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Abstract. This paper presents the development of a
general-purpose parallel ocean circulation model, for
use on a wide range of computer platforms, from
traditional scalar machines to workstation clusters and
massively parallel processors. Parallelism is provided, as
a modular option, via high-level message-passing rou-
tines, thus hiding the technical intricacies from the user.
An initial implementation highlights that the parallel
e�ciency of the model is adversely a�ected by a number
of factors, for which optimisations are discussed and
implemented. The resulting ocean code is portable and,
in particular, allows science to be achieved on local
workstations that could otherwise only be undertaken
on state-of-the-art supercomputers.

1 Introduction

As computing technology advances into the age of
massively parallel processors (MPPs), ocean models are
required that can utilise these state-of-the-art high-
performance computers if oceanographers are to con-
tinue doing useful research. This is because the study of
the ocean and its e�ect on the climate requires the
resolution of features with small spatial scales and long
time-scales over large geographic regions. Thus there is a
requirement for ever more powerful computers, with
large memory. The installation of a national MPP
computer in the UK emphasises this technological shift
in computing today. The Cray T3D, with 512 processors
and a peak performance of nearly 80 G¯op/s is one of
the fastest computers in the world. Unfortunately, as
one of only a handful of tightly coupled parallel
processors of this size, time on the Cray T3D is limited.

It is essential therefore, that processing time is not
needlessly wasted for the purpose of developing and
testing codes. A parallel platform is required that is
cheap and readily accessible, so that parallel codes can
be developed and tested before porting to MPPs, such as
the Cray T3D. Such platforms are also required for
research which, whilst not requiring state-of-the-art
supercomputers, still require large computational re-
sources.

Recent developments in micro-processor, networking
and software technologies have made it possible to treat
a cluster of workstations as a single concurrent com-
puter. A number of software packages have evolved that
allow each connected computer to act as a processor in
what is e�ectively a distributed-memory multi-processor
machine, thus providing a platform on which to run
parallel code. One popular package in use today is PVM
(parallel virtual machine, Geist et al., 1993), which
provides the programmer with a simple set of library
routines to handle the communication between proces-
sors and their synchronisation. Given that many insti-
tutions already possess a number of workstations, which
are often networked together, and that PVM is a
portable public-domain package, the cost of setting up
such an environment is just a few man-hours.

Within this paper we will describe the initial imple-
mentation of a parallel version of a general-purpose
ocean circulation model. When run on a cluster of
workstations it is seen that a number of bottlenecks
contribute to a poor parallel e�ciency. Techniques
which consider interprocessor communications, load
balancing and the model physics are then discussed and
implemented to improve the performance of the code.
The techniques employed tend to be relatively straight-
forward and aim to avoid over-complicating the code
with the technical aspects of parallelism. Despite their
simplicity, we show that these optimisations give rise to
a signi®cant increase in performance, such that the
resulting model can be successfully and usefully run in
parallel on a cluster of workstations, as well as on
massively parallel processors.Correspondence to: M. I. Beare
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Throughout the paper, the workstation cluster used
consists of sixteen DEC Alpha AXP 3000/300s, each
with 32 Mb of memory. This provides an environment
that is homogeneous, although it should be noted that
the model may also run in a heterogeneous environment.
The cluster is con®gured to provide a general high-
performance facility (Beare et al., 1997) and o�ers a dual
networking ring, of Ethernet or FDDI (®bre distributed
data interface) for parallel applications.

2 The parallel model

Many of the ocean models run today originate from the
three-dimensional ®nite-di�erence model, based on the
primitive equations of motion, described by Bryan
(1969). His pioneering work has withstood the test of
time and the only major changes were to optimise the
code for running on vector computers and to include
additional physics through new parameterisations
(Semtner, 1974; Cox, 1984).

More recently the modular ocean model (MOM)
code, as described by Pacanowski et al. (1991) and
Pacanowski (1995), has been developed as a ¯exible
research tool for oceanographers. MOM is modularised,
using C-language pre-processor directives, allowing
various physical options to be included or excluded as
required. The MOM code has also been adapted for
array processors, with a reduced set of options, by Webb
(1996) and subsequently named MOMA (modular
ocean model ± array processor version). Although not
strictly a parallel code, MOMA has been arranged in a
way that allows the arrays to be vectorised in the vertical
and decomposed in the horizontal. With a view to
running ®ne-resolution global models on parallel pro-
cessors, the rigid lid constraint, as used by Bryan, is
removed in MOMA and a free surface is allowed
(Killworth et al., 1991). It is the MOMA code upon
which the parallel model developed in this paper is
based.

The surface of the model ocean is assumed to be split
into a two-dimensional horizontal grid. Each grid box is
used to de®ne a volume of water that extends from the
surface to the ocean ¯oor, organised into a number of
vertical (depth) levels. The main prognostic variables
required by the model are the baroclinic velocities and
tracers (potential temperature and salinity), and the
barotropic velocities and associated free-surface height
®eld. The baroclinic variables describe the depth-depen-
dent response of the ocean model and the barotropic
variables describe the depth-averaged response. All
other variables (such as density and vertical velocity)
can be diagnosed from the prognostic variables and
therefore the dynamic state of the ocean is described.
The model variables are discretised using an Arakawa
B-grid (Mesinger and Arakawa, 1976), so that the
velocities are o�set from the free-surface height and
tracers. A ®nite-di�erence representation of the primi-
tive equations is used to predict new values for these
variables, thus allowing the model to be stepped forward
in time using a series of discrete timesteps. Due to the

fast speed of the external gravity waves, which must be
considered when using the free-surface approach, the
barotropic and baroclinic components are timestepped
separately, with approximately 50±100 barotropic time-
steps to each baroclinic timestep.

The model domain used in this paper is that of a
pseudo-global ocean extending from 70°S to 70°N. The
maximum size of the longitudinal and latitudinal
dimensions (Imax and Jmax, respectively) is then depen-
dent upon the required horizontal grid resolution. The
vertical extent of the model is de®ned by a number of
depth levels, which vary in thickness from about 20 to
500 m. Levels below the ocean ¯oor are masked and
thus the topography of the ocean ¯oor is described.

The basic mathematical model contains ®rst- and
second-order derivatives, so the ®nite-di�erence scheme
requires gradients to be determined from values stored
in neighbouring grid boxes. Problems occur when
stepping forward variables at the perimeter of the model
domain, using out-of-bounds array subscripts. The
model arrays are therefore over-dimensioned by one
grid point in the horizontal extents, creating an addi-
tional outer halo. In the case of a global model the outer
halo in the longitudinal direction allows cyclic boundary
conditions to be applied, where �i � 1� � �i � Imax ÿ 1�
and �i � Imax� � �i � 2�. In the latitudinal direction
closed boundary conditions are applied to the northern
and southern boundaries. The actual domain being
modelled is therefore contained within the horizontal
extents �2: Imax ÿ 1; 2: jmax ÿ 1�.

To parallelise the ocean code a regular two-dimen-
sional geometric data decomposition is applied to the
model domain with respect to the horizontal plane. Each
sub-domain is allocated to a processor, which is then
responsible for storing and predicting the dynamic state
of the ocean within that sub-domain. At the boundaries
of these sub-domains, a similar problem to that found in
the sequential version arises, with the possibility of out-
of-bounds array subscripts being used to reference
adjacent grid points. Although these referenced grid
points may exist in the context of the full model domain,
they do not exist in terms of the local sub-domains. For
calculations to be performed at these boundaries the
processors require grid-point information that has been
calculated on adjacent processors. This is achieved by
passing the data from one processor to another, using
high-level message passing routines, within the PVM
environment. Figure 1 illustrates the message passing
that is required between adjacent processors and how an
additional halo is used to store overlapping grid points.

The concept of interprocessor communication, in our
ocean model, is very similar to that of applying cyclic
boundary conditions. Both schemes e�ectively copy
data from one location to another to prevent out-of-
bounds array referencing and both require an additional
outer halo to do so. By taking this into account,
parallelism can be easily implemented (at the top level)
by replacing the cyclic boundary conditions with calls to
the message passing routines. By enclosing the two
respective sets of code in C-language pre-processor
compiler directives, parallelism is o�ered as an option,
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thus maintaining a modular structure to the code. A
general overview of the code, with parallelism as a
module option, is as follows:

Start main timestep loop

Step tracer values

Step baroclinic velocities

Calculate forcing data for barotropic velocities

Start barotropic timestep loop

Step barotropic velocities

If parallel version

Send/Receive boundary barotropic velocities

Else sequential version

Apply cyclic boundary conditions to barotropic

velocities

End barotropic timestep loop

Add barotropic velocities to baroclinic velocities

If parallel version

Send/Recv boundary baroclinic velocities and

tracers

Else sequential version

Apply cyclic boundary conditions to velocities and

tracers

End main timestep loop

The following extract of FORTRAN 77 code high-
lights how the C-language pre-processor directives
provide parallelism as an option, for the calculation of
the baroclinic velocities. The subroutine clinic is called
to calculate the new values for the velocity arrays, u and
v, at time np for a volume of depth, k, at each i, j grid
point. On completion of this process, either the high-
level message-passing routines are called, or cyclic
boundary conditions are applied, depending on which
running mode has been opted for. (It should be noted
that it would be more e�cient to have the i, j loops
inside the subroutine clinic, but the original sequential
code did not and so we have left it unaltered, as it has no
bearing on the parallel optimisations).

do j = 2, jmax-1

do i = 2, imax-1

call clinic (i, j)

end do

end do

#ifdef parallel

call send_uv

call recv_uv

#else

do j = 2, jmax-1

do k = 1, kmax

u (k, 1, j, np) = u (k, imax-1, j, np)

u (k, imax, j, np) = u (k, 2, j, np)

v (k, 1, j, np) = v (k, imax-1, j, np)

v (k, imax, j, np) = v (k, 2, j, np)

end do

end do

#endif

3 Initial parallel implementation

For an initial evaluation of the performance of the code
the global model was de®ned with a two-degree
horizontal resolution and 32 vertical depth levels. The
model grid size is thus 32 ´ 180 ´ 69, which leads to a
moderate memory requirement of 20 Mb. The model
was run for one model day on one to sixteen worksta-
tions, with a timestep of 30 min. These runs were
repeated over both interconnect systems (Ethernet and
FDDI) and the results are plotted, in Fig. 2, alongside a
run on a hypothetical, in®nitely fast, interconnect
system (achieved by doing no message passing, thus
producing incorrect physics, but useful for timing
purposes). It should be noted that for any number of

Fig. 1. To accommodate the exchange of boundary data, for a
regular two-dimensional decomposition, an additional outer halo,R0,
is declared to receive the values that have been calculated and sent
from the boundary halo, S0, of adjacent sub domains

Fig. 2. The elapsed time required to model one day of a two-degree
global model, with 32 levels, is plotted for runs using 1 to 16
workstations connected via (1) Ethernet, (2) FDDI and (3) a
hypothetical, in®nitely fast interconnect. For clarity, the table
highlights a selection of the times plotted
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workstations the model domain can be decomposed in
several ways, and di�erent decompositions will often
lead to di�erent performance times. For example, with
six processors the domain can be sub-divided as 6 ´ 1,
3 ´ 2, 2 ´ 3 or 1 ´ 6. So as not to complicate the graph
only the best time recorded for a given number of
workstations is plotted.

If the model were truly parallel e�cient we would
expect the performance to increase linearly with the
number of workstations, such that two workstations
would complete the run in the half the time taken by one
workstation, and so on. This is clearly not the case with
our model. To begin with the performance of the model
does improve, but as more workstations are used the
gain in performance decreases. In fact, when the
interconnect is Ethernet, the performance becomes
worse when more than ®ve workstations are utilised.

The parallel e�ciency on P processors, PE(P),
relative to P0 processors, is given by:

PE�P� � ET �P0�
ET �P � �

P0
P
� 100;

where ET(P) is the elapsed time on P processors. For the
FDDI run, assuming P0 � 1, we ®nd that PE�16� � 99%,
which could be conceived as being very good. However,
the model shows an initial super-linear speed-up, such
that PE�2� � 368%. This is due to the model being
memory bound, when run on a single workstation, leading
to a signi®cant overhead when data is paged in and out of
virtual memory. By running in parallel on two worksta-
tions, the memory requirements of the model are almost
halved and (for this model resolution) the memory
paging is eliminated. To remove this e�ect from our
calculation of parallel e�ciency, we choose P0 � 2, which
gives PE(16) = 27%. Considering that lack of memory
is often a prominent limitation when running large ocean
models, it can therefore, in some cases, be advantageous
to run the model on just two or three workstations. It is
clear however, that if more workstations are to be used
e�ectively, then the ine�ciencies associated with the
parallelism must be identi®ed and resolved.

Further tests of the model determine three main areas
of concern. The ®rst of these is due to the calculation of
the free-surface components (the barotropic mode).
Compared to the rest of the numerical scheme, the
amount of computation required to proceed one time-
step is relatively small. However, as explained earlier,
the timestep required to solve the free-surface variables
must be much smaller than that for the baroclinic
velocities or tracers. Hence more timesteps are required
in order to step the free-surface forward the same
amount of time as a single timestep would for the
baroclinic mode. With each of these smaller timesteps
there is a need to communicate newly solved values and
so a comparatively large amount of time is consumed by
communication rather than computation.

The second is due to the positioning of the message
passing within the code. Having it coded neatly with the
application of cyclic boundary conditions does make it
easy to read and understand, but at the same time it is
particularly ine�cient. By exchanging data at the end of

each timestep, after all the calculation has been com-
pleted, the processor is left with no alternative but to
send its data and then sit idle, waiting for the comple-
mentary data to arrive from its neighbours.

The third problem is not so much to do with
communications, but due to the regular domain decom-
position used. Ocean models are made up of both ocean
and land points, but since the model is only concerned
with ocean points, the land points are masked and have
no computation associated with them. Hence, although
the model grid is split into evenly sized sub-domains,
these domains do not necessarily consist of an equal
number of ocean points and so processors will not
always have equal amounts of work. This explains the
irregular (saw-tooth-like) speed-up of the ideal case,
which is not a�ected by communication overheads.

Discrepencies in times when running on a single
processor are due to the model not checking whether or
not it is possible to simply apply cyclic boundary
conditions, instead of passing messages to itself. As will
be seen later, this check is not essential, since in general,
when running on a single workstation, the model will be
run in sequential mode.

4 Model optimisations

To improve the parallel e�ciency of the model code,
each of the problem areas highlighted in the previous
section will be looked at and the merits of implemented
solutions are discussed. It should be remembered that
these solutions aim to preserve the code's modularity
and scalability, which are desirable features of the model
that should not be overlooked in the search for
e�ciency.

4.1 Low computation-communication ratio
in the free surface

The free-surface component of the model computes
depth-averaged quantities which are stored in a two-
dimensional horizontal array of longitudinal and latitu-
dinal grid points. Compared to the baroclinic mode
there is a reduced number of variables that require
solutions and a reduced number of boundary grid points
that need to be shared with neighbouring processors.
Unfortunately, the number of messages is not reduced
and so the latency associated with the message passing is
unchanged. Indeed an expensive overhead of PVM, on
workstation clusters, is its high latency (Lewis and Cline,
1993) and in comparison to the smaller computation
time, the communications become dominant in the time
required to compute the free-surface component. The
situation worsens as the number of processors increases
and sub-domains get smaller.

The overhead due to the message passing within the
barotropic mode can be clearly seen in Fig. 3, which
depicts the results of four sets of runs: when just the
baroclinic component is run (with and without message
passing) and when just the barotropic component is run
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(with and without message passing). Comparing the two
runs in which the message passing is switched o�
highlights the fact that the barotropic component
should compute much faster than the baroclinic part.
Yet with message passing switched on, it is immediately
clear that the communication associated with the free
surface saturates the system, with a devastating a�ect on
the overall performance of the model.

To resolve this problem a technique is adopted to
minimise this communication, by trading it for a small
amount of extra computation. By introducing further
outer halos to the two-dimensional free-surface arrays, a
greater amount of information can be exchanged
between adjacent processors (as illustrated in Fig. 4).
It is then possible to process a number of barotropic
timesteps before having to stop and communicate. This
approach is similar to that adopted by Sawdey et al.
(1995), who de®ne a number of extra fake zones, in order
to reduce the frequency of communication.

In the initial implementation processors calculate
new values for the di�erent variables at each of the grid
points within their domain, which is bounded by the
halo S0. For each timestep, an exchange of data between
adjacent processors must occur. This message passing
involves a processor sending values that have been
calculated and stored in S0, out to adjacent processors,
which then receive and store these values in the halo R0.
The processors are then able to proceed with the next
timestep.

Consider now the case of adding one extra halo, R1,
to the free-surface arrays, so that two halos can be sent
and received for each data exchange. When message
passing occurs, data from both the halos, S0 and S1, is
packed and sent to adjacent processors, where it is

received into the corresponding halos, R0 and R1. With
this extra information a processor can calculate new
values within the domain bounded by R0 (as opposed to
the domain bounded by S0). Hence, on the next
timestep, the values in the R0 halo are already up to
date and so no message passing is required in order to
calculate the new values for the domain bounded by S0.
It is at the end of this second timestep that message
passing will be required. Thus with one extra halo,
message passing need only occur every other timestep
and so the overall number of messages that are passed is
halved, greatly reducing the relatively expensive latency
times. Some extra computation is incurred, however,
since values in the halo R0 must be calculated, but this
only need be done on the ®rst of the two timesteps and
with computation being so much faster than communi-
cation, this overhead is negligible.

The process of adding extra halos can be generalised
to cope with any number of halos and Fig. 5 demon-
strates the improved performance that can be achieved
as the number of extra halos is increased (so as not to
clutter the graph, only odd numbers of extra halos are
plotted). The trade-o� of communication for computa-
tion can give rise to a signi®cantly better performance:
almost 300% better for this example when using sixteen
workstations connected via FDDI. There is however a
limit to how far one can take this method and even with
®ve extra halos the performance gain is beginning to tail
o�. Increasing the number of extra halos further
eventually has a negative e�ect. Knowing how many
extra halos can be usefully employed in this fashion is
dependent on the number of workstations being used
and the size and resolution of the model domain. One
drawback of this optimisation method is however, that
the code requires signi®cant modi®cations to the free-
surface routine, which add to its complexity.

Fig. 3. Splitting the model into its baroclinic (B/C) and barotropic
(B/T) components and running these separately (over FDDI), with
and without message passing, highlights the adverse communication
overheads associated with the barotropic mode

Fig. 4. To compute two barotropic timesteps, without requiring
message passing, an extra outer halo, R1, must be declared for
receiving data from the inner halo, S1. The halo, R0, can then be
stepped forward on the ®rst of the two timesteps, so that the halo, S0,
can be calculated successfully in the second timestep
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4.2 Reducing idle processor time

The second ine�ciency highlighted by the initial imple-
mentation is due to the idle time of processors waiting
for communications to take place. Having solved all the
®nite-di�erence equations for a timestep, the dynamic
variables at the boundaries are packed and sent to the
appropriate neighbouring processors. Then, with no
further calculations possible, the processors have no
alternative but to sit idle, waiting for incoming messages
to arrive, before they can continue processing. By
recording the time spent in the receive routines, it is
clear that idle time increases as the number of worksta-
tions increases, due to the additional messages travelling
on the interconnect.

It is possible to minimise this idle time by rearranging
the order in which the domain is parsed. By ®rst
calculating just those boundary values that need to be
shared, it is possible to send the data and then, whilst
this communication is taking place, calculate the values
for the remaining inner grid points. If there is su�cient
work within the inner domain to keep the processor
busy, by the time all the new values have been calculated
and it is time to receive the data sent from adjacent
processors, the messages should have arrived and no idle
time will be incurred.

To implement this method, the grid points at the
boundary are identi®ed by an ordered list of horizontal
(i, j) co-ordinate pairs and stored in an index array, as
illustrated by Fig. 6. In detail, the following FORTRAN
77 code illustrates how this is implemented at the top level
(again using the routine to predict baroclinic velocities as
the example). The index array is outer and the number of
outer-halo grid points that it references is nop.

#ifdef parallel

do ij = 1, nop

call clinic (outer(1, ij), outer(2, ij))

end do

call send_uv

do j = 3, jmax-2

do i = 3, imax-2

call clinic (i, j)

end do

end do

call recv_uv

#else

do j = 2, jmax-1

do i = 2, imax-1

call clinic (i, j)

end do

end do

do j = 2, jmax-1

do k = 1, kmax

u (k, 1, j, np) = u (k, imax-1, j, np)

u (k, imax, j, np) = u (k, 2, j, np)

v (k, 1, j, np) = v (k, imax-1, j, np)

v (k, imax, j, np) = v (k, 2, j, np)

end do

end do

#endif

Figure 7 highlights the potential of this optimisation,
with the time taken to complete a model day being more
than halved, compared to the initial implementation.
This is comparable to the performance increase gained
by the previous free-surface optimisation, but is much
simpler to implement and leads to a tidier code. A
potential disadvantage of this optimisation is that it can
lead to an ine�cient utilisation of cache memory. This is
evident when comparing the performance of the parallel
codes when run on a single workstation. In the initial
implementation the horizontal subscripts (i, j) are parsed
in the order in which the arrays are stored in memory,
thus making e�cient use of the cache. However, by
solving the equations for the outer-halo grid points
before the inner ones, this e�ciency is compromised.
Despite this, the bene®ts of reducing the idle time of
each processor, when running on more than one
processor, gives a signi®cant improvement on the overall
performance of the model. Also, as suggested earlier,
when using a single processor the model will be run in

Fig. 5. Compared to (1) the initial implementation (when using
FDDI), the performance of the code is signi®cantly improved as the
number of free-surface extra halos (XH) is increased in (2), (3) and (4)

Fig. 6. Reordering the way in which the horizontal grid points are
parsed, so that the boundary halo (numbered 1±20) is completed ®rst,
allows the communication of this boundary data to be overlapped
with the calculation of the remaining inner grid points (21±35)
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sequential mode and will therefore revert back to the
original, more e�cient, method of parsing the domain.

4.3 Combining the optimisations

As stated earlier, the technique used to reduce the
communication overheads of the free-surface routine
complicates the code to some extent and this would be
complicated further if, in its general form, it was
combined with the technique of overlapping communi-
cations with computation. A reduced implementation of
the extra free-surface halo technique is therefore opted
for. Instead of having a generalised algorithm that is
able to cope with any number of extra halos, the number
is ®xed to be just one extra halo (i.e. two halos are
transferred). This simpli®es the implementation of the
optimisation and the code remains comprehensible to
the ocean modeller. Furthermore, other ocean physics
that may subsequently be added to the code, might also
require message passing routines to transfer two halos of
data. Such options include the QUICK tracer advection
scheme (Farrow and Stevens, 1995) and biharmonic
mixing, which have ®nite-di�erence representations that
span ®ve grid points.

Figure 8 gives a summary of the performance of each
of the discussed implementations when run on the
workstation cluster connected by FDDI. It is evident
that the ®nal optimised code can give rise to a three-
times speed-up over the initial parallel implementation,
completing one model day in 40.4 s compared to
121.0 s, when using sixteen workstations.

4.4 Load balancing

The use of a regular domain decomposition, which
allows for easier parallelisation and greater scalability
and modularity, does not however, distribute equal
amounts of work to each of the processors. As well as
ocean points, the model may also consist of land points,
which have no computation associated with them. Due
to the uneven distribution of these land points within the
domain, it is not inconceivable for some processors to
end up with more work than others and a few processors
may even be allocated no work at all.

To lessen this imbalance, one solution is to divide the
domain into a greater number of sub-domains than
there are processors (Sawdey et al., 1995). The objective
is to end up with the same number of sub-domains,
containing some work, as there are processors. Those
sub-domains with no work can then be ignored when
allocating sub-domains to processors, as illustrated in
Fig. 9.

This approach forms an elegant solution that is easy
to implement, requiring changes only to the initial
processor allocation phase (which occurs at compilation
time, when the machine con®guration is chosen). The
advantages are that hopefully no processors will remain
idle and that the maximum size of the sub-domains is
reduced, thus making the overall performance of the
parallel model much better. Also, due to the smaller
sized sub-domains, less memory is required per proces-
sor. It should be noted that the more processors that are
available the more successful this approach will be and it
is therefore more suitable when running on MPPs.
Table 1 illustrates this technique for the two-degree
model with varying decompositions when using 256
processors. For this model an ideal allocation for 256
processors would give a maximum of 1050 ocean points
per processor. Although not ideal, this approach can
greatly reduce the maximum amount of work per
processor and reduce the memory requirements. In this
case a 25% reduction is achieved when using a 20 ´ 15
decomposition.

To get an ideally balanced load would require an
irregular two-dimensional decomposition, such as that
implemented in the OCCAM (ocean circulation and
climate advanced modelling) code and described by
Gwilliam (1995). This may however give rise to other
problems, not present in our parallel model. In partic-
ular, due to the static nature of FORTRAN 77 the
arrays must be dimensioned identically for each proces-
sor, with scalar variables indicating the true extents of
each sub-domain. Thus, if a horizontal decomposition
results in a 12 ´ 6 and a 5 ´ 14 sub-domain, amongst
others, then all arrays would have to be declared as at
least 12 ´ 14. Thus the memory requirements do not
necessarily scale well as the number of processors
increase, which in turn could inhibit the degree of
resolution of the model.

When using just a few processors, it may be bene®cial
to restrict decomposition to one dimension and use
irregular-sized domains to achieve a more evenly bal-
anced load, as used by Sadwey et al. (1995). However,

Fig. 7. Reducing idle processor time, by (2) overlapping computation
with inter-processor communications, leads to an improved perfor-
mance over (1) the initial implementation (for the 1-day model run,
using FDDI)
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this approach also su�ers from memory not scaling with
numbers of processors, and care needs to be taken to
ensure that memory paging is not reintroduced. When
using workstation clusters, it is not necessarily true that
all workstations will be of equal power, and another
possible solution may be to simply match the sub-
domains with higher work loads to the higher-powered
workstations.

5 Model evaluation

So far, the results discussed have been for the model
running in parallel mode, even for single workstation
runs. However, when using a single workstation, it is
more e�cient to run the model in sequential mode.
Firstly, the code does not go through the motions of
computing outer-halo values before inner grid values
and so cache memory is better utilised. Secondly, the
parallel version makes no attempt to identify the fact
that it is running on a single workstation and therefore
proceeds to do message passing to apply cyclic boun-
dary conditions. For a true picture of speed-up it is
necessary to compare the performance of the parallel
model against that of the sequential one.

In the case of the model that has been used
throughout this paper, the sequential version ran for
one model day in a time of 1820 s. This implies that the
time of 40.4 s when run on sixteen workstations
represents a speed-up of 45.0. It has, however, already
been stated that memory paging occurs on a single
workstation with 32 Mb of memory. To gauge the
relative speed-up if this paging were not a factor, the
model was run on a 96 Mb workstation. Here the
sequential version ran in 259 s, so the estimated scaled
speed-up when using sixteen workstations is 6.4. For the
code to be more e�ective over sixteen workstations, it is
necessary to increase the size of the model. Running
larger, ®ner-resolution ocean models is, however, one of
the main rationales for parallelism.

The same pseudo-global model but with a one-degree
horizontal resolution was declared and run for one
model day, with a 45-min timestep. This time, the 96 Mb
workstation was also forced to page memory when
running the sequential version and took 2173 s to
complete one model day. On the sixteen 32 Mb work-
stations, the time taken was just 76 s, representing a
speed-up of 28.5. Reducing the number of depth levels
to 24 enables the model to ®t into memory on the 96 Mb
workstation and a truer picture of speed-up can be seen.
With a time of 617 s for the sequential version, a speed-
up of 10.9 is achieved by the sixteen workstations, which
take 57 s to run. Thus it would take just under 6 h to
model 1 year on this cluster.

Increasing the size of the model further, by de®ning a
®ner half-degree horizontal resolution (again with 24
levels), produces a model that just a few years ago, only
the largest research groups could envisage running
(Semtner and Chervin, 1992) on the fastest supercom-
puters of the day. On the cluster, this half-degree global

Fig. 8. Compared to (1) the initial implementation and the two
separate optimisations, of (2) one extra free-surface halo and (3)
overlapping communications with computation, it can be seen that by
(4) combining the optimisations a notable increase in performance is
again achieved

Fig. 9a, b. A regular two-dimensional decomposition of an ocean
model, containing land (dark-shaded) and ocean (light-shaded) points,
can result in some processors having no work (as highlighted in a by
processors 1, 13 and 16). By sub-dividing the domain into a greater
number of smaller sub-domains, those with no work can be ignored
completely and a better utilisation of the sixteen available processors
can be achieved (as highlighted in b)

Table 1. 256 processors can be used more e�ciently by sub-
dividing the model into greater than 256 sub-domains and ignoring
those domains with no associated work

Processor
decomposition

number of
sub-domains

max. ocean pts.
per sub-domain

sub-domains
with some work

16 ´ 16 256 1920 223
18 ´ 17 306 1600 256
20 ´ 15 300 1440 255
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model, with a 22.5-min timestep, takes just under 63 h
to complete a 1-year run.

Throughout these tests on the workstation cluster, a
one-dimensional decomposition always proved more
e�cient than a two-dimensional decomposition. This,
despite the fact that in general a one-dimensional
decomposition actually requires more grid points to be
communicated for a given number of processors. The
reason for the one-dimensional decomposition being
more e�cient, as seen before, is due to message latency,
not the amount of data being transferred. With a two-
dimensional decomposition processors can have up to
eight neighbours that they need to communicate with,
hence up to eight messages need to be created and sent
each time any communication is required. With a one-
dimensional decomposition, there is a maximum of only
two neighbours and so less messages need be sent.

When ported to the Cray-T3D, with its fast point-to-
point interconnect, it was found that interprocessor
communications were not as much of a bottleneck as on
the workstations. A two-dimensional decomposition
was therefore no less e�cient than a one-dimensional
one: in fact it o�ers better load-balancing prospects. The
bene®ts of the load-balancing optimisation technique
described in Sect. 4.4 can be seen when the preceding
half-degree model is run on 256 processors. A 16 ´ 16
decomposition results in a time of 69.8 s for a 1-day
model run, with 33 processors remaining idle, whereas
when using a 20 ´ 15 decomposition the available
processors are better utilised and the run takes only
60.6 s to complete. Hence a year-long run can be
completed in just over 6 h.

By maintaining the modularity of the code and
providing parallelism as a high-level option, the model is
not dissimilar in appearance to the original sequential
code. It is therefore considered that this will provide
ocean modellers with a familiar code that they can use
easily, without having to concern themselves with the
technical aspects of parallelism. Modifying and extend-
ing the code is relatively straightforward, with the
addition and development of new physical options being
implemented as usual in sequential mode. Once these
have been proven correct, the high-level message passing
routines can be called from the appropriate points (i.e.
wherever cyclic boundary conditions are applied) and
the parallel results can then be validated against the
sequential results.

Although PVM aids portability, it is not the most
e�cient of message-passing systems and it is envisaged
that at a later date the high-level routines could be
rewritten for other portable environments, such as MPI
(message passing interface forum, 1994), or include
machine speci®c options, such as SHMEM on the Cray
T3D.

With the code discussed in this paper it is possible to
modify, test and run the ocean model on local worksta-
tions, before porting to national MPPs, on which
resources are limited. Hence these resources can be used
much more productively. Furthermore, groups without
access to MPP systems are now able to run large models

on readily accessible local workstations, which may be
underutilised overnight.
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