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Abstract. The spectral width observed by Doppler
radars can be due to several effects including the
atmospheric turbulence within the radar sample volume
plus effects associated with the background flow and the
radar geometry and configuration. This study re-exam-
ines simple models for the effects due to finite beam-
width and vertical shear of the horizontal wind. Analytic
solutions of 1- and 2-dimensional models are presented.
Comparisons of the simple 2-dimensional model with
numerical integrations of a 3-dimensional model with a
symmetrical Gaussian beam show that the 2-dimension-
al model is usually adequate. The solution of the 2-
dimensional model gives a formula that can be applied
easily to large data sets. Analysis of the analytic
solutions of the 2-dimensional model for off-vertical
beams reveals a term that has not been included in
mathematical formulas for spectral broadening in the
past. This term arises from the simultaneous effects of
the changing geometry due to curvature within a finite
beamwidth and the vertical wind shear. The magnitude
of this effect can be comparable to that of the well-
known effects of beam-broadening and wind shear, and
since it can have either algebraic sign, it can significantly
reduce (or increase) the expected spectral broadening,
although under typical conditions it is smaller than the
beam-broadening effect. The predictions of this simple
model are found to be consistent with observations from
the VHF radar at White Sands Missile Range, NM.

1 Introduction

The width of the Doppler radar spectrum of atmo-
spheric motions contains information about the inten-
sity of atmospheric turbulence at scales smaller than the
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radar sample volume. Atlas (1964) provides a review of
the early work on and understanding of the Doppler
velocity spectrum. By the time of the Atlas’ review it had
been established that the observed spectral width
contains contributions due to processes such as wind
shears across the sample volume and the effects of finite
beamwidth as well as atmospheric turbulence. Before
the observed spectral width can be used to infer features
of the turbulence intensity the contributions from these
other processes must be removed.

Several studies have provided formulae for the
spectral broadening due to single effects. Hitchfeld and
Dennis (1956; quoted by Atlas, 1964) give a formula for
the spectral broadening due to the effect of winds
tangential to a beam with finite width. Sloss and Atlas
(1968) studied the broadening from shear in the cross-
beam motion of the radar scatterers. Although they pose
a rather general problem, allowing for the convolution
of variable illumination and reflectivity functions with a
specified velocity distribution and a layer of scatterers
that does not necessarily fill the beam, the general
formula they obtain is unwieldy and must be simplified
for practical applications. Also, their formula is given
for a horizontal beam; while it could easily be adapted
to a vertical beam, it is not immediately appropriate for
oblique beams such as used by wind profiler radars.
Atlas et al. (1969) made a similar analysis of the spectral
broadening due to the shear vector along the radar beam
for beams of finite width. An unpublished report by
Sirmans and Doviak (1973; quoted by Gossard, 1990)
gives a formula for the spectral broadening due to the
shear of the radial wind component in the radial
direction.

Such formulae for the spectral broadening due to
individual effects have been collected in reviews and
texts (e.g., Gossard and Strauch, 1983; Doviak and
Zrnic, 1984; Gossard, 1990). (The formulae Doviak and
Zrnic, 1984, give do not explicitly include a term for
beam broadening, although they later, Doviak and
Zrnic, 1993, point out that beam broadening is implicitly
included in their analysis through their choice of
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coordinates.) It is generally accepted that the effects are
additive because the total variance of a population of
Gaussian processes is the sum of the individual vari-
ances if the processes are independent (Atlas, 1964;
Gossard and Strauch, 1983; Gossard, 1990). However,
beam- and shear-broadening effects are not entirely
independent, as discussed more later.

The most complete approach for removing the effects
of wind shear and beam broadening from the Doppler
spectrum has been numerical modeling of the Doppler
returns from the sample volume, allowing for the
weighting effects of variable illumination across the
beam and possibly variable reflectivity in the volume.
Such computations have been made for special geometry
by Sloss and Atlas (1968), and for more general
conditions appropriate to wind profiler radars by
Hocking (1983a), Fukao (1988a, b), and Cohn (1995).
Hocking (1983b, 1986, 1988) used a full model calcula-
tion for each spectrum to account for beam broadening
and wind shear effects. Hocking (1985) notes that, while
a detailed theory is the best procedure for this effort,
approximate formulae such as those discussed above are
available for use. For climatological studies using large
data sets, it is convenient to use a simple formula to
account for “nonturbulence” spectral broadening effects
(e.g., Fukao et al., 1994).

As mentioned, the individual formulae discussed
were obtained for differing beam orientations, or differ-
ing assumptions about beamwidth, or have other
differences. The present study was initially aimed at
providing a simple model formula for a general frame-
work which combines the effects of beam broadening
and wind shear within the radar sample volume for
arbitrary beam directions and which is derived with a
single set of assumptions. This goal has been met for the
general beam geometry and wind profile conditions
described later. Perhaps more importantly, the general
formula developed in this study reveals a term due to the
simultaneous effects of beamwidth and wind shear that
has not been presented before. The effects represented
by this term have appeared in detailed modeling
calculations (Hocking, 1983a, 1985), although a simple
formula for it has not been presented. The magnitude of
this term is not always negligible. The general formula
for spectral broadening effects due to shear of the
background winds and beam-broadening effects for
arbitrary beam directions shows patterns that sometimes
differ from those for the special cases given in the
references cited already.

The purpose of this study is to present a simple model
of the effects of wind shear and beam-broadening on
Doppler spectral widths for general beam directions. In
Sect. 2, analytical expressions for the spectral broaden-
ing due to beamwidth and vertical wind shear effects are
developed for 1-, 2-, and 3-dimensional models of a
radar beam. It is found that a relatively simple 2-
dimensional model captures the salient features of
spectral broadening for most atmospheric conditions
and radar configurations. Numerical examples are given
using radar parameters typically used by wind-profiler
radars (also called clear-air radars), although these

results should have application to measurements from a
wide range of radars. In Sect. 3 the predictions of the
theory are compared with observations from the VHF
wind-profiler at White Sands Missile Range (WSMR).
Sect. 4 contains summary comments and concluding
remarks.

2 Analysis

This study deals with the broadening of Doppler spectra
due to uniformly varying background winds in a radar
sample volume with regular (Gaussian or linear) illumi-
nation and uniform reflectivity. Actual radar beams
have 3-dimensional pulse volumes with non-uniform
illumination and that also may have non-uniform
reflectivity within the pulse volume. The effects of non-
uniform reflectivity have been considered by others (e.g.,
Atlas and Sloss, 1968; Atlas et al., 1969; Hocking, 1983;
Fukao et al., 1988a, b) and, while they are significant in
some cases, will not be included in this study. Also, the
spectral broadening effects from wind shears due to
gravity waves within the sample volume have been
considered by others (Murphy et al., 1994; Nastrom and
Eaton, 1997) and will not be included here.

The analysis is organized as follows. First, the effects
of beam-broadening and shear-broadening are illustrat-
ed separately by considering a 1-dimensional beam.
Next, the model for a 3-dimensional beam with Gauss-
ian illumination function and uniform reflectivity is
presented. However, since even this simplified 3-dimen-
sional beam is too complicated to interpret easily, a 2-
dimensional approximation is presented and analyzed.
Results from the 2-dimensional model agree well with
numerical integrations of the 3-dimensional beam
model.

2.1 One-dimensional beam
The 7™ moment of the function v(x) is defined as

Lo @mds 0
JE W (x)dx

where W (x) is a weighting function. For radar observa-
tions, W (x) depends on the intensity and geometry of the
beam as well as on the reflectivity and distribution of the
scatterers. The mean v is then the first moment, and the
variance is defined by

ot =1 -V (2)

where v2 is the second moment of Eq. (I). For a
uniform, linear function v(x) = a 4+ bx with constant W
it can be shown that

o> =b*%/3 (3)

Equation (3) can be applied to various cases of a 1-
dimensional radar beam. In the case where there is a
finite beamwidth but no wind shear then the velocity
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along the beam v(¢p) = u,sin(¢ + o) where u, is the
horizontal wind and is a constant, ¢ is the angular
distance from the beam axis and « is the zenith distance
of the beam. If the half-beamwidth is ¢ and we use
—9< ¢ <9, and if 9K 1 (so that sin¢ ~ ¢ and
cos¢ ~ 1 ) then v = u,sina+ ¢u,cosa. Replacing b
with u, cos« and { with 9 in Eq. (3) gives

o> = (u, cos a)*9?/3 (4a)

This simple result is remarkably similar to Eq. (6.28) as
given by Atlas (1964), except that the factor in the
denominator is 3, instead of 2.76. Indeed, using the
Gaussian weighting function described by Sloss and
Atlas (1968), W(¢) = W,exp[—1.3816¢"/¥°], and inte-
grating Eq. (1) over oo (following Atlas et al., 1969)
gives 2.76 in the denominator, i.e.,

o® = (u, cos u)*9?/2.76 (4b)

This is the same as the first term of Eq. (18) of Sloss and
Atlas (1968) and is given as Eq. (4.9) in the review by
Gossard (1990).

In the case where there is vertical shear of the
horizontal wind and when ¢ is again small with
—9 < ¢ <9, then v(¢) = (u, + $(0u/0z)R cos ) sin a;
R is the range and Ju/0z is the vertical shear of the
horizontal wind, taken to be constant in this case. This is
again a linear model and Eq. (3) gives

2.2
o’ = <%sino¢Rcosa) % (5)

Z

This result is similar to the second term of Eq. (18) of
Sloss and Atlas (1968; also given as Eq.(4.6) of Gossard,
1990), except that again the denominator is 3 instead of
2.76, and again 2.76 would obtain if a Gaussian
weighting function were used.

Next consider the case of a very narrow radar beam
where beam broadening effects are ignored. If the wind
shear is constant along the beam then v is a function
only of range » and we may write v(r) = u(r) coso =
(thp + (Ou/dz)rcos ) sin o Over the range
R, — AR/2 <r < R,+ AR/2 and with constant W (a
linear pulse), (3) leads to

. 2
o = <6”Offzn “) (ARcos 2)/12 (6)

This result is the same as Eq. (4.7) of Gossard (1990;
which he attributes to an unpublished report by
Sirmans and Doviak, 1973) for the broadening due to
the shear of the radial component in the radial
direction.

For general conditions, where beam-broadening and
shear-broadening effects are simultaneously present, it is
not sufficient to simply add the estimates of spectral
broadening from Egs. (4)—(6) although this has been the
standard practice. The reasons for this limitation will
become clear by considering results from the 3- and 2-
dimensional beam models discussed next.

2.2 Three-dimensional beam

The geometry of the 3-dimensional beam is shown in
Fig. 1. The component of the wind along the beam at
any location is

v(r g, q) =V-7 = <u,, +%5Z> sin ¢’ cos /' (7)
Z

where ¥ is the wind, 7, is a unit vector along the beam
axis, u, = u(R,,0,0), and where

0z = r(cos ¢ cos o — sin ¢ cos y sin o) — R, cos o (8)
¢’ = cos™'{cos ¢ cos o — sin ¢ cos ysin o} 9)

¥ = tan~! {sin ¢ sin y(sin ¢ cos y cos o + cos ¢ sin oc)fl}
(10)

Because most wind-profiler radar beams are circular, it
will be assumed here that the beam has circular
symmetry although this convenient simplification is
not necessary. Also, although the distribution of scat-
terers within the sample volume may result in a
nonuniform reflectivity, we will assume uniform reflec-
tivity for convenience. In this case the weighting
function is assumed to depend only on distance from
the beam axis

¢
W(¢) = W, exp {_MHZW] (11)
where 9 is the distance in radians from the center of the
beam to the one-way half-power points. The mean
velocity over the sample volume with range-gate size AR
is
2 4. b, R,+AR/2 .
ond)Cfo d¢ fR —AR/2 dr W(qﬁ)v(r, (]5,,{)

2 ) R,+AR/2
Jo dx fyde RojAR//Z driv (o)
The mean-square velocity, v2, is found by replacing v by
v? in (12) and the variance is found using Eq. (2). When
evaluating Eq. (12), ¢, is taken to be sufficiently large
that the exponential factor in Eq. (11) makes further

contributions to the integral negligible. Note that Eq. (7)
includes no small-scale fluctuations of the velocity and

V= (12)

X

Fig. 1. Geometry of the 3-dimensional radar beam
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so the variance (the spectral broadening) here is due
only to beam-broadening and wind-shear effects. Eval-
uation of Eq. (12), using Egs. (7) and (11), gives the
spectral broadening from these two effects for specified
zenith distance, beamwidth, range, range resolution,
wind shear, and background wind speed.

However, Eq. (12) is relatively complicated and
simple inspection of Eq. (12) using Egs. (7) and (11)
gives little insight to the relative importance of changes
in any of the variables. In an effort to gain physical
understanding of the results, a 2-dimensional version of
Eq. (12) will be developed and used for interpretation. It
will be shown that the results from the 2-dimensional
model with uniform weighting (constant W) agree very
well with the results from a 3-dimensional beam with
Gaussian weighting in most cases.

2.3 Two-dimensional beam

The geometry of the 2-dimensional beam is given in
Fig. 2. In this case

v(r, @) = u(r)sin(o + ¢)

which can be expressed as
v(r, ¢) = {uo + % [rcos(ax+ ¢) — R, cos oz]} sin(a + ¢)
Z
(13)

where u, and Ou/0z are constants. Integration of Eq.
(13) using the form analogous to Eq. (12) except in two
dimensions with the limits R, — AR/2 <r < R, + AR/2
and —9 < ¢ < ¢ and constant W gives

1 R,+AR/2 9
V= dr/ dov(r, ¢
29AR /ROAR/2 —9 . ¢)

with v(r, ¢) given by Eq. (13). Completing the integra-
tion for v and v? and manipulating the results with the
aid of standard relations for the trigonometric functions
of multiple angles and the sums of angles gives

(14a)

. 0 .
V=u,sina I +—uR0 cosasina(l, —T7) (14b)
Z

0.

and the variance, from Eq. (2), is

Ho RO + AR

Y

Fig. 2. Geometry of the 2-dimensional radar beam

[1—TF +cos2a(I'T — )] + MO%RO cosa

3 r
x [EFI —T, -1 +73+ (2T, — T —F3)C0$20¢}

1 ou. \2[3 r, (-1
z(@’“) lz‘“‘T‘f

+

| — I+ T'3)cos2a

+(1-T
r, -1, 4
+<2F3—F2—F4+( 2 ”)COS “1

2 2

oz/) 12 8 (15)

where I',, = sin(n9) .
nv

<8u>2ARz(l — Iy cos4a)

The comparisons of the results from Eq. (15) with the
numerical integrations of Eq. (12) that are given in
Figs. 3—5 show that Eq. (15) is a good approximation to
the 3-dimensional solution, usually within a few percent.
The advantage of Eq. (15) is that it is relatively
straightforward to interpret physically and it can be
used to study the changes in spectral broadening due to
changes in wind speed, wind shear, etc. This formula
also can be applied easily to large data sets where it
would not be practical to integrate Eq. (12) to find the
broadening effects for each entry.

The numerical values of the coefficients of the terms
in Eq. (15) are given in Table 1 for the parameters of the
WSMR radar (o = 15°,9 = 1.5°) and for typical ranges
in the troposphere, stratosphere, and mesosphere.
Clearly, each of the terms may be important for typical
values of wind speed and wind shear. For example, at
17km with u, =20ms™! and Ou/0z=0.01s"", the
values of the terms are 0.118, —0.101, 0.030, and
0.012, respectively. Notice that in this example the
second term, that due to the product of wind speed and
wind shear, largely offsets the other three terms. The
physical interpretation of the individual terms is con-
sidered next.

Physical interpretation of the terms in Eq. (15) is
aided by using a power series expansion (to order ¥?) of
the coefficients. Then

¥ 292 |
o7~ 5 u? cos? o — = sin’ o <u0 %Ra cos oz)
D (ID

¥ o\ By
+ﬁ(3+cos4oc—4cos2oc) (E) RS

(I1D)
02 5 ou\ *AR?
—cos 4o + si o) (=) =— 1
+<300s o + sin” ocos OC)(&) P (16)
av) V)
Note that the sign of « is irrelevant because cosna and
sin® o are symmetric with respect to o.

All of the terms on the right hand side in Eq. (16)
except term V (the last part of the last term) depend on



790 G. D. Nastrom: Doppler radar spectral width broadening due to beamwidth and wind shear

9=15° o=7° 9 =25° o=7°

0.36 : T

-0.012 0 0.008 0.016

Fig. 3. Changes of the expected spectral broadening as a function of vertical shear of the horizontal wind for typical tropospheric, stratospheric,
and mesospheric ranges (R, ). Panels are for half-beamwidths of 1.5 and 2.5 degrees, and zenith distances of 7 and 15 degrees. The/ines (symbols)
are solutions of the 2-dimensional (3-dimensional) model. For all cases, #, = 20 ms™"

9=15° a=7° 9 =25° oa=7°
04} 1 0.8} 1
i - L ]
Ncn
£
{1 o 04r 1
©
O i L 1 L 1 n . L
90 0 10 30 50 70 90
Rg (km)
9=25° o= 15°
40 p
—— du/dz=-0.01s" 3
| | -~ dudz=0 |
30T T 4udz = +0.01

90 0 10 30 50 70 90
RO (km)

Fig. 4. Asin Fig. 3, except for solutions as a function of range for typical vertical wind shear values. Note that the ordinate scales differ among
panels
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Ry = 20 km
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Rg = 20 km du/dz = 0.01s™

12

10

8

0 16
o. (zenith distance, degrees)
Rp = 80 km du/dz = 0.01s™

1.8 ; T r r ; r -

;]
3 /]
12 — ©=15° 7]
[ - 9=25° < o
—- - $=385° /
/ o]
;

0.6 L x ;7 7 ]
K X~ 7S / -
b~ AT x X s/ 1
E——ré‘X::S?::g R

0 ‘ — KT = = D= : .
0 2 4 6 8 10 12 14 16

o {zenith distance, degrees)

Fig. 5. As in Fig. 3, except for solutions as a function of zenith distance for typical half-beamwidths

92 and thus represent beam-broadening effects. The first
term is due to beam-broadening effects by the back-
ground wind. If there is no vertical wind shear, then the
first term is the only nonzero term and Eq. (16) reduces
to Eq. (4).

The central terms, II-1V, are due to the combined
effects of finite beamwidth and vertical wind shear; i.e.,
they arise from the wind speed changes across the beam.
Terms IT and IIT depend on the range (R,) as well as on
the vertical wind shear and they represent the effects of
the growth of the distance across the beam with distance
from the radar. The sign of term II depends on the sign
of the vertical wind shear and thus this term can
partially offset the other terms; this term represents the
effect of the changing trigonometric factor across the
beam combined with the wind speed changes from
vertical wind shear across the beam. Although Hocking
(1985) notes that this effect has appeared in computer
simulation results, a mathematical expression for term II
has not appeared in past studies. As mentioned in the
discussion of Table 1, this term can have significant
magnitude in some cases.

Term III is roughly similar to the approximation in
Eq. (5), although the magnitude of the coefficient here is
much smaller for all « > 0 than that in Eq. (5) (e.g., for
o = 15 degrees it is about 1/10 as large). The coefficient
is smaller in Eq. (16) because a curved, lens-shaped,
sample volume is used here whereas in Eq. (5) (and in
Sloss and Atlas, 1968) a linear approximation is used
and so the sample volume is effectively like a flat plate.
Note that for a typical weather radar where o — 7/2

then only terms III and IV are nonzero; term III
resembles the middle term of Sloss and Atlas’ Eq. (18),
except with a different numerical coefficient. Term IV
represents the variance due to wind speed changes
simultaneously along and across the beam. Term V is
from wind speed changes along the beam. It is due only
to the vertical wind shear across a range gate; indeed, if
the beam is very narrow so that 9> — 0 then only term V
is nonzero and Eq. (16) reduces to Eq. (6).

For a given experiment the beamwidth, zenith
distance, and range resolution are constants and so the
solutions of Eq. (15) are second order polynomials with
respect to background wind speed, range, and vertical
wind shear. For example, Fig. 3 shows the values of a2
as a function of vertical wind shear for 9 = 1.5 and 2.5°,
o =7 and 15°, and R, = 10, 20, and 80km (note that
the ordinate scales differ among the panels), using
u, =20ms~" in all cases. In Fig. 3, the curves are
solutions from Eq. (15) and the symbols near the curves

Table 1. Numerical coefficients of the four terms of (15) with
o=1.5° 9 =1.5° and AR = 150m (the parameters used for the
WSMR radar) at typical ranges in the troposphere, stratosphere,
and mesosphere. Each term is identified by its remaining variables

R, (km) u? u,0u/0z (Ou)z)* (Ou)0z)?
6 2.96 107 -0.178 37.4 117

17 2.96 107 —-0.504 301 117

80 2.96 107 -2.37 6656 117
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are the 3-dimensional solutions from Eq. (12), and
comparison of the curves and symbols shows that Eq.
(15) is usually an adequate approximation to the 3-
dimensional model. It is noteworthy that, due to term II
discussed already, the minima of ¢> occur at nonzero
wind shears.

Figure 4 shows the changes of ¢> as a function of
range for typical values of vertical wind shear and using
the same choices of beamwidth and zenith distance as in
Fig. 3. In the lower panels, for o = 15°, note that the
curves for du/dz=0.01s"! have minima near 30km
range. Differentiating Eq. (15) with respect to R, shows
that the minimum occurs at R, =28.2km when
¥ = 2.5°, for example.

Extreme values of o> with respect to any of the
variables on the right hand side of Eq. (15) could be
evaluated from the partial derivative, in principle.
However, the dependence of o> on zenith distance is
relatively complicated and numerical results illustrate it
more easily than an equation. Figure 5 shows the
changes of ¢” as a function of zenith distance for ranges
20 and 80km and wind shears of +0.01s~!, for
¥ =15,25, and 3.5 degrees. In Fig. 5, ¢ has a
minimum at nonzero zenith distance when the vertical
wind shear is positive, as anticipated above in the
discussion of the second terms of Egs. (15) and (16).

2.4 Biases of mean winds and heights

The effects of finite beamwidth and vertical shear of the
horizontal wind also lead to a small bias in the mean
observed wind speed, v. Expanding the I',, in Eq. (14b) in
power series up to second order in ¥ gives

— 9% Ou
' (uo 2 0z

The second term in the brackets represents the bias of
the mean. The second term is negligible for most
conditions in the troposphere and lower stratosphere.
However, in the mesosphere the bias due to the second
term may be significant; for example, the bias is about
Ims~! at 90 km range for ¥ = 2.5° and 0.01s~! vertical
shear of the horizontal wind. The sign of the bias
depends on the sign of the wind shear. The bias arises
because the curvature of the sampling volume gives
asymmetric height changes with respect to the beam axis
and because we have assumed a constant wind shear
through the lens-shaped sampling volume.

The lens-like shape of the sampling volume with
uniform reflectivity causes the mean height of a verti-
cally directed beam to be slightly less than R, and leads
to a small amount of range-gate smearing. This effect is
negligible in the lower atmosphere but may be important
in the mesosphere for some applications. The magnitude
of the effect can be estimated as follows. The variance
from Eq. (3) of the heights within the sample volume of
a vertically directed cylindrical beam with thickness AR
is 0> = AR?/12. Then, using Eq. (12) to evaluate Z and
72 and Eq. (2) to find ¢? the effective range resolution is
AR, = \/120,. For example, for a beam with ¢ = 2.5°

R, cos o<> sina (17)

and AR = 150m, at R, = 20km the bias of the height
Z — R, and the change in effective range-resolution
AR.rr — AR are —4m and 0.9m, respectively, while at
R, =90km they are —19m and 17m.

3 Comparisons with observations

Figure 6 shows the hourly mean widths at WSMR at 6.1
and 17.6km for the oblique beams in the east-west
(beam 1) and north-south (beam 2) planes. The data
used are from 1991-1995. Details of the WSMR radar
system, quality control processing, and examples of the
data are given in Nastrom and Eaton (1993). For this
study, an hourly mean was used only if five or more
observations on both beams 1 and 2 survived quality
control checks at the level used and at the two levels
above and below the level used. In Fig. 6, 18 802 hourly
means are used at 6.1km and 17334 at 17.6km (the
range given in Fig. 6 is range from the radar, R,, and
should not be confused with height above sea-level).
Vertical wind shears were computed from the differences
of the averages of the winds over the two levels above
and below the level used.

In Fig. 6, the straight line in each panel is the beam
broadening that would be expected if only the first term
of Eq. (15) were nonzero. If beam broadening were the
only effect then all of the points would be expected to lie
above the lines in Fig. 6 (except, of course, for the effects
of observational errors in wind speed and in spectral
width). Note that more points fall below the lines in the
east-west beam (beam 1) at 6.1 km than in the other
three panels. This result could be expected from Eq. (15)
because both the background zonal wind speed and its
vertical shear at 6.1 km are usually positive making the
contribution from the second term of Eq. (15) negative
(the coefficient of this term is seen to be negative in
Table 1). At 17.6km the vertical shear of the back-
ground zonal wind is negative (Nastrom and Eaton,
1995) so the second term of Eq. (15) is positive. The sign
of the second term of Eq. (15) for the meridional wind
component at both heights changes with synoptic
conditions.

Figure 7 shows the hourly mean widths at 6.1 and
17.6km plotted as a function of vertical shear of the
horizontal wind. Only cases with wind speeds less than
10ms~" were used here. At 6.1 km the lower boundary
of the cloud of points has a parabolic shape with a
minimum value at zero shear. The value of the width at
the minimum is very near the distance between spectral
points at WSMR (near 0.01 m?s~2). At 17.6km, on the
other hand, the base of the cloud of points is nearly flat
with respect to wind shear. These patterns are consistent
with those expected from Eq. (15) as illustrated in
Fig. 8. Figure 8 shows that there is a higher probability
of finding very small values of ¢ for large values of
shear at 17 km than at 6 km.

Another example of the effect of wind shear is
illustrated in Table 2. Table 2 compares the mean
spectral widths of cases observed at WSMR at 17.1 km
sorted according to the algebraic sign of the product of
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6.1 and 17.6km as a function of square of the observed horizontal wind speed (U and V are observed zonal and meridional wind speeds,
respectively). The solid line in each panel is the spectral broadening that would be expected due to beam-broadening effects alone
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horizontal wind
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17km

the observed wind speed and vertical shear of the
horizontal wind; since the sign of the coefficient of the
second term in Eq. (15) is negative, we expect that
(assuming other factors are random) the mean observed
widths will be larger when the product uo‘g—j is negative.
This expectation is confirmed in Table 2.

4 Summary

Comparisons of analyses of 1-, 2-, and 3-dimensional
models of a radar beam show that, generally, it is not
adequate to simply add up the separate contributions of
beam- and shear-broadening from a 1-dimensional
model. On the other hand, it is found that the analytical
solution of a 2-dimensional beam with uniform weight-
ing across the beam is usually a good approximation to
the results of numerical integration of a 3-dimensional
beam model with Gaussian weighting across the beam.

The 2-dimensional solution has a term not found in
the 1-dimensional solutions and not presented in math-

Table 2. Comparisons of the mean spectral widths at 17.1 km at
WSMR when the cases are sorted according to the algebraic sign of
the product of wind speed and vertical wind shear

ematical formulae in past studies. This term is due to the
product of background wind speed and wind shear. This
term is not always negligible; its magnitude can be as
large as that of the other terms as illustrated by the
sample of data in Fig. 9 where the cross-term is
compared to the beam-broadening term for observa-
tions at WSMR during September-October-November
at 14.1 km. In Fig. 9, while the beam-broadening term is
largest in most cases, there are a significant number of
cases when the cross-term is non-negligible.

The corrections to the observed spectral width
predicted by the formula developed here are consistent
with observations from the VHF wind profiler at
WSMR. The magnitudes of the combined effects of
beam- and shear-broadening are usually less than about
0.1m?s~2 at typical heights in the troposphere and
stratosphere at WSMR, as illustrated in Fig. 10, al-
though in some cases the values of the corrections are
much larger than 0.1 m?s~2. (The values in Fig. 10 were
computed using the total wind speed in the first term of

N Width (beam 1) Width (beam 2)

6 < |u,| < 10

u,0u/dz < 0 1844 0.256 + 0.021 0.244 + 0.015

u,0u/dz >0 1541 0.143 + 0.008 0.192 + 0.008
6 < |v,| < 10

v,0v/0z < 0 501 0.232 £+ 0.028 0.222 + 0.027

v,0v/0z > 0 367 0.208 + 0.029 0.164 + 0.017
10 < Ju,| < 15

u,0u/dz < 0 1510 0.293 + 0.025 0.293 + 0.020

u,0u/dz >0 1014 0.149 + 0.008 0.221 + 0.011
10 < |v,| < 15

v,0v/0z < 0 127 0.330 + 0.084 0.364 + 0.124

v,0v/0z > 0 108 0.247 + 0.056 0.233 + 0.091
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The standard error (twice the standard deviation divided by the
square root of N) is given for each mean. The mean of the category
predicted by Eq. 15 to be the largest is underlined in each case; note
that the differences are much larger on beam 1 (2) when
u,0u/0z(v,0v/0z) is used to sort the cases

Beam broadening

Fig. 9. Comparison of the cross-term (Term II of Eq. 16) with the
beam-broadening term (Term I of Eq. 16) computed using the
observed wind speeds and vertical wind shears at WSMR at 14.6 km
during September-November
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Fig. 10. Frequency distributions of the values of 6> computed with (15) using the observed wind speeds and vertical wind shears at WSMR

Eq. 15 and the wind speed and wind shear along the
beam direction in the other terms). In any case, as
stressed by past studies (e.g., Atlas, 1964; Hocking,
1983a, 1985; Gossard and Strauch, 1983; Gossard,
1990), the corrections to spectral width due to beam-
broadening and wind-shear effects must always be
included in analyses of atmospheric turbulence from
spectral widths.

This work was aimed at applications to wind profiler
observations. However, the formula for spectral broad-
ening is general and could be applied to observations
from other radar systems such as the WSR-88D
although no effort has been made here toward that
application.
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