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Abstract. Formulas for computing the Cartesian com-
ponents of the static (DC) fields of horizontal electric
dipoles ( HEDs) and vertical electric dipoles ( VEDs)
located in the central zone of a three-layer horizontally
stratified medium are derived and presented in a
summary form suitable for immediate computation.
Formulas are given for the electric and magnetic field
components in the upper and central regions. In the
general case the computation involves the summation of
a convergent infinite series. For the particular case of an
infinitely thick central region (corresponding to the two-
layer problem), the analysis produces relatively simple
closed-form equations for the field components which
are suitable for a ‘hand calculation’. Specimen calcula-
tions for dipoles in seawaters are included and the
derived results are compared with computations made
using an ac model.

1 Introduction

The subject of the electromagnetic fields excited by
buried or submerged radiation sources is of interest both
for remote sensing and for communication purposes.
Current elements or probes with various configurations
may be utilised as sources. Additionally, it is known that
earthquakes generate a characteristic precursor at ultra-
low (and higher) frequencies (e.g. Molchanov et al.,
1992; Parrot et al., 1995) and the formulas presented
here may be of value in estimating the source magnitude
from measurement of ULF fields on the Earth’s surface.

A seminal paper dealing with the ac fields of a
submerged source for the three-layer case is that of
Weaver (1967). An excellent compendium of simplified
formulas for the two-layer case is given in Kraichman’s
book (1976) and further formulas for this model have

been published in a series of papers by Bannister (see
e.g. Bannister, 1984). Developments in relation to the
ocean/lithosphere environment have been presented, for
example, by Chave and Cox (1982) and Fraser-Smith
et al. (1988). Often in geophysics, point current sources
and sinks are used to produce subsurface fields for
remote sensing, and the configuration used is such that
the source acts essentially as a dipole (Wait 1982, 1993).
An important feature of the ac formulation is the
presence of ‘lateral waves’ which aid the propagation of
the fields. These waves are not present in the dc case. A
large number of relevant mathematical and practical
results for ac and dc are presented by Wait (1982), but
the dc formulas in this paper (for the three-layer case)
have not been published previously. Here we concen-
trate upon these dc (or static) solutions which apply for
vanishing small values of r=k.

The mathematical background to our formulation is
that developed by Sommerfeld (1967) and, particularly,
Wait (1987). In Burke and Jones (1992, 1993, 1994), we
considered an ac radiation source located in seawater –
the central region of a three-layered horizontally strati-
fied medium. We assumed a time-harmonic source
dipole moment of angular frequency x, and presented
integral formulas of the Sommerfeld type for the two-
component Hertz vector �Px; 0;Pz� which is required
for the solution in the case of horizontal electric dipole
(HED) radiation source and the single-component Hertz
vector �0; 0;Pz� needed for the vertical electric dipole
(VED). We also gave explicit formulas from which the
Cartesian components of the E and B fields can be
computed by quadrature. The field expressions are the
sum of two parts – an analytic primary contribution
which is the field produced in a medium of infinite
extent, and an integral secondary contribution arising
from the presence of the interfaces. These previous
formulas are valid at any wave frequency, including,
particularly, the dc case, x � 0.

For the dc case, we show that the integral formulas
can be evaluated analytically using Laplace transforms.
This process leads to an infinite series expansion suitable

Correspondence to: D. Llanwyn Jones
(email) david.jones@bay.cc.kcl.ac.uk

Ann. Geophysicae 15, 503–510 (1997)  EGS–Springer-Verlag 1997



for computation. Each term of the infinite series
corresponds to a particular image of the source in the
upper or the lower interface. Needless to say, the
application of the infinite series produces a much faster
algorithm for computing the field components at dc
than any involving numerical integration.

It is customary to determine dc solutions by deriving
formulas for a scalar electric potential and a vector
magnetic potential. In this paper, however, we derive dc
analytic formulas from our pre-existing ac equations
derived from a Hertz vector. In part, this work was
undertaken to validate our ac field derivations and
computer code (Burke and Jones, 1992, 1993). The
results for the various dc field components are given in a
compact tabular form for reference and computational
purposes. We also give specimen numerical data.

2 The physical model

We first consider an HED of current moment Id` ( Am)
placed in the central (conducting) layer of a three-layer,
horizontally stratified medium. The upper region is
taken to be free space and the lower two regions are
conductors with conductivities r2 and r3 (S/m), respec-
tively. The three regions could represent a geophysical
air-overburden-basement or an oceanic air-sea- seabed
problem. Cartesian co-ordinates are used with z directed
downwards, z � 0 being the upper interface. The
magnetic permeability is assumed to be that of free
space everywhere, so the dc fields of a magnetic dipole
source are unaffected by the interfaces and are the same
as those of a magnetic dipole located in free space. The
three layers are of infinite extent in the x and y
directions. The geometry is illustrated in Fig. 1.

The HED source is x-directed and located at �0; 0; h�.
The central region is of thickness d; the upper and lower
regions are assumed to be of infinite thickness. Fields are
to be computed at the point �x; y; z� with ÿ1 � z � d,
i.e. anywhere in layers 1 or 2. If it is assumed that
r2 � r3 (or, alternatively, that d !1), only the upper
interface affects the solution. This is termed the ‘two-
layer’ or ‘thick-layer’ solution in distinction to the ‘thin-
layer’ solution obtained for finite d for which both
interfaces (upper and lower) materially affect the field
components.

3 The field equations for the HED

3.1 Derivation of the HED dc field equations

In Burke and Jones, 1992, §3 (henceforth Ref. 1), general
equations were presented for the two components of the
Hertz vector in layer i, Pxi and Pzi, produced by an
HED source dipole located in layer i � 2. Using the
notation of this previous paper, we now consider
the limit x ! 0 to deduce the appropriate formulas
for the dc case. When the formulas for the components
of the Hertz vector have been established, the static E
and H field vectors can be computed in any layer from
the standard expression (e.g. Stratton, 1941),

E � k2P� grad div P; �1�

H � r�curl P; �2�

where k2
� ÿixl0r

� and r� � �r� ix�� is the complex
conductivity of the layer in which the field is to be
computed. At dc, in layer 2, r� � r2 and is real, but in
layer 1, r� � ix�0, and some care has to be taken in
evaluating the limit of the right-hand side of Eq. (1) as
x ! 0.

3.1.1 HED fields in layer 2

At dc, the Sommerfeld parameter u � �k2
ÿ k2

�

1
2 which

appears in the ac formulation (Ref. 1) may be replaced
by k. Thus, for the dc case, the components of the Hertz
vector in layer 2 are written in the form,

Px2 � M
Z

1

0
eÿkjzÿhj

� Beÿkz
� Cekz

� �

J0�kq�dk; �3�

Pz2 � M
@

@x

Z

1

0
Teÿkz

� Sekzÿ �

J0�kq�dk; �4�

where M � Id`=�4pr2�; q2
� x2

� y2 and J0 is the Bessel
function of the first kind of order zero.

Explicit expressions for the four coefficients B, C, S
and T were given in Ref. 1. These expressions involve d,
h and z, together with the layer conductivities which
enter the equations in terms of the interfacial reflection
coefficients for horizontal �Rij� and vertical polarisation
�Rjj

ij� for fields incident from layer i onto the interface
with layer j. It is immediately seen from the results of
Ref. 1 that as x ! 0,

R21 � R23 � 0; �5a�

and

Rjj

21 � ÿ1; Rjj

23 � �r3 ÿ r2�=�r3 � r2�: �5b�

It follows from the first two of these that the coefficients
B and C in the expression for Px2 are both zero, so that
Px2 is unaffected by the presence of the interfaces. It then
follows from Sommerfeld’s ac formula [Sommerfeld,
1967, p242, Eq. (14)] that, at dc, Px2 is expressible in
closed form:

Fig. 1. The three-layer geometry
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Px2 � M
Z

1

0
eÿkjzÿhjJ0�kq�dk � M q2

� �h ÿ z�2
h i

ÿ
1
2
: �6�

It is noted that this integral can be also be represented as
a known Laplace transform; see, for example, Abramo-
witz and Stegun (1968, Transform #29:3:55; p. 1024),
which gives a direct way of obtaining the result of Eq. (6)
for the dc case. Equation (6) gives the primary field of
the dipole, i.e. the field of a dipole located in a medium
of infinite extent.

When the differential in Eq. (4) is evaluated, the
expression for Pz2 becomes

Pz2 � ÿM
x
q

Z

1

0
k Sekz

� Teÿkz
ÿ �

J1�kq�dk; �7�

J1 being the Bessel function of the first kind of order
one. At dc, the coefficients S and T are (Ref. 1)

S � ÿ�Rjj

23=Djjk� eÿk�2d�h�
� eÿk�2dÿh�

� �

�8a�

and

T � ÿ�1=Djjk� eÿkh
ÿ Rjj

23eÿk�2dÿh�
� �

; �8b�

where Djj
� 1 � Rjj

23eÿ2kd .
We now expand the factor 1=Djj as a geometric

progression

1=Dj
�

X

1

n�0

ÿRjj

23

� �n
eÿ2ndk

: �9�

It then follows that Pz2 can be expressed as the sum of
four terms:

Pz2 �
X

4

i�1

P�i�
z2 � P�1�

z2 �P�2�
z2 �P�3�

z2 �P�4�
z2 ; �10a�

with

P�1�
z2 � � M

x
q

Z

1

0
eÿk�h�z�

X

1

n�0

ÿRjj

23

� �n
eÿ2ndkJ1�kq� dk;

�10b�

P�2�
z2 � ÿ M

x
q

Z

1

0
Rjj

23eÿk�2dÿh�z�
X

1

n�0

ÿRjj

23

� �n
eÿ2ndkJ1�kq�dk;

�10c�

P�3�
z2 � � M

x
q

Z

1

0
Rjj

23eÿk�2d�hÿz�
X

1

n�0

ÿRjj

23

� �n
eÿ2ndkJ1�kq�dk;

�10d�

P�4�
z2 � � M

x
q

Z

1

0
Rjj

23eÿk�2dÿhÿz�
X

1

n�0

ÿRjj

23

� �n
eÿ2ndkJ1�kq� dk:

�10e�

Consider the term P�1�
z2 . This may be written as

P�1�
z2 � M

x
q

Z

1

0

X

1

n�0

ÿRjj

23

� �n
exp ÿkrn1� �J1�kq� dk; �11�

where rn1 � 2nd � h � z.

As was the case for Eq. (6), the integral in Eq. (11)
can be evaluated using a tabulated result for the Laplace
transform (Abramowitz and Stegun, 1968, Transform
#29.3.56, p. 1024) viz:
Z

1

0
aeÿstJ1�at� dt �

��������������

s2
� a2

p

ÿ s
� �

��������������

s2
� a2

p

� �

ÿ1
:

For small values of a=s, greater numerical accuracy is
obtained by recasting the right-hand side of this formula
using the identity:

��������������

s2
� a2

p

ÿ s
� �

��������������

s2
� a2

p

� �

ÿ1

� a2 s2
� a2

� s
��������������

s2
� a2

p

� �

ÿ1
:

Putting a � q; t � k and s � rn1, it follows that

P�1�
z2 � � M x

X

1

n�0

ÿRjj

23

� �n
�

r2
n1 � q2

� rn1

����������������

r2
n1 � q2

q

� �

:

�12a�

It is noted that for a thick central layer, with h and z
finite so that d � h � q� z, only the n � 0 term of this
series expansion survives. This term is that produced by
the image of the source dipole in the upper interface and
is a secondary field component. Further secondary
components are produced by the higher values of n.

Applying the same technique to the remaining terms
in Eq. (10), we obtain

P�2�
z2 � � M x

X

1

n�1

ÿRjj

23

� �n
�

r2
n2 � q2

� rn2

����������������

r2
n2 � q2

q

� �

;

�12b�

P�3�
z2 � ÿ M x

X

1

n�1

ÿRjj

23

� �n
�

r2
n3 � q2

� rn3

����������������

r2
n3 � q2

q

� �

;

�12c�

P�4�
z2 � ÿ M x

X

1

n�1

ÿRjj

23

� �n
�

r2
n4 � q2

� rn4

����������������

r2
n4 � q2

q

� �

;

�12d�

with rn2 � 2nd ÿ h � z; rn3 � 2nd � h ÿ z and rn4 � 2nd
ÿh ÿ z.

Note that in Eq.(12b–d) the summations do not
include the term n � 0. These three terms thus make no
contribution to the solution when d is very large,
provided that h and z are finite.

The solution presented is, in fact, a geometrical-
optics (or images) formula which, as is well known, is
valid when the reflection coefficient is independent of the
‘angle of incidence’. In the given formulation this angle
of incidence is embodied within the Sommerfeld ‘dum-
my’ variable k. The images associated with a positive
sign preceding z in the formulas for rni are in layer 1 and
those with a negative sign are in layer 3.

Equations (6) and (12) are the complete solution for
the Hertz vector P in layer 2. The field components in
this layer can now be derived using Eqs. (1) and (2). The
results of this tedious process are presented in Sect. 4.1.
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3.1.2 HED dc fields in layer 1

Again, referring to the ac formulas presented in Ref. 1, it
is easily seen that, at dc, the Hertz vector components
Px1 and Pz1 in the air-space (layer 1) may be represented
in the form

Px1 � M
Z

1

0
A ekzJ0�kq� dk; �13�

Pz1 � M
@

@x

Z

1

0
R ekzJ0�kq� dk; �14a�

� ÿ M
x
q

Z

1

0
k R ekzJ1�kq� dk: �14b�

Application of the boundary conditions across the
interfaces z � 0 and z � d (as described in Ref. 1)
produces the following results for the two coefficients A
and R as x ! 0:

A � ÿir2=xe0� �eÿkh
; �15a�

R � ÿir2=xe0� ��S � T � � �1=k� ir2=xe0� �eÿkh
: �15b�

Hence, as x ! 0, both A and R, and thus Px1 and
Pz1 !1. However, Eqs. (1) and (2) must give finite
values for the dc fields E and H . In Eq. (1) k2P ! 0 and
in Eq. (2) ixe0r�P is clearly finite. We will now show
that in Eq. (1), rr �P is also finite.

3.1.2.1 Calculation of r �P and hence E. From Eqs. (13)
and (14) and the elementary formula

r �P � @Px=@x � @Pz=@z

it is found that

r �P � ÿM
x
q

Z

1

0
k �A � kR� ekzJ1�kq� dk: �16�

In Eq. (16) the factor A � kR is indeterminate as x ! 0
if Eq. (15) is used. To resolve this indeterminacy we
return to the boundary condition that both Ex and Ey
and hence r �P is continuous across the interface z � 0.
At dc this requires that

A � kR � eÿkh
� k�S ÿ T �

� 2=Djj

� �

eÿkh
ÿ Rjj

23eÿk�2dÿh�
� �

; �17�

and thus

r �P � ÿ2M
x
q

Z

1

0
k=Djj

� �

eÿkh
ÿ Rjj

23eÿk�2dÿh�
� �

� ekzJ1�kq� dk:

In this formula the integrand may be cast into the same
form as that previously expanded [Eq. (10)] by noting
that it is equivalent to

r �P�ÿ2M
x
q

@

@z

Z

1

0
1=Djj

� �

eÿk�hÿz�
ÿ Rjj

23eÿk�2dÿhÿz�
� �

� J1�kq� dk: �18�

Proceeding as in Sect. 3.1.1, we then find the following
series expansion formula for Eq.(18).

r �P �ÿ 2Mx
@

@z

X

1

n�0

ÿRjj

23

� �n
�

r2
n3 � q2

� rn3

����������������

r2
n3 � q2

q

� �

"

�

X

1

n�1

ÿRjj

23

� �n
�

r2
n4 � q2

� rn4

����������������

r2
n4 � q2

q

� �

#

: �19�

By evaluating the gradient of Eq. (19) in accordance
with Eq. (1), we obtain the series expansion formulas for
the electric field components in layer 1. These are given
in Sect.4.2. Note that the n � 0 term in Eq. (19)
represents the sum of the primary (or direct) field plus
the ‘thick-layer’ field corresponding to d !1, these
being equal for a point in layer 1. Also only the images
in layer 3 contribute to the field in layer 1 [rn1 and rn2 are
absent in Eq. (19)].

3.1.2.2 Calculation of H (or B). H is given by Eq.
(2) with r� � ixe0 for layer 1. From Eq.
(15), ixe0A � r2eÿkh and ixe0R � ÿr2�1=k�eÿkh. It then
follows that [as for Eq. (6)],

ixe0Px1 � Mr2

Z

1

0
eÿk�hÿz�J0�kq� dk

� Mr2 q2
� �h ÿ z�2

h i

ÿ
1
2
;

�20�

and

ixe0Pz1 � Mr2
x
q

Z

1

0
eÿk�hÿz�J1�kq� dk � Mr2x

� q2
��h ÿ z�2

��h ÿ z� q2
��h ÿ z�2

h i1
2

� �

ÿ1

:

�21�

The magnetic field components in layer 1 may now be
computed as H � r� �ixe0P�, the x and z components
of the vector P being given by the closed form
expressions, (20) and (21). Interestingly, these dc
magnetic field components are independent of d; r2
and r3 (note that Mr2 � Id`=4p). The field formulas
derived from Eqs. (20) and (21) are given in Sect. 4.2.

4 Recipes for computing the HED dc field components

4.1 HED DC Fields in Layer 2

The field equations for computing E and B � l0H ,
derived from the formulas of Sect. 3 are given in Tables
1 and 2. The field components are computed using the
tables as follows.

a) First compute the primary (direct) field produced
by the source dipole using the equations in Table 1,
[derived from Eq. (6)]. These are the fields produced by
the source if located in a medium of conductivity r2
which is of infinite thickness. These results are well
known and can be put in the form presented in the table
using formulas presented in many standard texts (e.g.
Stratton, 1941, p. 436).

b) Secondly calculate the secondary field components
for the case when the middle layer is of infinite thickness
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(the ‘thick-layer’ case). This is done by using the
formulas of Table 2 with i � 1 and n � 0. These for-
mulas are obtained from the n � 0 term of Eq. (12a).
The only value of rni required is thus

r01 � h � z:

Add these field values to those obtained in stage (a). The
result is that for the fields produced by a source at finite
depth within an infinitely thick central layer, and the
fields are thus affected by the upper interface only. The
source of this term is the image dipole located in layer 1
at a distance h above the upper interface.

c) To find the field for the general thin-layer or three-
layer case the results of Table 2 are used in the following
manner. If F represents any one of the field formulas
given in the second column of Table 2 compute the
double summation:

X

1

n�1

X

4

i�1

Fni

" #

:

Repeat this calculation for the five finite components in
Table 2. The convergence of the summation depends on
the value of R (which is the reflection coefficient of the

lower interface, Rjj

23) and on the spatial parameters,
particularly the layer thickness d (R small and/or d large
gives rapid convergence). The double summation com-
putes the fields given by the n > 0 terms of Eq. (12)
which are the fields of the multiple images of the source
in the upper �i � 1; 2� and lower �i � 3; 4� layers.

The final result is obtained by adding the field
produced in step (c) to that produced at step (b). If the i-
summation is first computed for n � 1 and the result
added to that of step (b), the convergence can be tested
following each successive n-summation enabling a sim-
ple algorithm to be devised for terminating the summa-
tion with a machine of any given precision.

d) Note: if the middle layer is infinitely thick but the
source dipole is near the base so that h0 � d ÿ h
z0 � d ÿ z are finite, the fields can be computed as the
primary field [as in (a)] plus a secondary term which is
the i � 4; n � 1 term in Table 2. This follows because
r14 � 2d ÿ h ÿ z � h0 � z0 is the only finite rni in this
situation.

4.2 HED dc fields in the upper region (layer 1)

The fields in the upper region (produced by a source in
layer 2) are computed as follows. Note that as z < 0, a
negative value of z is to be used for all calculations in
this region.

a) Compute the primary fields from the formulas of
Table 1.

b) For the electric field components, the secondary
fields for the two-layer (or ‘thick-layer’) case are the
same as the primary fields. Thus, for the electric
components, multiply the results obtained in (a) by
two to get the primary plus ‘thick layer’ contributions.

For the magnetic field components, the secondary
fields for the two-layer case can be computed using the
B-formulas of Table 2 with Si � �1 and replacing rni by
h ÿ z (remember that a negative value of z is to be used
so h ÿ z is always a positive quantity). The calculated
values are then added to those produced by step (a).

c) The calculation is now complete for the magnetic
fields because there are no ‘thin-layer’ contributions.

In the case of the electric fields the secondary ‘thin-
layer’ contribution to be added to that produced in step
(b) is calculated by using the formulas of Table 3 and
computing the double summation

X

1

n�1

X

4

i�3

Fni

" #

:

Table 1. Layer-2 primary fields of the HED

Ex � E0 �3x2
=D5

ÿ 1=D3
�

Ey � E0 3xy=D5

Ez � E0 3x�z ÿ h�=D5

Bx � 0
By � ÿB0 �z ÿ h�=D3

Bz � B0 y=D3

E0 � 106 Id`=�4pr2� �giving E in lV=m�

B0 � 100 Id` �giving B in nT�
D2

� q2
� �z ÿ h�2

; q2
� x2

� y2

Table 2. Layer-2 secondary field terms for the HED

Ex ÿE0�ÿR�n r2
ni � q2

ÿ 3x2

r2
ni � q2

ÿ �5=2

Ey �E0�ÿR�n 3xy

r2
ni � q2

ÿ �5=2

Ez �SiE0�ÿR�n 3xrni

r2
ni � q2

ÿ �5=2

Si � �1; i � 1; 2
Si � ÿ1; i � 3; 4

Bx �SiB0�ÿR�n xy
q4

rni�2r2
ni � 3q2

�

�r2
ni � q2

�
3=2

ÿ 2

" #

Si � �1; i � 1; 2
Si � ÿ1; i � 3; 4

By ÿSiB0�ÿR�n x2

q4

rni�2r2
ni � 3q2

�

�r2
ni � q2

�
3=2

ÿ 2

" #(

�

1

r2
ni � q2

� rni�r2
ni � q2

�
1=2

)

Si � �1; i � 1; 2
Si � ÿ1; i � 3; 4

Bz 0

E0;B0 and q are as defined in Table 1
R � �r3 ÿ r2�=�r3 � r2�;
rn1 � 2nd � h � z; rn2 � 2nd ÿ h � z;
rn3 � 2nd � h ÿ z; rn4 � 2nd ÿ h ÿ z; n � 1; 2; 3 . . .

Note: As x ! 0 and y ! 0 so q ! 0 ; Bx ! 0 and only the second
term in the fg for By is finite.

Table 3. Layer-1 secondary field terms for the HED

Ex
ÿ2SiE0�ÿR�n r2

ni � q2
ÿ 3x2

�r2
ni � q2

�
5=2

S3 � �1
S4 � ÿ1

Ey
�2SiE0�ÿR�n 3xy

�r2
ni � q2

�
5=2

S3 � �1
S4 � ÿ1

Ez
ÿ2SiE0�ÿR�n 3xrni

�r2
ni � q2

�
5=2

S3 � �1
S4 � ÿ1
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(Note that the second summation is only taken over
i � 3 and 4 in this situation. Except for the sign and a
factor of two, the formulas in Table 3 are the same as
those in Table 2.)

5 The vertical electric dipole

The vertical electric dipole ( VED) is taken to be z-
directed (i.e. directed downwards) and located at the
point (0,0,h). Otherwise the situation is as described in
Sect. 2.

Because, in this case, there is complete azimuthal
symmetry, the field formulas are less involved than is the
case for the HED. The boundary conditions can be
satisfied with a single-component Hertz vector
Pzi �i � 1; 2; 3� in each of the three layers, which is
written in the same form as that for Pxi for the HED.
Initially it is advantageous to use cylindrical polar co-
ordinates �q;u; z�. The cylindrical polar components
evaluated using Eqs. (1) and (2) are, explicitly:

Eq � @
2Pz=oqoz;Ez � k2

�

@
2

@z2

� �

Pz;Hu � ÿr�@Pz=@q;

�22�

all other field components being zero. The boundary
conditions for the VED thus reduce to the continuity of
k2Pz and oPz=oz across each of the two interfaces. The
solution for the VED at dc then proceeds analogously to
that for the HED and we will not detail the algebraic
processes involved here.

5.1 VED dc fields in layer 2

It is found that, at dc, the Hertz vector in layer 2 is
expressible in the form of Eq. (10a) with

P�1�
z2 � ÿM

X

1

n�0

ÿRjj

23

� �n
�

����������������

r2
n1 � q2

q

; �23a�

P�2�
z2 � �M

X

1

n�1

ÿRjj

23

� �n
�

����������������

r2
n2 � q2

q

; �23b�

P�3�
z2 � �M

X

1

n�1

ÿRjj

23

� �n
�

����������������

r2
n3 � q2

q

; �23c�

P�4�
z2 � ÿM

X

1

n�1

ÿRjj

23

� �n
�

����������������

r2
n4 � q2

q

; �23d�

from which the field components in layer 2 can be
computed using Eq. (22). The results are presented in
Sect. 6.1.

5.2 VED dc fields in layer 1

In layer 1, it is found that Pz1 may be written as
[compare Eq. (19) for the HED, noting that r �P1 �

@Pz1=@z]:

Pz1 � 2M

"

X

1

n�0

ÿRjj

23

� �n
�

����������������

r2
n3 � q2

q

ÿ

X

1

n�1

ÿRjj

23

� �n
�

����������������

r2
n4 � q2

q

#

: �24�

In Eqs. (23) and (24) the rni (with i � 3; 4) are defined
following Eq. (12). In Eq. (22), for layer 1; r� � 0 at dc
(and Pz1 is finite). It follows that Hu is zero in this layer.
This is to be expected from Amperes law, because of the
symmetry and the fact that there are no currents in
layer 1. The electric field components, as computed from
Eqs. (22) and (24) are presented in Sect. 6.2.

6 Recipes for computing the VED dc field components

6.1 DC VED fields in layer 2

The formulas for the VED fields in layer 2 are listed in
Tables 4 and 5. The results in Table 4 are those of
Table 1 modified for a z-directed dipole. Computation
proceeds exactly as described in Sect. 4.1 except that
Tables 4 and 5 are used in place of Tables 1 and 2,
respectively. The cylindrical polar components �Eq;Bu;

Ez� should first be calculated to the precision required.
Finally, if needed, the Cartesian components may be
computed from these using the relations presented in
Table 4.

Table 4. Layer-2 primary fields of the VED

Eq � E0 3q�z ÿ h�=D5

Ez � E0 �3�z ÿ h�2
ÿ D2

�=D5

Bu � B0 q=D3

Ex � xEq =q : Ey � yEq=q
Bx � ÿyBu=q : By � xBu=q : Bz � 0
E0 � 106 Id`=�4pr2� �giving E in lV=m�

B0 � 100 Id` �giving B in nT�
D2

� q2
� �z ÿ h�2

; q2
� x2

� y2

Table 5. Layer-2 secondary field terms for the VED

Eq ÿSi E0 �ÿR�n 3qrni

�r2
ni � q2

�
5=2

Si � �1; i � 1; 3
Si � ÿ1; i � 2; 4

Ez ÿSi E0 �ÿR�n 2r2
ni ÿ q2

�r2
ni � q2

�
5=2

Si � �1; i � 1; 4
Si � ÿ1; i � 2; 3

Bu ÿSi B0 �ÿR�n q

�r2
ni � q2

�
3=2

Si � �1; i � 1; 4
Si � ÿ1; i � 2; 3

For Ex;Ey ;Bx and By use the formulas in Table 4;
E0;B0 and q are as defined in Table 4;
R � r3 ÿ r2� �= r3 � r2� �.
rn1 � 2nd � h � z; rn2 � 2nd ÿ h � z;
rn3 � 2nd � h ÿ z; rn4 � 2nd ÿ h ÿ z; n � 1; 2; 3 . . .
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6.2 DC VED fields in layer 1

In layer 1 there are no magnetic field components for the
VED (i.e. B � 0) so only the electric fields have to be
computed. Computations of the electric field compo-
nents are made following the procedure described in
Sect. 4.2 using the E-field formulas of Tables 4 and 5 as
follows.

To compute the sum of the primary plus thick-layer
contribution use Table 4, multiplying each of the two
electric field components by two. Then add on the result
of the summation over n for i � 3 and 4 (as in Sect. 4.2c)
using the E-formulas of Table 5, but again multiplying
each field component in Table 5 by two.

7 Specimen calculations and validation

7.1 Specimen Calculations

Specimen calculations for the HED and the VED gave
the results presented in Table 6. A single precision
algorithm was used and the computation terminated
automatically (e.g. at n � 31 for the layer 2 fields for the
HED when the largest field component increment
was, at most, 0:5 � 10ÿ5 the existing value of that
component)

7.2 Validation

We have tested the dc formulas presented in this paper
against our ac model (Burke and Jones, 1993, 1994),
which had previously been programmed. This process
checks the analytic derivations of the field components
from the Hertz vector for the two cases and the resulting
computer code. Clearly, the ac model should give the

same results as the dc model at sufficiently low
frequencies. We have thus made computations using
the dc model and the ac model at a frequency of 3 Hz.
The results of the dc calculations and the modulus of the
ac values for the various components in layer 1 are given
in Table 7. The phase of the ac components (0 or p) also
corresponds to the sign of the dc value. The dc and low-
frequency ac fields in layer 2 also agreed numerically.

Acknowledgements. The work described here has been supported,
in part, by the U.K. Defence Research Agency, Winfrith New-
burgh, UK. Topical Editor D. J. Webb thanks S. Lovell and P. R.
Bannister for their help in evaluating this paper.

References

Abramowitz, M., and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, New York, 1968.

Bannister, P. R., New Simplified Formulas for ELF Subsurface-to-
Subsurface Propagation, IEEE J. Ocean. Eng., OE-9, 154–163,
1984.

Burke, C. P., and D. Ll. Jones, Electromagnetic Wave Propagation
in Three-Layered Media, Technical Report RP921015, 1992.

Burke, C. P., and D. Ll. Jones, ELF Propagation in Deep and
Shallow Sea Water, AGARD Conf. Proc. 529, AGARD
(NATO), Neuilly sur Seine, France, pp 11.1–11.8, 1993.

Burke, C. P., and D. Ll. Jones, A Signal-to-Noise Model for ELF
Propagation in Sub-Surface Regions, IEEE J. Ocean. Eng., 19,
353–359, 1994.

Chave, A. D., and C. S. Cox, Controlled Electromagnetic Sources
for Measuring Electrical Conductivity Beneath the Oceans, J.
Geophys. Res., 87, 5327–5338, 1982.

Fraser-Smith, A. C., A. S. Inan, O. G. Villard and R. G Joiner,
Seabed Propagation of ULF/ELF Electromagnetic Fields from
Harmonic Dipole Sources Located on the Seafloor, Radio Sci.,
23, 931–943, 1988.

Kraichman, M. B., Handbook of Electromagnetic Propagation in
Conducting Media, U.S. Government Printing Office, Washing-
ton, DC 20402, Stock No. 008-040-00074-5, 1976.

Molchanov, O. A., Yu. A Kopytenko, P. V. Voronov, E. A.
Kopytenko, T. Matiashvili, A. C. Fraser-Smith, and A. Bernardi,
Results of ULF Magnetic Field Emission Near the Epicenter of
Spitac (Ms � 6:9) and Loma Prieta (Ms � 7:1) Earthquake, A
Comparative Analysis, Geophys. Res. Lett., 19, 1495–1498,
1992.

Parrot, M., A. C. Fraser-Smith, O. A. Molchanov, and T. Yoshino,
Electromagnetic effects associated with earthquakes and volca-
nic eruptions, EOS Trans. Am. Geophys. Union, 76, 233, 1995.

Sommerfeld, A., Partial Differential Equations in Physics, Aca-
demic Press, London, New York, 1967.

Table 6. Specimen calculations

Fields in Layer 2
Parameters: Id` � 1 Am, r2 � 4 S/m, r3=r2 � 0:15, h � 2:0 m,

d � 13:0 m x; y; z � 50:0, )100.0, 11.0

HED – Number of terms used = 31. Relative Tolerance = 0.5E–05
Bx;By ;Bz=pT = 0.60937 )2.4926 )7.0864
Ex;Ey ;Ez/nV/m = 57.826 )118.01 5.5129

VED – Number of terms used = 35.Relative Tolerance = 0.50E–05
Bx;By ;Bz=pT = 0.11092 5.54601E–02 0.00
Ex;Ey ;Ez/nV/m = )0.98227 1.9645 )0.39477

Fields in Layer 1
Parameters: Id` � 1 Am, r2 � 4 S/m, r3=r2 � 0:15, h � 2:0 m,

d � 13:0 m x; y; z � 5:0, )10.0, )10.0

HED – Number of terms used = 13. Relative Tolerance = 0.5E–05
Bx;By ;Bz=pT = 62.946 88.785 )226.66
Ex;Ey ;Ez/nV/m = )7803.4 )5157.0 )6514.0

VED – Number of terms used = 24. Relative Tolerance = 0.1E–06
Bx;By ;Bz=pT = 0.00 0.00 0.00
Ex;Ey ;Ez/nV/m = )5945.2 11890.4 5164.4

Table 7. Validation of dc model against the ac model (layer 1)

Source HED VED

Field
Component

dc Model ac Model
(3 Hz)

dc Model ac Model
(3 Hz)

Bx/nT )6.4717E–2 6.4716E–2 0.0 1.4933E–11
By /nT 5.7130E–3 5.5987E–3 0.0 5.9733E–12
Bz/nT 2.0091E–1 2.0088E–1 0.0 0.0
Ex=lV/m )5.5653 5.5692 )2.4261 2.4264
Ey=lV/m 4.2892 4.2892 )6.0653 6.0660
Ez=lV/m )3.6831 3.6830 )6.8996E–1 6.9006E–1

Source location �x; y; h� � �0; 0; 4�; Fields computed at (6, 15, )7).
Layer parameters: d � 10 m, r2 � 4 S/m, r3 � 1 S/m. Id` � 1 Am.

D. Llanwyn Jones, C. P. Burke: The DC field components of horizontal and vertical electric dipole sources 509



Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York,
1941.

Wait, J. R., Geo-Electromagnetism, Academic Press, London, New
York, 1982.

Wait, J. R., Electromagnetic Wave Theory, John Wiley, New York
1987.

Wait J. R., Basic Radiation Fields, Radiosci., 4 (No. 4), 90–94,
1993.

Weaver, J. T., The Quasi-static Field of an Electric Dipole
Embedded in a Two Layer Conducting Half Space, Can J.
Phys., 45, 1981–2002, 1967.

510 D. Llanwyn Jones, C. P. Burke: The DC field components of horizontal and vertical electric dipole sources


