 in Eq. (2)
from 2:33r

�
to 2:5r

�
).

There are several levels of sophistication at which a
non-spherical source surface can be used for helio-
spheric modeling. The trade-off is between realism and
convenience. As has been noted here, the required

Fig. 3. Variation of meridional (asymptotically radial) component of
(r=r

�
�

2B [component denoted (r=r
�
�

2Bm] with heliomagnetic latitude
k�� 90� ÿ h) in the limit r !1, in a source-surface model with
k � 7=5 for the case in which the Sun’s field is dipolar. For
comparison (dashed step-function): hypothetical case (quite well
approximated (Schulz et al., 1978) by a source-surface model with
k � 0) in which magnetic flux is uniformly distributed over either
hemisphere
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algebra and numerical computations can be simplified
by adopting a scalar formulation of the variational
problem, minimizing Eq. (7) instead of Eq. (6) with
respect to the expansion coefficients for B. However, a
scalar formulation requires us to assume (as usual) that
the region enclosed by the source surface is current-free,
whereas comparisons of model results with various
Ulysses observations cast serious doubt on this assump-
tion. (The modeling of twisted coronal loops has long
required field-aligned currents in the same region of
space, but it has been hoped that such currents would be
of sufficiently small scale not to influence heliospheric
mappings.)

Another possible simplification is to use Eq. (2),
rather than a surface of truly constant ~F � rÿk

~B, as the
postulated source surface, even when ~B is not purely
dipolar (as it never is in reality). This was the simplifying
approach used by Schulz (1995) in a seemingly success-
ful mapping of the neutral line on the source surface (see
Hoeksema, 1991) to a range of heliospheric latitudes just
grazed by Ulysses during Carrington Rotation 1869
(May-June 1993). If such a model source surface is Sun-
centered and aligned with the heliomagnetic dipole axis,
then Eqs. (7) and (8) are automatically simplified
through the fact that hV i � 0 by symmetry. [It would
be possible with any source-surface geometry to make
hV i � 0 by adding an appropriate constant to an
expression such as Eq. (9), but the appropriate constant
would then typically depend on the fgm

n ; h
m
n g. Only

symmetry, such that the mean value of each spherical-
harmonic function over the source surface is zero, can
remove the attendant complication of Eq. (8) by making
hV i � 0 without such an additive constant, regardless of
what values are assigned to the fgm

n ; h
m
n g.]

However, the use of Eq. (2) as a simplified source
surface regardless of the form of ~B seems likely to be
successful only near solar minimum, when ~B is in fact
most nearly dipolar. The goal in choosing a non-
spherical source surface is to arrange for the region(s) of
minimal source-surface curvature to straddle the inner
edge(s) of any heliospheric current sheet(s). The choice
of a surface of constant ~F as source surface shows some
promise in this regard (Schulz et al., 1978; Levine et al.,
1982; and in the present work) but is not guaranteed to
achieve the desired configuration. However, the purpose
is likely to be defeated altogether (especially near solar
maximum, when ~B is quite complicated and multiple
heliospheric current sheets are possible) if some fixed
shape is assigned to the source surface, regardless of the
form of ~B.

Perhaps, however, it is really unnecessary to perfect
the source-surface method as a means of modeling the
heliosphere. After all, the source-surface method is only
supposed to provide a simplified means of estimating
results that a full three-dimensional MHD simulation of
the corona and heliosphere would provide. With such
MHD models already available (e.g., Usmanov, 1993;
Mikic and Linker, 1994), it might make more sense to
use simplified versions of source-surface models (1) to
identify solar-field configurations that would be inter-
esting to extend by MHD simulation into the helio-

sphere, and (2) to set up initial (trial) field configurations
that would reduce the computing time required by full
MHD simulations.
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